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INTRODUCTION: The capacity of a tissue to re-
generate itself rests on the potential of its
resident cells to replace cells lost to injury.
Some tissues, such as skin or intestine, do
this remarkably well through the activation
of tissue-specific stem cells. Injuries to the
central nervous system (CNS), in contrast,
often lead to permanent functional impair-
ment; some cells lost to injury are never re-
placed. Neural stem cells have been identified
in the adult brain and spinal cord and are
activated by injury. However, injury-activated
neural stem cells predominantly produce scar-
forming astrocytes, and the contribution of
neural stem cells to cell replacement is insuf-
ficient for regeneration. To design regener-
ative strategies aimed at recruiting resident
neural stem cells for repair, it is essential to
know whether greater regenerative potential
exists and how to elicit such potential.

RATIONALE: The spinal cord is a great system to
study neural stem cell recruitment for repair.
The neural stem cell potential of the spinal
cord resides in a well-characterized popula-
tion of ependymal cells. Ependymal cells, nor-
mally quiescent, are activated by injury to
generate almost exclusively scar-forming as-
trocytes. Ependymal-derived astrocytes help
to preserve tissue integrity, but other cell types,
such as myelin-forming oligodendrocytes, are
insufficiently replaced. In parallel, neural stem
cell transplantation has proven to be beneficial
to recovery after spinal cord injury—a benefit
that is associatedwith the increased supply of
oligodendrocytes able to remyelinate demye-
linated axons. Ependymal cells share a devel-
opmental origin with spinal oligodendrocytes,
which led us to explore whether a latent po-
tential for expanded oligodendrocyte gener-
ation might exist.

RESULTS: We integrated single-cell RNA se-
quencing (scRNA-seq) and single-cell assay
for transposase-accessible chromatin using
sequencing (scATAC-seq) to study lineage po-
tential in adult ependymal cells of the mouse
spinal cord.We found that the genetic program
for oligodendrocyte generation is accessible
in ependymal cells. However, this program is
latent, as oligodendrocyte genes are not ex-
pressed. In particular, we found that a large
fraction of binding sites for OLIG2, the tran-
scription factor that initiates developmental
oligodendrogenesis, had basal accessibility,
despite OLIG2 and its key target genes not
being expressed in adult ependymal cells. To
study whether this latent accessibility was
associated with a greater capacity to produce
oligodendrocytes, we genetically engineered
amousemodel to express OLIG2 in adult epen-
dymal cells.We found thatOLIG2 expressionwas
compatible with ependymal identity during
homeostasis. However, after injury, OLIG2 ex-
pression led to the increased accessibility of
the latent program and subsequent expression
of genes specifying oligodendrocyte identity.
Unfolding of the latent program was followed
by efficient oligodendrocyte production from
ependymal cells, but not from astrocytes, after
injury. Using scRNA-seq of ependymal-derived
cells, we found that new oligodendrocytes fol-
lowed the developmental program of oligoden-
drocyte maturation, including a self-amplifying
oligodendrocyte progenitor cell–like state. These
cells later matured to acquire the identity of
resident mature myelinating oligodendrocytes.
Further, ependymal oligodendrocyte genera-
tion occurred in parallel and not at the ex-
pense of astrocyte scarring. Newly recruited
ependymal-derived oligodendrocytes migrated
to sites of demyelination, where they remyeli-
nated axons over the long term. Finally, using
optogenetics,we found that ependymal-derived
oligodendrocytes contributed to normalizing
axon conduction after injury.

CONCLUSION: Adult neural stem cells have a
greater potential for regeneration than is nor-
mally manifested. Targeted activation of such
potential leads to the recruitment of neural
stem cells for the generation of remyelinat-
ing oligodendrocytes in numbers comparable
to those obtained via cell transplantation.
Resident stem cells can thus serve as a re-
servoir for cellular replacement andmay offer
an alternative to cell transplantation after
CNS injury.▪
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Latent potential in neural stem cells. Through the integration of different layers of genomic information in
single cells, we found that the genetic program for oligodendrocyte generation is latently accessible in
ependymal neural stem cells of the adult spinal cord. After injury, activating the latent potential by forced
OLIG2 expression unfolds efficient oligodendrocyte generation, leading to enhanced repair.
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Injuries to the central nervous system (CNS) are inefficiently repaired. Resident neural stem cells manifest
a limited contribution to cell replacement. We have uncovered a latent potential in neural stem cells to
replace large numbers of lost oligodendrocytes in the injured mouse spinal cord. Integrating multimodal
single-cell analysis, we found that neural stem cells are in a permissive chromatin state that enables
the unfolding of a normally latent gene expression program for oligodendrogenesis after injury. Ectopic
expression of the transcription factor OLIG2 unveiled abundant stem cell–derived oligodendrogenesis,
which followed the natural progression of oligodendrocyte differentiation, contributed to axon remyelination,
and stimulated functional recovery of axon conduction. Recruitment of resident stem cells may thus
serve as an alternative to cell transplantation after CNS injury.

T
he adult mammalian central nervous
system (CNS) has a limited capacity for
regeneration after injury, and functional
impairments typically persist permanent-
ly (1). Resident neural stem cells exist in

the brain and spinal cord, but they show a pro-
pensity to generate an astrocyte scar at the
expense of multilineage cell replacement after
injury, leading to regeneration failure (2–5).
Recruiting endogenous stem cells for cell re-
placement has become one of the main goals
of regenerative medicine in the CNS (6), but
whether greater regenerative potential exists
remains unknown.

Latent accessibility of the regulatory program
for oligodendrogenesis in spinal cord
ependymal cells

The stem cell potential of the spinal cord re-
sides in the small population of ependymal cells
(7–9). To explore the lineage potential of epen-
dymal cells, we performed single-cell assay for
transposase-accessible chromatin using se-
quencing (scATAC-seq) (10) of resident non-
neuronal cell populations in themouse spinal
cord, enriching for ependymal cells during
sorting (Fig. 1A and supplementarymaterials).
We directly compared our scATAC-seq profiles
of 1100 cells with single-cell RNA sequencing
(scRNA-seq) of the same tissue (fig. S1) (11).

Integration of the promoter and gene body
accessibility in scATAC-seq togetherwithmark-
er gene expression in scRNA-seq led to the
identification of clusters of ependymal cells,
astrocytes, oligodendrocyte progenitor cells,
vascular endothelial cells, and pericytes in our
scATAC-seq dataset (Fig. 1, B and C, and fig.
S2, A to F), thus capturing the major scar-
forming cell populations in the spinal cord (2).
Besides the concordance that promoter and
gene body accessibility showed with RNA
expression, differential accessibility analyses
identified 17,000 regulatory regionswith cluster-
specific accessibility patterns (fig. S2, G andH).
Motif enrichment analyses on cluster-specific
regulatory regions revealed high enrichment
of predicted transcription factors, such as reg-
ulatory factor X (RFX) factors for ependymal
cells (12) (Fig. 1D).We observed that themotifs
for the canonical oligodendrocyte lineage tran-
scription factors OLIG2 and SOX10were highly
accessible not only in oligodendrocyte progen-
itor cells (OPCs) but also in ependymal cell
clusters (Fig. 1D). This was unexpected, as
OLIG2 and SOX10 are expressed in oligodendro-
cyte lineage cells but not in adult ependymal
cells (Fig. 1E and fig. S3) (8). To further explore
this observation, we examined the accessibility
of oligodendrocyte-lineage transcription fac-
tor loci, including SOX10, a factor essential
for oligodendrogenesis with some previously
characterized regulatory regions (13, 14). We
noted that a conserved SOX10 enhancer (28 kb
upstream) accessible in OPCs also showed
accessibility in ependymal cells, but less in
other clusters (Fig. 1E). A similar pattern was
observed in multiple other oligodendrocyte
lineage genes (fig. S4, A to D). The SOX10
enhancer contained an OLIG2 binding site
(Fig. 1F), which led us to explore whether

accessibility at OLIG2 binding sites was a
more general phenomenon. Indeed, OLIG2
binding sites accessible in oligodendrocyte
progenitors were also highly enriched in the
accessible landscape of ependymal cell clus-
ters, despite OLIG2 not being expressed (Fig.
1G). The genetic program for oligodendro-
genesis is thus permissive in ependymal cells
despite the lack of expression of its critical
regulators.

Expression of OLIG2 in ependymal cells leads
to activation of the latent oligodendrocyte
lineage program after injury

OLIG2 initiates developmental oligodendro-
genesis upstreamof SOX10,with the expression
of SOX10marking the irreversible commitment
to the oligodendrocyte lineage (15, 16). To study
whether introducing the expression of OLIG2
in adult ependymal cells would lead to the de-
ployment of the permissive oligodendrocyte
program, we generated Rosa-CAG-LSL-Olig2-
IRES-tdTomato (Olig2-tdT) mice for condi-
tional and simultaneous expression of OLIG2
and tdTomato upon cre-mediated recombina-
tion (fig. S5A). To express OLIG2 specifically in
ependymal cells and their progeny, we crossed
Olig2-tdTmice to Foxj1-creERmice, generating
Foxj1-Olig2-tdT mice, with Foxj1-tdT serving as
control mice (Fig. 2A). Tamoxifen induction led
to OLIG2 expression in all recombined cells at
levels ~5 times those innonrecombinedOLIG2-
expressing parenchymal cells (Fig. 2B and fig.
S5B).We first performedATAC-seq on isolated
ependymal cells from uninjured Foxj1-tdT and
Foxj1-Olig2-tdT mice. In addition, to study the
ependymal response to injury at the chromatin
level, we also isolated cells 1 or 5 days after a
dorsal funiculus incision injury (Fig. 2C), when
the ependymal cell progeny begin to mobilize
toward the injury site but still express ependy-
mal markers (fig. S5, C to E). To define the
associated transcriptional programs, we per-
formed RNA-seq onmatched samples collected
in parallel (fig. S6). Comparative analysis re-
vealed high concordance between the global
chromatin accessibility of ependymal cells
from uninjured Foxj1-tdT and Foxj1-Olig2-
tdT mice, with increasingly different profiles
after injury (Fig. 2D). To study changes in the
activity of the oligodendrocyte gene expres-
sion program, we measured the accessibility
of OPC-enriched regions that containedOLIG2
binding sites in ependymal cells (1560 regions;
Fig. 2E). Although the accessibility did not
increase in ependymal cells from uninjured
mice in the presence of OLIG2, these sites
rapidly gained accessibility after injury in
OLIG2-expressing ependymal cells [increases
by factors of 1.5 and 1.9 at 1 and 5 days post-
injury (dpi), respectively; Fig. 2F]. Increased
accessibility was also observed in the complete
set of OPC-enriched regions, and the OLIG2
motif was highly enriched in all the regions
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that gained accessibility after injury (fig. S5,
F to I), which suggests that accessibility gains
in the oligodendrocyte program were a direct
consequence of OLIG2 binding. Accessibility
gains were greater in oligodendrocyte lineage
regions than in regions defining astrocyte or
vascular cell clusters, suggesting specificity
(fig. S5H), and led to nascent expression of the
nearest genes (fig. S5J). Further, regions that
gained accessibility included several upstream
enhancers of SOX10, and accessibility in those
regionswas highly correlatedwith the onset of
SOX10 expression (Fig. 2, G and H) and the

subsequent accessibility of its target sites (fig.
S5K). Together, these findings show that the
program for oligodendrogenesis has a latent
accessibility in ependymal cells and that this
latent program can be rapidly unveiled in the
presence of OLIG2 in response to injury.

Activation of the latent oligodendrocyte
program leads to efficient oligodendrocyte
production after injury

Oligodendrocytes are vulnerable to CNS dam-
age, and oligodendrocyte loss leads to the dys-
myelination of spared and regenerated axons

after spinal cord injury (17, 18). We next asked
whether the increased accessibility of the oligo-
dendrocyte lineage program in ependymal cells
would lead to the generation of oligodendro-
cytes during injury repair (Fig. 3A). As pre-
viously described, injury induced a vigorous
ependymal cell response characterized by pro-
liferation and migration of the ependymal cell
progeny to the lesion site in Foxj1-tdT mice
(Fig. 3, B andC). The tdTomato-labeled progeny
in Foxj1-tdT mice consisted almost exclusively
of cells expressing the astrocyte marker SOX9,
which contributed to the formation of the glial
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Fig. 1. Integration of scRNA-seq and scATAC-seq uncovers latent accessibility
of the oligodendrocyte lineage program in ependymal cells. (A) scATAC-seq
was performed on non-neuronal cells from the mouse spinal cord. Ependymal
neural stem cells (NSCs) were enriched during fluorescence-activated cell
sorting (FACS; see supplementary materials). Genes with variable promoter and
gene body accessibility were identified and used as anchors to reference cell
types identified in scRNA-seq. (B) UMAP projection of non-neuronal spinal cord
single-cell transcriptomes from (11). Clusters were annotated according
to the reference atlas (11). EP, ependymal; ACNT, non-telencephalon astrocyte;
OPC, oligodendrocyte progenitor cell; COP, committed oligodendrocyte progenitor;
NFOL, newly formed oligodendrocyte; MFOL, myelin-forming oligodendrocyte; MOL,
mature oligodendrocyte; VEC, vascular endothelial cell; PER, pericyte. The
expression of cluster-specific markers is projected on UMAP on the right.
(C) UMAP projection of non-neuronal spinal cord cell transcriptomes assayed

by scATAC-seq. Clusters were annotated according to the correspondence
between gene accessibility and scRNA-seq expression (fig. S1). The accessibility
of representative cluster-specific markers is projected on UMAP on the right.
(D) Heat map showing motif enrichment in genomic regions with cluster-specific
accessibility. Scaled enrichment scores for the top 100 motifs per cluster are
shown. OLIG2 and SOX10 motifs show enrichment in OPCs and ependymal
clusters (arrowheads at left). (E) Expression of SOX10 is restricted to cells from
the oligodendrocyte lineage, whereas a 28-kb upstream enhancer of SOX10 is
accessible in OPCs and in ependymal cells. (F) The enhancer, highlighted in
magenta, is highly conserved (shown in the placental mammal phastCons track)
and contains an OLIG2 binding site. ChIP, chromatin immunoprecipitation.
(G) Enrichment for OLIG2 binding sites in the accessible-chromatin landscape of
ependymal cells. Gray bars show Z enrichments; box plots show OLIG2 expression
in the respective clusters.
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scar (Fig. 3C and fig. S7A). Consistent with
previous observations (8), we also detected a
low number of cells expressing the oligoden-
drocyte lineage (OL)marker SOX10 (<1% of the
ependymal cell progeny) 4 weeks after injury
(fig. S7C).
In line with the lack of chromatin accessi-

bility changes prior to injury, recombined epen-
dymal cells in Foxj1-Olig2-tdT mice remained
by the central canal and retained their nor-
mal morphology in the absence of injury (Fig.
3D). However, after injury, OLIG2-expressing
ependymal cells generated a large number of
SOX10-positive cells, in addition to generating
astrocytes in the scar (Fig. 1E). Four weeks
after injury, these SOX10-positive oligodendro-
glial cells were abundant, constituting ~30%
of the ependymal cell progeny (fig. S7, B and C).
We refer to these cells as ependymal-derived
oligodendrocyte lineage cells (epOLs) to dis-
tinguish them from other parenchymal oli-
godendrocyte lineage cells. We followed the
process of epOL generation over time; this re-
vealed a progressive generation of SOX10+ tdT+

cells (11,000 ± 3000 cells 12 weeks after injury)
(Fig. 3F and fig. S7, D and E), which corre-
sponds to an increase in oligodendroglial cell

production from ependymal cells by a factor
of >40. In parallel, relative to Foxj1-tdTmice at
2, 4, and 12 weeks after injury, the total num-
bers of ependymal cell progeny in Foxj1-Olig2-
tdT mice increased by factors of 1.3, 2.2, and
2.7, respectively (Fig. 3G); this finding suggests
that epOL generation did not occur at the ex-
pense of astrocyte generation and did not lead
to ependymal cell depletion (fig. S7, F to H).
Interestingly, forced OLIG2 expression in pa-
renchymal astrocytes failed to elicit efficient
oligodendrogenesis after injury (fig. S8), sup-
porting the view that ependymal cells are spe-
cifically permissive to oligodendrogenesis.

Ependymal-derived oligodendrogenesis
molecularly recapitulates developmental
oligodendrogenesis and is compatible
with astrocyte generation

We next sought to molecularly reconstruct
ependymal oligodendrogenesis at single-cell
resolution. For this, we isolated tdTomato+

cells from three cohorts of Foxj1-tdT and Foxj1-
Olig2-tdTmice: uninjured, 2 weeks after injury,
and 4 weeks after injury (Fig. 3A). Cells were
then profiled using droplet-based 3′ single-cell
RNA sequencing (scRNA-seq). After sequenc-

ing and filtering (fig. S9, A to D), we recovered
a total of ~3000 single-cell transcriptomes.
Computational analyses revealed the presence
of six clusters organized in two main groups,
one defined by Sox9 expression (four clusters)
and the other one by Sox10 expression (two
clusters; Fig. 3, H to J). The first cluster of Sox9-
expressing cells contained the vast majority of
cells from uninjured Foxj1-tdT and Foxj1-Olig2-
tdT mice and expressed the highest levels of
ependymal markers (e.g., Rarres2, Cd27,Nnat).
We denote this cluster as ependymal (EP).
Ependymal cells from uninjured Foxj1-tdT
and Foxj1-Olig2-tdT mice clustered tightly
together, which suggests that OLIG2 had only
a mild influence on the ependymal cell tran-
scriptome in the absence of injury (Fig. 3K).
The other three clusters of Sox9-expressing

cells were enriched in the ependymal cell prog-
eny from both Foxj1-tdT and Foxj1-Olig2-tdT
mice 2 and 4 weeks after injury, which progres-
sively shifted in the t-distributed stochastic neigh-
bor embedding (tSNE) space (Fig. 3, H and K,
and fig. S9F). Cells in these clusters were char-
acterized by up-regulation of astrocyte mark-
ers (e.g., Vim, Gfap, Cryab) and concomitant
down-regulation of ependymal markers (Fig. 3,
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Fig. 2. The latent oligodendrogenic program in ependymal cells unfolds
after injury in the presence of OLIG2. (A) Schematic representation of
the experimental design for fate mapping of ependymal cells and induction of
OLIG2 expression in recombined cells. (B) OLIG2 immunostaining shows
the absence of expression in Foxj1-tdT ependymal cells and uniform nuclear
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I and J). Gene Ontology analysis indicated that
cells in these clusters up-regulated programs
for cell division, migration, gliogenesis, and
response to wounding, in line with being scar-
forming cells (fig. S10, A and B). We named
these clusters astroependymal 1 to 3 (AE1, AE2,
and AE3) to reflect the ependymal origin and
acquisition of astroglial identity.
Expression of Sox10 defined the other two

clusters (Fig. 3I), which corresponded to the
epOLs identified above. These cells did not

express the ependymal or astroependymal
programs, and the acquisition of oligoden-
droglial identity was fully supported by Gene
Ontology analyses (fig. S10, C and D). The
epOL cells were absent in uninjured mice
and emerged after injury almost exclusively
in Foxj1-Olig2-tdT mice (38% of Foxj1-Olig2-
tdT and 0.4% of Foxj1-tdT cells 4 weeks after
injury) (Fig. 3K and fig. S9E).
When visualized using diffusion maps, cells

from Foxj1-Olig2-tdT mice (uninjured, 2 weeks

after injury, and 4 weeks after injury, re-
spectively) were organized along two diver-
gent paths, with cells from the ependymal
cluster enriched at the vertex, and AE3 and
epOL2 cells enriched at the respective branch
ends (Fig. 4, A and B). Pseudotime score de-
termined with the diffusion map closely re-
flected time after injury (Fig. 4, C and D) and
further supported AE3 and epOL2 as the ter-
minal differentiation states of the divergent
branches of ependymal cell differentiation.
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Fig. 3. Ependymal cells can generate abundant oligodendrocytes after
injury. (A) Schematic representation of the experimental design to assess
ependymal oligodendrogenesis. SCI, spinal cord injury. (B to G) The spinal cord
was analyzed 2, 4, and 12 weeks after injury. (B) Coronal view of an uninjured
spinal cord at the thoracic level in a Foxj1-tdT mouse, showing specific
recombination in ependymal cells. (C) Coronal view of the Foxj1-tdT spinal cord
4 weeks after injury, showing scar formation from ependymal cell progeny. At
right, magnification of the box in (C). (D) Coronal view of an uninjured spinal cord
at the thoracic level in a Foxj1-Olig2-tdT mouse, showing specific recombination
in the ependymal layer and absence of migration. (E) Coronal view of the
Foxj1-Olig2-tdT spinal cord 4 weeks after injury, showing abundant SOX10+ tdT+

cells. At right, magnification of the box in (E). (F) Quantification of ependymal-
derived oligodendrocytes in Foxj1-tdT and Foxj1-Olig2-tdT mice uninjured
and 2, 4, and 12 weeks post-injury (wpi) (n = 3 or 4). Total numbers of cells in
the injured segment are shown (see supplementary materials). (G) Quantification

of the total numbers of ependymal-derived cells in Foxj1-tdT and Foxj1-Olig2-tdT
mice uninjured and 2, 4, and 12 wpi in the injured segment (n = 3 or 4).
Horizontal bar in (F) and (G) denotes the mean. *P < 0.05, **P < 0.01 [one-way
analysis of variance (ANOVA) followed by Tukey post hoc test]. (H to K) The
identity of the ependymal progeny was assessed by scRNA-seq 2 and 4 weeks
after spinal cord injury. (H) tSNE visualization of the single-cell transcriptomes
of all tdT+ cells (Foxj1-tdT and Foxj1-Olig2-tdT; uninjured, 2 and 4 wpi) color-
coded by cluster: EP, ependymal; AE, astroependymal; epOL, ependymal-derived
oligodendrocyte lineage. (I) Violin plots showing the expression of representative
cluster-specific genes. Sox9 and Sox10 demarcate the two main cell groups
(EP-AE and epOL). OL clusters are defined by the expression of immature
(Pdgfra) and mature (Myrf, Mog) oligodendrocyte lineage markers. (J) Heat map
of the average scaled expression of the top cluster-specific genes. For the full
list of top marker genes, see data S1. (K) tSNE visualization of the identity of fate-
mapped ependymal cells split by sampling time and colored by genotype.
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This indicates that OLIG2 biases ependymal
fate decisions early and that once commit-
ment to an astroependymal or an oligoden-
drocyte fate takes place, cells progress further
in the respective branch.
During developmental oligodendrogenesis,

oligodendrocyte progenitors undergo a step-
wise differentiation process that was recently
characterized at the single-cell level (19). We
calculated the scores for the top 50 gene ex-
pression signatures of the respective oligoden-
drocyte lineage maturation stage for every
single cell from Foxj1-Olig2-tdT mice and pro-
jected it onto the principal curve trajectory
(Fig. 4E) as well as whole-transcriptome cor-
relation with each developmental maturation
stage (fig. S11). This analysis revealed that as
epOL cells progress in pseudotime along the
oligodendrocyte lineage branch, they sequen-
tially turn on and off the respective gene ex-
pression program in an orderly manner. This
finding agrees with the observed progressive
decrease of PDGFRA+ andprogressive increase
in CC1+ epOLs (Fig. 4, F to I). Lineage progres-
sion included, among other states, the transi-
tion through a proliferative OPC-like state that
could be observed even 12 weeks after injury
(Fig. 4E and fig. S10E); this suggests that the
epOL population amplifies itself and could
sustain itself without continuous ependymal
cell input.

We observed that mature epOLs almost ex-
clusively expressed the marker of mature
oligodendrocyte subtype 5/6 (MOL5/6) Ptgds
and not the mature oligodendrocyte subtype 2
(MOL2) marker Klk6 (20), even in the vicinity
of nonrecombined oligodendrocytes express-
ing Klk6 (Fig. 4J); this finding implies that
ependymal-derived oligodendrocytes acquired
specific mature identities. We did not observe
epOLs expressing the Schwann cell marker
myelin protein zero (figs. S10F and S11). Thus,
ependymal-derived oligodendrogenesis results
in the production of transcriptionally mature
oligodendrocytes.

Ependymal-derived oligodendrocytes
remyelinate axons

To address whether mature epOLs were capa-
ble of remyelination, we studied their interac-
tion with spared axons in spinal cord cross
sections 3 months after a dorsal funiculus
incision spinal cord injury (Fig. 5A). High-
power confocal micrographs revealed that
tdTomato membrane extensions colocalized
with myelin basic protein (MBP) in axon wrap-
pings, indicative of myelination (Fig. 5B).
In sagittal sections, tdTomato sheaths from
epOLs colocalized with the paranodalmarker
contactin-associated protein (CASPR), indica-
tive ofmyelin formation (Fig. 5C).Wenext used
expansion microscopy (21) to obtain further

information regarding epOL axon ensheath-
ment. To this end, we crossed Foxj1-Olig2-tdT
mice with Thy1-GFP mice. Expansion of the
tissue allowed reconstruction of epOL-axon
contacts and revealed epOL ensheathment
of axons (Fig. 5D and movie S1). Further, elec-
tron microscopy of the regions containing
epOL-axon contacts revealed compact myelin
formation from tdTomato-immunoreactive
ependymal-derived oligodendrocytes (Fig. 5,
E to G, and fig. S12). EpOLs thus participate
in axon remyelination after injury.

Ependymal-derived oligodendrocytes support
the recovery of axon conduction after injury

We thereafter turned to a clinically relevant
moderate thoracic contusion model to further
study the function of epOLs during injury re-
pair. The response to the moderate contusion
differed strikingly between Foxj1-Olig2-tdT and
Foxj1-tdT mice (Fig. 6A), whereas the scarring
and general locomotion remained similar (fig.
S13, C to I). As a result of the larger affected
area after contusion injury, the number of
epOLs in Foxj1-Olig2-tdT mice increased by a
factor of 3 in comparison to the dorsal funic-
ulus incisionmodel and exceeded bymore than
two orders ofmagnitude the number produced
in Foxj1-tdTmice (32,000 ± 4900 SOX10+ tdT+

cells 12 weeks after injury; Fig. 6, B and C,
and fig. S13, A and B). Relevant for potential
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therapeutic strategies, tamoxifen adminis-
tration starting 1 day after contusion led to
oligodendrogenesis in a manner similar to
pre-injury tamoxifen administration (fig. S14).
Axons that remain after a spinal cord injury

can undergo substantial remyelination in ro-
dents (22–24), but this process is protracted
and incomplete; these axons often exhibit
pathological myelin and aberrant conduction,
and they can persist as electrically silent fibers
chronically (22, 25). Given that epOL genera-
tion had an additive effect over oligodendro-
cyte generation from OPCs (fig. S13, J to L),
we studied whether epOLs could improve the
recovery of axon conduction. Corticospinal
neurons located in layer V of themotor cortex
send descending fibers directly to the spinal
cord. The descending fibers are part of the
corticospinal tract (CST), synapse directly on
motor neurons in the spinal cord, and are di-
rectly involved in motor control. To inves-
tigate whether epOL-derived remyelination
could improve axon conduction in the CST
after spinal cord injury, we performed electro-
physiology in combination with optogenetics
in vivo in anesthetized mice. To label and en-
able optogenetic activation of the CST, we

injected anAAVexpressingChR2-EGFP (AAV9-
CAG-ChR2-EGFP) or EGFP (AAV9-CAG-EGFP)
as control into layer V of the motor cortex
(26, 27) (fig. S15, A to D).
Light-evoked compound action potential

(optoCAP) volleys were detectable in the tho-
racic spinal cord at distances within at least
3 mm from the site of light delivery in mice
expressing ChR2-EGFP in the CST (fig. S16,
A and B) but were completely absent in mice
expressing only EGFP (fig. S16C). In vivo mea-
surement of the latency of the optoCAPs re-
vealed a CST conduction velocity broadly
concordant to the described slow conduction
of the pyramidal tract inmice (4.57 ± 1.96m/s;
fig. S16, D to G) (28).
We next investigated optoCAPs and conduc-

tion velocities 12 to 14 weeks after contusion
injury in Foxj1-Olig2-tdTmice and their Olig2-
tdT littermates (controls not expressing Foxj1-
creER), all expressing ChR2-EGFP in the CST.
We applied optogenetic stimulation to the
dorsal surface of the spinal cord two seg-
ments rostral to the lesion and recorded the
induction of optoCAP immediately rostral or
caudal to the epicenter of the lesion injury
(Fig. 6D). We did not detect optoCAP induc-

tion in recordings caudal to the lesion in either
group, owing to the sparsity of spared or
regenerated CST axons (fig. S15B). Recordings
immediately rostral to the lesion’s epicenter
revealed optoCAPs in most but not all mice
(8/11 Foxj1-Olig2-tdT mice and 4/6 control
mice; Fig. 6E). The same investigation was
conducted in uninjured mice and revealed
that optoCAPs could invariably be recorded
at the same location in all animals (9/9 mice,
tamoxifen-injected Foxj1-Olig2-tdT mice, and
Olig2-tdT control mice; fig. S16G). The results
indicate a partial CST conduction block in in-
jured mice. Injured Olig2-tdT (control) mice
displayed a severely reduced conduction veloc-
ity relative to uninjured counterparts (mean
CST conduction velocity for injured controls
was 19.0 ± 2.83%of theCST conduction velocity
of uninjured mice; Fig. 6F). This reduction was
partially rescued in injured Foxj1-Olig2-tdT
mice (meanCST conduction velocity for injured
Foxj1-Olig2-tdT mice was 27.9 ± 6.53% of the
CST conduction velocity for uninjured mice;
Fig. 6F). Last, we investigated the relation-
ship between the conduction velocity and the
level of CST remyelination in all injured mice.
Conduction velocity was correlated to the per-
centage of myelin sheaths in the CST (Fig. 6, G
and H). Together, our results support the idea
that remyelination by newly recruited epen-
dymal cell progeny can improve axon conduc-
tion after injury.

Discussion

Spontaneous cell replacement after injury is
very limited. In both the brain and the spinal
cord, the neural stem cells at large contribute
only to astrogliogenesis after acute injuries
(2). The apparent lineage restriction in stem
cells has promoted the search for alternative
sources for neuronal and oligodendroglial cell
replacement, such as exogenous cell trans-
plantation and direct reprogramming of local
cell types (3). Here, in contrast, we show that
there is a latent potential for cell replacement
that enables their efficient recruitment for
endogenous regeneration.
Injury was a requirement for the unfold-

ing of the oligodendrocyte gene expression
program, as we did not detect oligodendro-
genesis fromuninjuredOLIG2-expressing epen-
dymal cells. Injury-induced inflammatory
mediators have been shown to facilitate line-
age plasticity (29, 30). Such signals might act
by providing a required cofactor to facilitate
OLIG2 access to chromatin, as reported for Brg1
(31), whose expression was injury-dependent
in ependymal cells (fig. S6D). OLIG2 was pre-
dicted to have a DNA binding domain with
possible pioneer activity based on its structure
(32).Weobserved thatOLIG2,whenexpressed in
ependymal cells, may instead direct stimulus-
dependent transcription factors to latent
oligodendrocyte lineage enhancers, in amanner
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similar to that described for activity-induced
enhancer selection in neurons (33). These
latent enhancersmight have been established
during development when the progenitors of
some ependymal cells express OLIG2 (34–36)
and might have been maintained without
sustained OLIG2 expression (37).
The need for enhanced remyelination ex-

tends to multiple neurological pathologies.
Forebrain neural stem cells generate substan-
tial numbers of oligodendrocytes after injury
(38), and potential for a greater contribution
exists (39). This greater potential suggests
that latent accessibility of the oligodendrocyte
program might be a feature of the adult stem
cell pool; we have observed concordant chro-
matin profiles with ependymal cells at key loci
(fig. S17). Parenchymal OPC–derived oligoden-

drogenesis and neural stem cell–derived oligo-
dendrogenesis obey different signals (39),
and neural stem cell–derived oligodendrocytes
produced thicker myelin than that derived
from parenchymal OPCs (38). We have fur-
ther observed that ependymal-derived oligo-
dendrogenesis can have an additive effect on
OPC-derived oligodendrogenesis. This raises
the possibility that neural stem cells and paren-
chymal progenitor oligodendrogenesis could
be simultaneously enhanced, with potentially
synergistic effects.
On average, 32,000 epOLs were generated

after contusion spinal cord injury, which is
comparable to the reported survival and inte-
gration of ~30,000 oligodendrocytes after
transplantation (40). Regenerated axons are
often unmyelinated (41), and promoting their

conduction can enhance functional recovery
(42). In addition, forced neuronal activity stim-
ulates the recruitment of new oligodendrocytes
for adaptive remyelination (43). The delivery
of viral cargo in preclinical settings is under-
going rapid progress (44). It may be possible to
deliver OLIG2 ormanipulate its upstream reg-
ulators (45) to elicit ependymal oligodendro-
genesis in a therapeutic setting. Combinatorial
strategies aimed at promoting recovery ofmul-
tiple cellular compartments simultaneously
thus emerge as an attractive possibility.
Our work shows that the endogenous stem

cell response can be engineered to generate
cells with appropriate identity without com-
promising normal tissue recovery. Redirecting
endogenous cell populations for cellular re-
placement to enhance the self-repair capacity
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Fig. 6. Ependymal-derived oligodendrocytes support the recovery of axon
conduction after injury. (A) Sagittal view of the injured spinal cord. Ependymal
cells from Foxj1-tdT mice generate progeny that contribute to the astrocyte
scar. The ependymal response is increased and spreads rostrocaudally in spared
but reactive tissue in Foxj1-Olig2-tdT mice because of the generation of epOLs
(inset). (B) Quantification of the total number of oligodendrocytes in the injured
segment generated by ependymal cells 12 weeks after contusion SCI (n = 2 to 4).
Horizontal bar denotes the mean. **P < 0.01 [Student’s t test, t(4) = 8.570].
(C) Linear regression analysis of the location of astroglial (SOX10–) and
oligodendroglial (SOX10+) ependymal-derived cells with respect to the lesion
epicenter in Foxj1-Olig2-tdT mice 12 weeks after contusion. Data are means ± SD
(n = 4). (D) Schematic representation of the strategy to measure conduction
velocity in the CST. AAV-CAG-ChR2-EGFP was injected in the motor cortex to label
corticospinal neurons. Optical stimulation (473 nm) was applied two segments

rostral to the lesion epicenter, and electrophysiological recordings were made
above and below the lesion. (E) Average traces for the light-evoked compound
action potential (optoCAP) in the CST in uninjured mice (Foxj1-Olig2-tdT and
Olig2-tdT, blue, n = 9), injured controls (Olig2-tdT, gray, n = 4), and injured Foxj1-
Olig2-tdT mice (red, n = 8). The blue vertical bar indicates the 2-ms light pulse.
Shading indicates ±SEM. (F) Quantification of the conduction velocity (CV) in the
CST in injured controls and injured Foxj1-Olig2-tdT mice measured immediately
rostral to the lesion core. Horizontal bar denotes the mean. *P < 0.05 [Student’s
t test, t(10) = 2.551]. (G) Quantification of the percentage of myelinated CST axons
(MBP+ GFP+) from the total number of GFP+ axons that survived in the 1.2 mm
rostral to the epicenter in control (gray, n = 4) and Foxj1-Olig2-tdT (red, n = 6)
mice. Horizontal bar denotes the mean. *P < 0.05 [Student’s t test, t(7) = 2.984].
(H) Regression analysis shows the correlation between conduction velocity
and level of myelination in the CST. Scale bars, 1 mm (insets, 100 mm).
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of the nervous systemmay thus be explored as
a therapeutic alternative to cell transplantation.
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oligodendrocytes aided axon remyelination and improved axon conduction after spinal cord injury.
ependymal cells specifically and inducibly enabled the production of oligodendrocytes. The ependymal-derived 
oligodendrocytes by expression of the oligodendrocyte lineage transcription factor OLIG2. Expression of OLIG2 in
needed for remyelination of axons around an injury. The ependymal cells were triggered to differentiate into 
transcriptomic assays revealed that these cells carry a latent ability to differentiate into oligodendrocytes, which is much
which function as stem cells for the spinal cord (see the Perspective by Becker and Becker). Chromatin accessibility and 
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