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SUMMARY
Searches for the genetic underpinnings of uniquely human traits have focused on human-specific divergence
in conserved genomic regions, which reflects adaptive modifications of existing functional elements. How-
ever, the study of conserved regions excludes functional elements that descended from previously neutral
regions. Here, we demonstrate that the fastest-evolved regions of the human genome, which we term
‘‘human ancestor quickly evolved regions’’ (HAQERs), rapidly diverged in an episodic burst of directional
positive selection prior to the human-Neanderthal split, before transitioning to constraint within hominins.
HAQERs are enriched for bivalent chromatin states, particularly in gastrointestinal and neurodevelopmental
tissues, and genetic variants linked to neurodevelopmental disease. We developed a multiplex, single-cell
in vivo enhancer assay to discover that rapid sequence divergence in HAQERs generated hominin-unique
enhancers in the developing cerebral cortex. We propose that a lack of pleiotropic constraints and elevated
mutation rates poised HAQERs for rapid adaptation and subsequent susceptibility to disease.
INTRODUCTION

Humans can be distinguished from our recent great ape

ancestors by many unique phenotypes, including bipedal

locomotion,1 craniofacial morphology,2 and our remarkable

cognitive capabilities.3,4 Intertwined with adaptations like these

are human-specific disease susceptibilities, including knee

osteoarthritis5 and schizophrenia.6 Notwithstanding that both

researchers and the public have a long-standing interest in

understanding the genetic basis of human uniqueness, we

have struggled to partition the millions of mutations separating

humans from their great ape ancestors into those that are

neutrally evolving and those that are significantly contributing

to human-specific traits.

Initial systematic searches for the genetic basis of human traits

focused on protein-coding regions to enrich for genetic changes

with phenotypic effects.7,8 More recent studies have identified

several human-specific gene duplications that have been impli-

cated in the expansion of the human neocortex.9–11 However,

humans and chimpanzees harbor few differences in amino
Cell 185, 4587–4603, Novemb
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acid sequences, and it has long been hypothesized that the mu-

tations responsible for human-specific phenotypes lie primarily

in non-protein-coding regulatory regions.12–14

A second generation of screens began with the insight that

cross-species conservation could be utilized to enrich for func-

tionally significant mutations in the non-protein-coding genome.

This allowed screens to expand from the 1% of the genome that

is protein coding to the 5% of the genome that includes highly

conserved regulatory elements. Genomic regions from these

screens are termed human accelerated regions (HARs).15 These

screens identified HARs based on acceleration in the rate of

nucleotide substitutions, positing that an increase in the rate of

molecular evolution from prior constraint reflects a change in

the mode of selection. Over the past 15 years, additional studies

have expanded the set of HARs with the addition of more

genome assemblies, specific tissues of interest, and alternative

statistical methods.16–19

Many HARs act as developmental enhancers, demonstrating

the feasibility of expanding beyond protein-coding regions to

identify modifications to regulatory elements.20,21 One example
er 23, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 4587
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:craig.lowe@duke.edu
https://doi.org/10.1016/j.cell.2022.10.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2022.10.016&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS Article
is a distal enhancer of the neurodevelopmental gene FZD8,

where human-specific sequence changes increased enhancer

activity in mouse embryonic brain, which was sufficient to accel-

erate neural precursor cell-cycle dynamics and increase brain

size.22 As would be expected for genomic regions with important

roles in neurodevelopment, mutations in HARs have been asso-

ciated with schizophrenia and autism spectrum disorder.6,23

Preconditioning studies of human-specific traits on highly

conserved regions restrict analyses to 5% of the genome.

However, a growing body of evidence suggests that much

more of the genome is functional.24,25 We propose that the com-

bination of consortium efforts to catalog human genetic varia-

tion26 and recent advances in high-throughput functional

genomic technologies27–30 provides an avenue for identifying

functionally significant regulatory innovations across the entire

genome through the integration of comparative, population,

and functional genomics.

The remaining 95%of the genome is likely to include two types

of evolutionarily significant genomic regions not targeted in past

studies: functional elements recurrently modified on indepen-

dent lineages and functional elements unique to humans. Many

distinctive characteristics of human anatomy, such as brain

size, limb proportions, and craniofacial morphology, are not

static in non-human species but rather are dynamic across the

panoply of vertebrate life. Therefore, we expect many genetic

determinants of these dynamic traits to be fast-evolving in

both humans and non-human species and thus to exhibit func-

tion without the stringent condition of past constraint. Further-

more, regions with cross-species conservation, which have

evolved under purifying selection, will not contain recently

evolved functional elements that are held under constraint only

in humans. Both of these classes of regulatory innovations will

be discovered in the underexplored non-conserved genome.

In this work, we integrate comparative genomics with genetic

variation data from human populations to demonstrate that the

fastest-evolved regions of the human genome, which we term

‘‘human ancestor quickly evolved regions’’ (HAQERs), diverged

rapidly through the combination of elevated mutation rates and

positive selection. While HAQERs diverged rapidly from the

human-chimpanzee ancestor, they are highly similar among

extant and archaic hominins. HAQERs are enriched in bivalent

domains that are associated with spatiotemporally restricted

developmentally or environmentally responsive regulatory ele-

ments. We developed in vivo single-cell self-transcribing active

regulatory region sequencing (scSTARR-seq) as a multiplex,

single-cell enhancer assay in the developing mouse cerebral

cortex to demonstrate that rapid HAQER divergence forged

functional elements that are exclusive to hominins. HAQERs

are also enriched for disease-linked variation, suggesting an

active role in shaping human-specific susceptibilities to disease.

RESULTS

Acceleration and velocity are associated with
signatures of positive selection
Historically, it has been thought that higher rates of divergence in

genomic regions are primarily associated with variation in the

local mutation rate,31 as opposed to selection. This is based
4588 Cell 185, 4587–4603, November 23, 2022
on the notion that the vast majority of genetic differences be-

tween humans and great apes are selectively neutral and that

positive selection is rare.32

Acceleration has been employed as ametric to mitigate the in-

fluence of local mutation rates, as a change in the rate of diver-

gence is proposed to reflect a change in selective pressure.

Even though this approach has been fruitfully applied to identify

HARs as exciting candidates for further study in the highly

conserved genome, this strategy limits the scope of investigation

to regions with an initial velocity near zero, excluding regions that

have accelerated from neutrality to rapid divergence. Therefore,

we sought to generalize acceleration to identify targets of posi-

tive selection in the remaining 95% of the genome.

We define the acceleration, a, of a genomic region as the dif-

ference between the current velocity of divergence, v, and the

initial velocity of divergence, v0, as in a a Dv = v � v0. We

define v0 as the divergence rate on the branch from the hu-

man-gorilla ancestor to the human-chimpanzee ancestor, and

v as the divergence rate on the branch from the human-chim-

panzee ancestor to extant humans (Figure 1A). Both v0 and v

are measured in units of genetic distance per base pair per

million years, where distance is counted as the sum of substitu-

tions, insertions, and deletions in a 500-bp window. Unlike pre-

vious work, we do not place a threshold filter on v0, allowing us

to calculate a genome-wide from a syntenic alignment of the hu-

man, chimpanzee, gorilla, and orangutan reference genomes

(STAR Methods).

To understand if acceleration is predictive of selective pres-

sure, we analyzed the frequencies of derived alleles in African

populations26 and inferred the direction and magnitude of selec-

tion acting on variants in genomic regions binned by acceleration

values (STAR Methods). Under negative selection, a derived

allele is more deleterious than the ancestral allele and thus un-

likely to spread to high frequencies. Under positive selection, a

derived allele is beneficial and more likely to be found at higher

frequencies (Figure S1A). We implemented a statistical model

to infer the mean selection parameter from derived allele fre-

quency spectra (dAFS) using Markov chain Monte Carlo

(MCMC)34 and corrected for ascertainment bias present when

regions are identified based on divergence35 (Figure S1; STAR

Methods). We report that highly positive acceleration is associ-

ated with positive selection coefficients (Figure 1B) and may be

an informative identifier of adaptive innovation genome-wide.

However, the most dramatically accelerated regions will still

preferentially include regions with modified function and past

constraint (low v0, high v) at the expense of recurrently modified

functional elements (high v0, high v) and recently functional ele-

ments from neutrally evolving sequence (moderate v0, high v).

This motivated us to examine the relationship between the cur-

rent velocity of a genomic region and selection, using the dAFS

of variants in genomic regions binned by velocity. We observed

a stronger relationship between velocity and selection than be-

tween acceleration and selection (Figures 1B and 1C).

We also observed a robust relationship between a and v (Fig-

ure S2A) but not between v0 and v (Figure S2B). This observation

suggests that unlike at the megabase scale,36 regional differ-

ences in the divergence rate at small scales are unlikely to reflect

an intrinsic variation in mutation rates that is stable across
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Figure 1. HAQERs, the fastest-evolved regions of the human genome

(A) We display the values of velocity (v), initial velocity (v0), and acceleration (a) in the phylogenetic context of recent human evolution.

(B and C) Mean selection parameter estimates for 500-bp genomic regions binned by either acceleration (B) or velocity (C). Error bars display the 95% highest

density credible interval. Both acceleration and velocity correlate with signatures of selection in human populations.

(D) HAQERs (human ancestor quickly evolved regions) are identified as regions containing at least 29 mutations in a 500-bp window (p < 10�6) that separate the

inferred human-chimpanzee ancestor sequence from the human genome. We count insertions and deletions as one mutation regardless of their length.

(E) Locations in the human genome of the 1,581 HAQERs (blue markers). Marker amplitude reflects the maximum divergence density observed in each region.

HAQERs are distributed across all human chromosomes and enriched near chromosome ends.

(F) Cumulative distribution of velocity, initial velocity, and acceleration observed across HAQERs, human accelerated regions (HARs), and random neutral proxy

regions (RAND). Regions are filtered to a minimum element size of 50 bp. (Bonferroni-adjusted Wilcoxon; **** p < 0.0001).

See also Figures S1 and S2.
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phylogenetic branches. Since we found that velocity and

acceleration covary across the genome, we sought to disen-

tangle the individual relationship between each of the two

metrics and selection. When controlling for the other metric,

we saw a strong relationship between velocity and selection

but not between acceleration and selection (Figure S2C). These

results indicate that rapid acceleration is associated with

selection primarily in that it correlates with rapid velocity, a

strong indicator of selection.
The fastest-evolved regions of the human genome
Encouraged by these findings, we implemented a computational

screen to identify the most rapidly evolved regions in the human

lineage (Figure 1A). Using a syntenic genome-wide multiple

alignment of great apes (human, chimpanzee, bonobo, gorilla,

and orangutan), we inferred the probability of each nucleotide

state in the human-chimpanzee ancestor at each alignment po-

sition (STAR Methods). In order to more conservatively estimate

genetic differences, we only considered a site divergent between
Cell 185, 4587–4603, November 23, 2022 4589
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the human-chimpanzee ancestor and humans when the ances-

tral inference estimated a base change with a probability of

80% or more (STARMethods). We use this conservative method

to define ‘‘divergence density’’ as the genetic distance between

the human-chimpanzee ancestor and the human genome for

every 500-bp window. If mutations were uniformly distributed

across the genome at the rate observed in the fastest evolving

10-Mb genomic region, it would be unlikely to observe 29 or

more mutations in a 500-bp window (p < 10�6, Bonferroni-cor-

rected binomial; STAR Methods). Thus, we define HAQERs as

genomic regions with a divergence density of at least 29 evolu-

tionary operations separating the human-chimpanzee ancestor

and the human genome (Figure 1D). We identified 1,581

HAQERs with an average length of 892 bp, which collectively

include �1.41 Mb of the human genome (Figure 1E).

As we ascertained HAQERs based on their rapid divergence, it

follows that they exhibit higher velocities than either HARs or

randomly selected neutral proxy regions (RAND) (Figures 1F

and S2D; STAR Methods). HAQERs exhibit significantly lower

initial velocity than RAND, even though HAQERs were not

directly ascertained based on conservation. HAQERs are also

significantly more accelerated than HARs or RAND, reflecting

the combination of their slightly lower initial velocity and their

dramatic velocity.

HAQERs and HARs are largely independent genomic regions,

with only six out of 2,733 expanded HARs23 overlapping

HAQERs. One notable overlap is HAQER0035, which corre-

sponds to HAR1, part of a well-studied RNA gene expressed in

neurodevelopment33 (Figure S6C). HAQERs are also largely

distinct from the fastest-evolved regions in chimpanzees and

gorillas (Figure S2E). Thus, we have expanded beyond the

highly conserved genome to identify over one thousand previ-

ously uncharacterized regions that represent the most rapidly

evolved regions in the human genome.

Sequence evolution in HAQERs was driven by both
elevated mutation rates and directional positive
selection prior to the Neanderthal split
As rapid sequence divergence in a genomic region can be gener-

ated either by variation in the local mutation rate or by positive

selection, we sought to determine the relative influence of these

forces in HAQER evolution, using recently available high-

coverage human population sequencing data.26 We first parti-

tioned variants from 501 unrelated African individuals (STAR

Methods) to subsets overlapping HAQERs, HARs, RAND, ultra-

conserved elements (UCEs), ENCODE candidate cis-regulatory

elements (cCREs),25 or missense variants (MISSENSE).

We calculated the density of polymorphic sites and divergent

sites between modern humans and the inferred human-chim-

panzee ancestor in these regions (Figure S3A; STAR Methods).

UCEs—regions that have undergone minimal sequence diver-

gence during the last 100 million years45—exhibit very limited

divergence and polymorphism density, compared with RAND,

whereas HAQERs exhibit significantly elevated densities of

both polymorphic sites and divergent sites.

We observed the co-occurrence of HAQERs and genomic fea-

tures associated with higher mutation rates, suggesting an un-

derlying mechanism for the increased density of polymorphic
4590 Cell 185, 4587–4603, November 23, 2022
sites in HAQERs. HAQERs are enriched for meiotic recombina-

tion double-stranded break hotspots (106 overlaps, 1.43 enrich-

ment, p < 10�3), and toward the ends of chromosomes

(Figures 1E and S2F), both of which have been associated with

elevated local mutation rates.46–48 We also found that HAQERs

are enriched for early replication timing49 (Figure S3C), consis-

tent with the enrichment for meiotic recombination double-

stranded break hotspots. Meiotic double-stranded breaks and

subtelomeric regions are also associatedwith higher recombina-

tion rates,50 andwe observed a slight, yet significant, elevation of

recombination rates in HAQERs51 (Figure S3B). GC-biased gene

conversion has been previously explored as a possible contrib-

utor to the divergence observed in HARs.15 We found that

HAQERs demonstrate a slight enrichment for weak to strong

divergent sites. However, this enrichment is significantly weaker

than we observed in HARs (Figures S3D and S3E). These obser-

vations are consistent with the hypothesis that rapid HAQER

divergence is driven by elevated mutation rates.

While many HAQERs appear to have elevated mutation rates,

this does not rule out that these same elements harbor function

andwere positively selected. Indeed, we observed a significantly

elevated proportion of fixed alleles relative to polymorphic alleles

at sites that are divergent between the human-chimpanzee

ancestor and the human genome, a statistic associated with

positive selection (Figure S3F).52 To further explore positive

selection as a contributing force to HAQER evolution, we

constructed dAFS for each set of genomic regions. Again,

HAQERs show signatures of positive selection driven by an

enrichment of high-frequency derived alleles and a depletion of

intermediate frequency alleles relative to RAND and the other

sets of genomic regions (Figures 2A and 2D).

To infer the magnitude of selective pressure across popula-

tions, we partitioned each dAFS into five component dAFS

containing segregating variants from individuals in each of five

populations (Gambian in Western Division—Mandinka; Mende

in Sierra Leone; Esan in Nigeria; Yoruba in Nigeria; and Luhye

in Webuye, Kenya). We evaluated the mean selection parame-

ters acting on each population, using MCMC (Figures 2B and

2C; STAR Methods). For HAQERs, the 95% credible intervals

for the mean selection parameter acting on segregating sites

are within the range of 12.7–16.5, and they did not overlap inter-

vals from any other variant set (Figure 2C). Roughly estimating

the effective population size in humans at 104 individuals,53 we

estimated a mean selection coefficient for bases in HAQERs

ranging from s = 0.000635 to s = 0.000825.

If HAQERs evolved under directional selection, we would

expect variation between humans and chimpanzees to be

much larger than the variation within humans for these regions.

Alternatively, under diversifying selection, HAQER divergence

between the human and chimpanzee reference genomes is

instead the result of an increase in human variation without direc-

tionality. To investigate these alternatives, we analyzed the

distribution of the Dunn index, a conservative metric of cluster

separation,54 among clusters of modern human, ancient homi-

nin, and chimpanzee sequences for HAQERs, HARs, and

RAND (Figures 2E and S3H–S3J). Dunn index values of less

than 1 suggest overlapping clusters, whereas values greater

than 1 suggest distinct, well-defined clusters.
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Figure 2. HAQER sequence divergence was driven by positive selection prior to the human-Neanderthal split

(A) Derived allele frequency spectra representing 501 individuals from African populations (1,002 alleles) for segregating sites within HAQERs, RAND, HARs,

ENCODE candidate cis-regulatory elements (cCREs), missense variants (MISSENSE), or ultraconserved elements (UCEs).

(B) Representative MCMC trace for the mean selection parameter acting on segregating sites within each set of regions.

(C) Posterior mean and 95% highest density credible intervals describing the mean selection parameters for each set of regions inferred from segregating sites

from five independent populations of unrelated African individuals.

(D) Enrichment for high derived allele frequency (DAF > 0.99, left), low frequency (DAF < 0.01, center), and rare minor allele (DAF < 0.01 or DAF > 0.99, right)

segregating sites relative to RAND (* p < 0.05; Bonferroni-adjusted Mann-Whitney U). Each point represents the enrichment for one population of individuals

partitioned from the set of all African individuals.

(E) Distribution of the cluster separation (measured as the Dunn index) between ancient hominins and chimpanzees (left), modern humans and ancient

hominins (center), or modern humans and chimpanzees (right). Comparisons are presented between HAQERs, RAND, and HARs (Bonferroni-adjusted Mann-

Whitney U; * p < 0.05; ** p < 0.01; and **** p < 0.0001).

See also Figure S3.
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HAQERs demonstrate greater cluster separation relative to

RAND when comparing either human or ancient hominin se-

quences with that of chimpanzees (Figure 2E). Significantly,

most HAQERs have a Dunn index of less than 1 between hu-

mans and ancient hominins, suggesting that ancient hominin

HAQER sequences largely fall within the range of human

variability (Figure 2E). These results are consistent with rapid

directional selection in humans after the split with chimpan-

zees, followed by a transition to constraint prior to the hu-

man-Neanderthal split.
While the dAFSmodel assumes infinite sites, we observed that

sites in HAQERs with high derived allele frequencies exhibit an

elevated proportion of transitions, which is characteristic of sites

with back mutations to the ancestral state (Figure S3G; STAR

Methods). If a derived allele is advantageous for many sites in

HAQERs, back mutations to the ancestral state would be delete-

rious by comparison, and these sites would be unlikely to drift

from high to intermediate derived allele frequency. Thus, the

enrichment for high-frequency derived alleles observed in

HAQERs may be magnified by the overabundance of fixed
Cell 185, 4587–4603, November 23, 2022 4591



0.25 1.0 4.0
Overlap Enrichment

Not Significant

Bivalent Enhancer Flanking Bivalent TSS/Enh Bivalent/poised TSS

Cultured
Cells

Primary
Tissue

0.3

1.0

3

10

30

H
AQ

ER
 O

ve
rla

p 
En

ric
hm

en
t ** * ns

B
127 Reference Epigenomes (Columns)

H
A

Q
E

R
H

A
R

Epigenome
Category

(Num. Samples)

Cultured
Cells

Primary
Tissue

Cultured
Cells

Primary
Tissue

15
 C

hr
om

at
in

 S
ta

te
s 

(R
ow

s)
15

 C
hr

om
at

in
 S

ta
te

s 
(R

ow
s)

Category ID Chromatin State
1 Active TSS
2 Flanking Active TSS
3 Flanking Transcr. 5' and 3'
4 Strong Transcription
5 Weak Transcription
6 Genic Enhancers
7 Enhancers
8 Bivalent/poised TSS
9 Flanking Bivalent TSS/Enh

10 Bivalent Enhancer
11 Heterochromatin
12 Repressed Polycomb
13 Weak Repressed Polycomb
14 ZNF Genes / Repeats
15 Quiescent / LowOther

TSS

Tx

Enh.

Biv.

Repr.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

TSS

Tx

Enh.

Biv.

Repr.

Other

TSS

Tx

Enh.

Biv.

Repr.

Other

A

Brain Inferior Temporal Lobe

Breast Myoepithelial Primary Cells

Developing Brain 2

Developing Heart

Developing Intestine Large

Developing Lung

Esophagus

Gastric

H1 BMP4 Derived Trophoblast Cultured Cells

K562 Leukemia Cells

Left Ventricle

Lung

Placenta
Primary B cells from peripheral blood

Primary hematopoietic stem cells short term culture

Primary monocytes from peripheral blood

Primary Natural Killer cells from peripheral blood

Primary T CD8+ naive cells from peripheral blood

Primary T cells effector/memory enriched from peripheral blood

Primary T cells from
peripheral blood

Primary T helper 17 cells PMA-I stimulated

Primary T helper cells PMA-I stimulated

Psoas Muscle

Sigmoid Colon

Skeletal Muscle 1

Spleen
3

10

30

3 10 30
HAQER Overlap Enrichment

Neurodevelopment

Hematopoetic

Epithelial

Muscle

Digestive

Other

Stem Cell

Brain

Reference Epigenome Category

En
ric

hm
en

t -
lo

g 10
(p

Ad
j)

C

HAQER Bivalent Enhancer Overlap Enrichments

Figure 3. HAQERs are enriched in bivalent chromatin states

(A) Overlap enrichment/depletion matrix between HAQERs (top) or HARs (bottom) for 15 chromatin states (rows) from 127 reference epigenomes (columns).

HAQERs are enriched for bivalent chromatin states but not for active enhancer and promoter states. An expanded matrix with individual sample annotations is

presented in Figure S5A.

(B) Volcano plot displaying significant overlap enrichments for HAQERs and the bivalent enhancer chromatin state in various tissues.

(C) HAQER overlap enrichment for bivalent chromatin states compared between reference epigenomes derived from cultured cells and those derived from

primary tissue (t test; * p < 0.05 and ** p < 0.01).

See also Figure S4.
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differences among divergent sites (itself a signifier of positive se-

lection), an elevated mutation rate back to the ancestral state,

and the maintenance of the derived state by purifying selection

in modern humans.

While mutation rate variation impacts allele frequency

spectra,55 our results do not suggest that elevated mutation

rates in neutral regions are the exclusive cause of rapid diver-

gence in HAQERs. First, the relative depletion of intermediate

frequency alleles (presented in Figure 2D as an enrichment for

rare alleles) and the overabundance of fixed divergent sites

compared with polymorphic sites in HAQERs is not expected

in selectively neutral regions (Figure S3F). Furthermore, greater

HAQER sequence cluster separation relative to RAND between

modern humans and chimpanzees suggests directional evolu-

tion rather than the expansion of intraspecies variability as the

cause of elevated divergence.
4592 Cell 185, 4587–4603, November 23, 2022
HAQERs are enriched in chromatin states
The conclusion that HAQERs evolved through directional positive

selection implies adaptive function in these regions. To test this

hypothesis, we analyzed genome-wide patterns of enrichment

and depletion in chromatin states across 127 reference epige-

nomes37 (Figures 3A and S4A). Both HAQERs and HARs are

significantly depleted in transcriptionally active chromatin states,

consistent with past reports that most rapid evolution occurs

outside of protein-coding regions15 and the predicted signifi-

cance of non-coding regulatory regions to evolution.13

Surprisingly, while HAQERs are not enriched for active

enhancer or promoter states, they are strongly enriched for biva-

lent chromatin states (Figure 3A). Bivalent chromatin, which har-

bors both the polycomb repression mark H3K27me3 and the

active promoter mark H3K4me3 and/or the active enhancer

mark H3K4me1, is proposed to maintain expression of
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developmentally and environmentally responsive genes at low

levels through active, yet rapidly reversible, silencing that allows

precise activation.56,57

HAQERs are significantly enriched for bivalent chromatin

states in both developing and adult primary tissues (Figure S4C).

Evolutionary changes to developmental gene regulatory pro-

grams can alter adult morphology including allometric relation-

ships. One example is gut reduction and brain expansion on

the human lineage, which have been linked by the expensive

tissue hypothesis.58 Consistent with these dramatic changes,

we observed the most significant enrichments for the bivalent

enhancer chromatin state in gastrointestinal and neurodevelop-

mental reference epigenomes (Figures 3B and S4E). As a

glimpse of environmental response in adult tissues, we

observed that two HAQERs transition from bivalent to active

enhancer states in adult epithelial cells, following exposure to

dexamethasone, an anti-inflammatory glucocorticoid29 (enrich-

ment p < 0.01; STAR Methods).

While many of the observed bivalent states may represent

domains in which individual histones bear both active and

repressive modifications simultaneously (true bivalency), the

observation of bivalent states in bulk ChIP-seq data may be a

consequence of differential states of activation and repression

in distinct cell types within heterogeneous tissues (mixed cell bi-

valency). We observed stronger HAQER overlap enrichments for

bivalent chromatin states in reference epigenomes derived from

primary tissues than reference epigenomes derived from

cultured cells, which represent a single-cell type (Figure 3C);

however, even reference epigenomes derived from cultured cells

exhibit significant enrichments for bivalent states, suggesting

both mixed cell and true bivalency in HAQERs.

In either scenario, genomic regions in bivalent states are likely

to demonstrate more restricted spatial and temporal patterns of

activity than regions with uniform active regulatory states in het-

erogeneous tissues. In contrast to HAQERs, HARs are associ-

ated with active enhancer states (Figure S4B), which are thought

to be associated with more broadly expressed genes.56 Thus,

enrichments for bivalency suggest that HAQERs encode gene

regulatory elements with a high degree of specificity in develop-

ment and environmental response.

HAQERs are enriched for recently evolved
neurodevelopmental gene regulatory elements
If the adaptive divergence observed in HAQERs underlies the

innovation of developmental gene regulatory functions, we

would expect differences in the epigenomic profiles between

humans and closely related species. While cross-species epi-

genomic profiles of developing tissue are not broadly available,

the developing cerebral cortex, owing to its association with

human cognition,3 has been profiled across humans, rhesus

macaques, and mice to identify putative enhancers and pro-

moters in the human genome that were gained after the split

between humans and rhesus macaques.38 Despite not being

significantly associated with active enhancer or promoter

states in the developing brain overall (Figures 3A and S4A),

HAQERs exhibit an enrichment for overlapping the subset of

active enhancer or promoter chromatin states that were gained

after the rhesus split (Figure S4D). While we observe enrich-
ments between HAQERs and putatively gained gene regulatory

activity identified across developmental stages and brain re-

gions, HAQERs demonstrate the greatest enrichment for

gained elements in the frontal lobe in late embryonic neurode-

velopment (Figure S4D).

A multiplex, single-cell in vivo enhancer assay reveals
hominin-specific neurodevelopmental enhancer activity
in HAQERs
We identified the developing brain as a tissue of interest for in vivo

analysis of HAQER function because HAQERs are enriched near

genes associatedwith olfaction andcell recognition (FigureS2H),

make 3D chromatin contacts with nervous system genes (Fig-

ure S2G), are enriched for neurodevelopmental regulatory ele-

ments gained after the human-rhesus split (Figure S4D), and

are highly enriched for bivalent enhancers in the developing brain

(Figure 3B). Notably, the brain has changed dramatically on the

human lineage3 and is associated with many human-specific

disease susceptibilities.23

STARR-seq is a high-throughput sequencing-based assay in

which the abundance of RNA transcripts containing a particular

test sequence provides a quantitative measure of enhancer ac-

tivity.27 While STARR-seq has been effectively employed in

cultured cell lines,27,29,59 our results suggest that HAQERs func-

tion in spatiotemporally restricted contexts in highly heteroge-

neous tissues, such as in late embryonic neurodevelopment.60

Thus, we performed in vivo scSTARR-seq to measure the

enhancer activity of multiple test sequences simultaneously in

developing brain tissue.

In this assay, we cloned DNA sequences into a STARR-seq

vector27 to form input libraries. We injected input libraries,

along with a constitutive GFP transfection reporter plasmid,

into embryonic mouse cerebral cortices via in utero electropo-

ration (Figure 4A; STAR Methods). Following dissection 16–18 h

later, we used fluorescence-activated cell sorting (FACS)

to enrich for GFP+ cells for subsequent single-cell RNA

sequencing. This approach allowed us to interrogate enhancer

activity in electroporated cells as well as their immediate

progeny.

To identify candidates for human-evolved neurodevelopmen-

tal regulatory elements, we identified 105 HAQERs that overlap

one of three datasets: functional elements gained after the rhe-

sus split;38 open chromatin in the developing human brain;37 or

regions with differential chromatin accessibility between human

and chimpanzee cerebral organoids, which recapitulate many

features of early neurodevelopment39,61 (Figure 4A). We were

able to commercially synthesize 40 of these sequences, a

requirement for the analysis of extinct and ancestral alleles.

We conducted a pilot assay with only the human alleles and

selected the 13 with the strongest signal for a full comparative

analysis between the hominin (human, Neanderthal, and Deniso-

van) and non-hominin (chimpanzee and inferred human-chim-

panzee ancestor) alleles (Data S1).

We performed two independent in vivo scSTARR-seq experi-

ments with this injection library and recovered STARR-seq re-

porter reads, endogenous RNA reads, and transfection reporter

reads simultaneously from 7,170 single cells (Figure 4B). As

these two experiments were performed at temporally close
Cell 185, 4587–4603, November 23, 2022 4593



Microglia

Endoderm/Vascular

Fibroblast

Radial Glia

Intermediate
 Progenitor

Excitatory
 Neuron

Interneuron

7170 cells

in vivo scSTARR-seq 
Reporter Expression

(Human HAQER1069)

Low

High

GFP Transfection 
Reporter Expression

Low

High

B

tGFP

STARR-seq 
Plasmid 
Vector

DNA Synthesis 
and cloning

2. Plasmid Assembly

4. Dissection 
E15.5/E16.5

BF GFP

AGTCGCATGC
ACGTGACGAT
GACGTGACGA

TGCAGT

6. Single-Cell Sequencing5. Fluorescence 
Activated Cell Sorting

PolyA signal

Test 
Sequence

3. In Utero Eletroporation
 E14.5/E15.5

+
+
+
+
+

-
-
-
-
-

+ pCAG-GFP
Transfection Reporter

STARR-seq 
Plasmid Library

A

GFP+
Cells

State

C
el

l T
yp

e 
E

nh
an

ce
r 

A
ct

iv
ity

 S
co

re

D

Cell Type

3
1

16

7
3

9

66

Human/ 
Chimp 

Cerebral 
Organoid 

Differential 
Accessibility

Developing 
Brain Open 
Chromatin

Functional 
Element 

Gained After 
Rhesus Split

1. Identification of 
candidate HAQERs

Enhancer Activity Score

C

HAQER0710 HAQER0780 HAQER0795 HAQER0911

HAQER1403

0 10 20 30 40

HAQER1032 HAQER1069 HAQER1073 HAQER1394

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

HAQER0059 HAQER0074 HAQER0223 HAQER0398
FOXD4 FOXD4L1 EMILIN2 FAM95C

****

Non-HomininHominin

DPP10 ADCYAP1 PPIAL4G,NOTCH2NLB ADCYAP1

C12orf57 KIAA2013 NBPF15 SNX6,EAPP

PLD4

****
**

* **

* ****
HAQER0911 HAQER1032 HAQER1069 HAQER1073 HAQER1394 HAQER1403

HAQER0059 HAQER0074 HAQER0223 HAQER0398 HAQER0710 HAQER0780 HAQER0795

RG IP EN RG IP EN RG IP EN RG IP EN RG IP EN RG IP EN

RG IP EN
0.000

0.005

0.010

0.015

0.000

0.005

0.010

0.015

**

**
*

***

State

Non-Hominin

Hominin

Chimp.
HCA
Den.

Nean.
Hum.

+
+
+
+
+

-
-
-
-
-

Chimp.
HCA
Den.

Nean.
Hum.

Chimp.
HCA
Den.

Nean.
Hum.

Chimp.
HCA
Den.

Nean.
Hum.

Figure 4. Rapid sequence divergence in HAQERs generated hominin-specific neurodevelopmental enhancers

(A) Experimental design. Candidate HAQERs were prioritized based on overlaps with epigenomic datasets, cloned into a STARR-seq vector, and electroporated

into developing mouse brains along with a pCAG-GFP transfection reporter. Single-cell sequencing followed dissection and FACS enrichment of GFP+ cells.

(B) UMAP projection of 7,170 single cells from two scSTARR-seq experiments, labeled with metacluster identities. Inserts display cells colored by expression of

the GFP transfection reporter and human HAQER0169.

(C) Enhancer activity score, defined as the input-normalized unique molecular identifier (UMI) count pooled across all cells per 1,000 reporter UMIs, for 13

HAQERs. Nearest gene name is displayed below each HAQER ID. We display significant differences in enhancer activity between hominin (human, Neanderthal,

and Denisova) and non-hominin (chimpanzee, human-chimpanzee ancestor [HCA]) sequences (Bonferroni-adjusted t test, p < 0.05). Faded bars represent

sequences where Neanderthal and Denisovan had the same sequence in the 500-bp genomic region, and these duplicate sequences are not included in the

statistical analysis.

(D) Cell-type enhancer activity score or the input-normalized reporter UMI count normalized to the pCAG-GFPUMI count for each cell averaged across all cells in

each metacluster (RG, radial glia; IP, intermediate progenitor; EN, excitatory neuron) (FDR-corrected t test, p < 0.05).

See also Figures S5 and S6.
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developmental time points (injections at E14.5 and E15.5), we

observed a strong correlation between enhancer activity scores

in both experiments (Figures S5E and S5F).

Asmost rapid sequence divergence in HAQERs occurred prior

to the human-Neanderthal split, we expected similar patterns of

enhancer activity among hominin sequences and compared

enhancer activity between hominin and non-hominin sequences.

Critically, 6 of the 13 HAQERs demonstrated significantly greater

enhancer activity in the hominin ortholog test sequences than in

the non-hominin sequences (Figures 4C, S6A, S6B, and S6D).

Additionally, HAQER1032 showed a small but statistically signif-

icant decrease in enhancer activity in hominin orthologous se-

quences (Figure 4C). Many of the non-hominin sequences

exhibit similar enhancer activity to random sequence negative

controls. The lack of observed functionality of non-hominin al-
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leles suggests that these HAQERs represent hominin-specific

functional elements forged from a previously neutrally evolving

sequence, a class of elements excluded from previous compar-

ative genomic screens reliant on functional constraint outside of

humans.

We next sought to leverage the single-cell resolution of in vivo

scSTARR-seq to determine the cell-type specificity of enhancer

activity in developing tissue forHAQERs.Weannotated cell types,

utilizing developing brain cell atlases60,62 to calculate an enhancer

activity score specific to each cell type (Figures 4B, 4D, S5A, and

S5B; STAR Methods). In utero electroporation preferentially tar-

gets ventricular progenitors. Thus, we observed the most GFP

signal in radial glia and radial glial progeny, including intermediate

progenitors and newborn excitatory neurons (Figures 4B and

S5C).While we resolved clusters with inhibitory neuron,microglia,
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Figure 5. Rapid divergence of hominin-specific neurodevelopmental enhancers near FOXD4 family genes followed multiple segmental

duplications

(A) Experimental design. We cloned the human or inferred human-chimpanzee ancestral sequence of HAQER0059 into an PGK-EGFP reporter plasmid and

delivered plasmids to the developing cerebral cortex via in utero electroporation at E15.5 alongside an mCherry injection reporter. We performed dissection,

sectioning, and imaging 24 h later.

(B) Representative images of Hoechst-stained coronal sections imaged for the mCherry injection reporter and EGFP enhancer reporter. Scale bars, 100 mm.

(C) Left: quantification of PGK-EGFP reporter signal normalized to the mCherry injection reporter for HAQER0059. Right: corresponding in vivo STARR-seq

results (* p < 0.05; *** p < 0.001; FDR t test. Dotted line, negative control mean + 3SD).

(D) Phylogeny of HAQER0059 homologs in humans and other great apes.

(E) Genomic context for the paralogous regions near the genes FOXD4L3, FOXD4L1, and FOXD4. We present genomic context for the region near FOXD4, which

contains HAQER0059, on the reverse strand. The region near FOXD4L3 does not have a nearby HAQER and shares synteny with the great ape ortholog.

(F) A model of recent FOXD4 evolution. The great ape ortholog of the human gene FOXD4L3 generated the paralog FOXD4 in the chromosome 9 subtelomere

through paired inversion and duplication. Subsequent duplication produced the paralog FOXD4L1 at the fusion site between the ancestral chromosomes 2a/2b,

which formed the modern human chromosome 2.

See also Figure S6.
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and fibroblast cell-type identities, these clusters exhibited limited

GFP expression as theywere not targetedby electroporation (Fig-

ure S5C). Therefore, to control for differences in transfection effi-

ciency when calculating cell-type-specific enhancer activity,

enhancer activity scores were normalized to the amount of GFP

observed in each cluster (STAR Methods). We observed that 5

of our 13 HAQER sequences demonstrated a significant increase

in enhancer activity in hominin sequences in at least one cell type.

While HAQER0911 and HAQER1032 exhibited significant homi-

nin/non-hominin differences in bulk tissue, we did not observe a

similar result at themetacluster level where we had less statistical

power. Notably, HAQER0710 demonstrated hominin-specific

enhancer activity in excitatoryneurons, a result thatwasnot visible
in bulk tissue (Figures 4B and 4D). This result highlights the poten-

tial of single-cell technologies to uncover cell-type-specific gene

regulatory function in complex tissues.

As an orthogonal confirmation to our discovery of human-spe-

cific brain enhancers, we introduced the human and the human-

chimpanzee ancestor sequence of HAQER0059 into an

additional plasmid to test for enhancer-driven EGFP expression

(Figure 5A; STAR Methods). After in utero electroporation in the

developing mouse brain, we observed robust expression of

enhancer-driven EGFP for the human construct but not the

ancestral ortholog of HAQER0059 (Figures 5B and 5C), vali-

dating our multiplex sequencing assay with an independent fluo-

rescence-based methodology.
Cell 185, 4587–4603, November 23, 2022 4595
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Segmental duplication of human-specific paralogs
follows rapid divergence in HAQERs
We observed that many HAQERs are contained within recent

segmental duplications. This is consistent with the prevalence

of differential expression between paralogous genes created

by human-specific segmental duplications.61,63 Two hominin-

specific enhancers that we identified, HAQER0059 and

HAQER0074, are located near the paralogs FOXD4 and

FOXD4L1, respectively. FOXD4 encodes a forkhead-family tran-

scription factor that is necessary for neuronal differentiation64,65

and implicated in psychiatric disorders.66 The genome assem-

blies of mouse, gorilla, and orangutan contain one FOXD4 pa-

ralog, corresponding to the location of the human gene

FOXD4L3 on chromosome 9. This suggests that one FOXD4 pa-

ralog was present in the great ape common ancestor. The short

arm of the modern human chromosome 9 is inverted relative to

that of gorilla and orangutan. In humans, FOXD4L3 is found

near the inversion breakpoint, and an additional paralog,

FOXD4, is found at the other end of the inversion in the

chromosome 9 subtelomere, suggesting a paired inversion and

duplication event following the split with gorilla (Figure 5F).

Chimpanzees exhibit an additional paralog in the subtelomere

of chromosome 2b, suggesting an additional segmental duplica-

tion. In humans, this paralog corresponds to FOXD4L1 and is

located at the site of the end-to-end fusion67 of the ancestral

chromosomes 2a and 2b that formed the modern human

chromosome 2 (Figure 5F). Even though HAQER0059 and

HAQER0074 are both highly divergent from the human-chim-

panzee ancestor, they exhibit 97.6% identity in the 500-bp

regions used as STARR-seq inserts68 (Figures 5D and 5E). How-

ever, the orthologous region near FOXD4L3 is not highly diver-

gent from the ancestral sequence. While the similarity between

HAQER0059 and HAQER0074 could be explained by conver-

gent evolution, this would require over 100 parallel mutations.

Thus, we propose that one of two paralogs rapidly diverged,

and a subsequent event translocated the highly diverged paralog

to the paralogous location on the other chromosome, resulting in

the same highly diverged sequence on the ends of both chromo-

somes 2b and 9.

Additionally, we observed 26 HAQERs in the 1q21.1-2 region

containing the NBPF gene cluster (Figure S6E), which contains

several human-specific segmental duplications.10,69,70 NBPF

genes contain Olduvai domains, which have undergone the

most dramatic copy-number increase of any protein-coding re-

gion in the human lineage.70,71 Copy number of Olduvai domains

is implicated in a dose-dependent manner with brain size, and

deletions and duplications in this region are associated with

microcephaly and macrocephaly, respectively.72 These results

are consistent with the hypothesis that adaptive increases of

expression in FOXD4 and NBPF were achieved through the

paired action of cis-regulatory innovation and segmental dupli-

cation. We propose that the cooperation between independent

molecular mechanisms may be a common method of rapid

evolution.

HAQER evolution shapes human disease susceptibility
To investigate the relationship between HAQERs and disease,

we calculated if segregating variants in HAQERs are linked to
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SNPs that have been associated with human diseases and dis-

orders through genome-wide association studies (GWASs). For

each variant in the GWAS catalog, we used population rese-

quencing data to identify the additional segregating sites that

are in linkage disequilibrium with the reported SNP. We per-

formed this calculation for all GWAS SNPs associated with an

annotated trait to get the set of all observed linked variations

for a particular GWAS trait (Figure 6; STAR Methods). HAQERs

are highly enriched for variation linked to GWAS traits like

hypertension, neuroblastoma, and unipolar depression/schizo-

phrenia/bipolar disorder (Figure 6B; STAR Methods).

Variants in HAQERs could be associated with disease risk due

to pleiotropic effects, where selection for an advantageous mu-

tation in the HAQER element is accompanied by a deleterious

side effect in an independent trait. In single-locus pleiotropy,

the DNA segment of the HAQER element has multiple functions,

and the same variant that is selected for an advantageous

change has an accompanying deleterious change, which is real-

ized as a susceptibility to a disease. HAQERs do not show signs

of locus-specific pleiotropy, as their single-locus pleiotropy

scores are much lower than that of HARs and similar to that of

RAND, suggesting that many HAQERs perform more specific

functions (Figure S6H; STAR Methods). Alternatively, if

HAQERs exhibit elevated haplotype lengths due to recent posi-

tive selection, we may expect HAQER disease enrichments to

be the result of linkage disequilibrium-induced pleiotropy, where

causal disease variants occur in elements distinct from HAQERs

but in the same haplotype. However, we do not expect elevated

haplotype lengths in HAQERs, as the divergence in HAQERs had

largely subsided prior to the human-Neanderthal split (Figure 2E),

and selection-associated haplotype length elevation dissipates

via recombination on the timescale of tens of thousands of

years.73 Indeed, segregating sites in HAQERs occur on smaller

haplotypes than in random regions (Figures S6F and S6G;

STARMethods), a reflection of their slightly elevated recombina-

tion frequency (Figure S3B). Thus, it is unlikely that HAQER dis-

ease enrichments are the result of linkage disequilibrium-

induced pleiotropy. HAQER-associated disease susceptibility

is not driven primarily by pleiotropic effects, as HAQERs do not

exhibit significant pleiotropy either at their genomic position or

through linkage disequilibrium.

We propose that HAQERs confer disease susceptibilities in hu-

mans as they are located in genomic regions with elevated muta-

tion rates (Figure S3B). We expect subsequent mutations to

commonlyoccur inHAQERsand thesemutations often tobedele-

terious and associatedwith disorders. It is likely that these disease

susceptibilitieswill be specific to humans sincemanyHAQERs are

only functional in humans, and more generally, HAQERs have

largely distinct gene ontology enrichments from HAQER-like

regions in other species (Figure S2H). Thus, although HAQER

evolution was adaptive in the human lineage, the association

with disease variants suggests rapid divergence generated hu-

man-specific disease susceptibilities as consequences.

DISCUSSION

While there has been substantial disagreement in whether highly

divergent regions reflect the action of natural selection74 or
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See also Figure S6.
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variation in the local mutation rate,36 researchers have specu-

lated that the careful integration of human population genetic

data into comparative genomic efforts could effectively resolve

the mutually confounding signatures of selection and mutation

rate variation.75

Even though variation in local mutation rate and positive selec-

tion are often presented as mutually exclusive explanations for

the generation of rapidly evolved regions, we have found evi-

dence for both positive selection and elevated local mutation

rates in HAQERs, suggesting that the combination of these

two forces shaped the most divergent regions in the human

genome.

Importantly, we have identified that the adaptive evolution of

HAQERs produced functional consequences in humans and

ancient hominins. HAQERs are strongly enriched in bivalent

chromatin, particularly in the gastrointestinal tract, immune sys-

tem, and developing brain. We developed amultiplex, single-cell

enhancer assay to demonstrate that rapid sequence divergence

in HAQERs forged hominin-specific gene regulatory elements.

HAQERs transitioned from rapid evolution following the hu-

man-chimpanzee ancestor to constraint among modern hu-

mans. Neanderthal and Denisovan HAQER sequences fall in

the range of human variability for both sequence and function,

suggesting that the rapid divergence of HAQERs largely pre-

dates this population split. While the recent accessibility of

Neanderthal and Denisovan genomes has spurred substantial

investigation into the differences between humans and these

extinct hominins, many of the defining phenotypic transitions

of the human lineage, including bipedalism and brain expansion,
are shared among us. HAQERs, at the level of both sequence

and function, separate us as humans from our great ape ances-

tors through rapid divergence and yet unite us as a species

through modern constraint.

HAQERs and HARs show striking similarities in the anatomical

specificity of their function. Both sets show enrichments for the

brain and gastrointestinal tract. These consistent genomic en-

richments parallel known anatomical changes on the human line-

age of brain expansion and gut reduction. These two changes

are proposed to have co-evolved to maintain a relatively con-

stant basal metabolic rate.58

While HAQERs and HARs show similarities in the tissues they

impact, we propose that these sets represent distinct classes of

regulatory innovation during vertebrate evolution. HAQERs

include de novo functional elements generated from neutral re-

gions, whereas HARs represent modifications of existing func-

tional elements. This view is consistent with differences we

observe between HAQERs and HARs in selection parameters,

chromatin states, and pleiotropic effects. In terms of selection,

HAQERs may be a better fit for a unimodal model of selection

where many bases are under positive selection as a regulatory

element is forged from neutral sequence. By contrast, HARs

are modifications of existing functional elements, and we expect

their composition to be a mixture of bases under negative selec-

tion that maintain prior function and bases influenced by positive

selection. Therefore, it is unsurprising that our selection model,

which evaluates a selection parameter averaged across all sites,

does not observe a substantial deviation from neutrality in HARs.

In terms of chromatin states, HAQERs demonstrate strong and
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consistent enrichments for bivalent chromatin states, which are

associated with spatiotemporally restricted regulatory contexts,

whereas HARs are associated with active enhancer states that

functionmore broadly. Consistent with this functional specificity,

we observe limited pleiotropic variation in HAQERs while HARs

are substantially pleiotropic, asmay be expected frommodifying

highly conserved active enhancers. This difference is consistent

with newer and more specific functions in HAQERs, compared

with older and more multifunctional regulatory elements

modified in HARs. Importantly, the relative contributions of

gene regulatory element gain, loss, and modification to verte-

brate evolution and disease remain unknown. We propose that

forging functional elements from previously non-functional re-

gions is likely to play an outsized role in regulatory differences

among species by circumventing pleiotropic constraints that

reduce the evolvability of many highly conserved developmental

enhancers.76

The observation of high mutation rates in positively selected

HAQERs is explained by the non-uniformity of evolvability in

vertebrate genomes. As an example, populations of marine

stickleback fish have independently adapted to freshwater hab-

itats by reducing their pelvises through the deletion of a develop-

mental enhancer.77 While more than one enhancer deletion can

achieve pelvic reduction,78 wild populations recurrently exhibit

deletions of the same enhancer located in a region that is highly

susceptible to double-stranded breaks.79 Often, many possible

mutations can produce the same adaptive phenotype. When

similarly adaptive mutations occur at different rates, mutations

with higher rates of occurrence will be used preferentially for

adaptation. In fact, we observed elevated mutation rates in

HAQERs and expect this pattern of elevated mutation rates

in positively selected regions to be common throughout verte-

brate life.

Some hypermutable regions utilized by adaptive evolution will

retain their mutability in the derived state, such as regions prone

to double-stranded breaks during meiosis, whereas other re-

gions will not, including deletions at fragile sites.79 We propose

that positively selected regions that maintain hypermutability

in the derived state will predispose organisms to disease sus-

ceptibility through subsequent deleterious mutations. Indeed,

HAQERs are enriched for human genetic variants linked to dis-

eases ranging from hypertension to neuropsychiatric disease.

Thus, we anticipate a general correspondence between muta-

tion rate, positive selection, and species-specific disease sus-

ceptibility across vertebrate evolutionary history.

Limitations of the study
First, as we conservatively limited our analysis to well-assem-

bled syntenic regions to avoid the overestimation of divergence

from paralog misalignment, we believe many highly divergent

regions between great apes have yet to be found. Many

genome assembly gaps are located near centromeres, telo-

meres, and highly paralogous regions, which are also regions

enriched for HAQERs. The discovery of these regions will likely

require the completion of telomere-to-telomere assemblies of

great ape species to resolve syntenic relationships. Second,

confident ancestral sequence reconstruction of the human-

chimpanzee ancestor allele requires a minimal level of identity
4598 Cell 185, 4587–4603, November 23, 2022
between great ape species. Therefore, HAQERs may be

missed in alignable regions where different mutations at the

same base position occurred in many independent lineages.

Similarly, our current method will not detect rapid evolution in

positions where humans and other great apes have all indepen-

dently evolved to the same derived state. Third, we focused our

in vivo functional analysis on the developing brain. While we

propose that HAQERs impact many anatomical locations,

future work will be required to uncover how HAQER-mediated

regulatory innovation impacts target gene expression and

phenotypic changes across diverse tissues and stages. Finally,

several HAQERs of interest overlapped simple repeat se-

quences. We were unable to test these HAQERs for enhancer

activity due to limitations in current methods of DNA synthesis,

which is required to investigate haplotypes of extinct and

ancestral species.
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107. Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S.,

Sawyer, S., Heinze, A., Renaud, G., Sudmant, P.H., de Filippo,

C., et al. (2014). The complete genome sequence of a Neanderthal

from the Altai Mountains. Nature 505, 43–49. https://doi.org/10.

1038/nature12886.

108. 1000 Genomes Project Consortium, Auton, A., Brooks, L.D., Dur-

bin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini,

J.L., McCarthy, S., McVean, G.A., et al. (2015). A global reference

for human genetic variation. Nature 526, 68–74. https://doi.org/10.

1038/nature15393.

109. Lowe, C.B., Kellis, M., Siepel, A., Raney, B.J., Clamp, M., Salama, S.R.,

Kingsley, D.M., Lindblad-Toh, K., and Haussler, D. (2011). Three periods

of regulatory innovation during vertebrate evolution. Science 333, 1019–

1024. https://doi.org/10.1126/science.1202702.

110. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,

Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Pro-

cessing Subgroup (2009). The Sequence Alignment/Map format and

SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioin-

formatics/btp352.

111. Vockley, C.M., D’Ippolito, A.M., McDowell, I.C., Majoros, W.H., Safi, A.,

Song, L., Crawford, G.E., and Reddy, T.E. (2016). Direct GR binding sites

potentiate clusters of TF binding across the human genome. Cell 166.

1269.e19–1281.e19. https://doi.org/10.1016/j.cell.2016.07.049.

112. Gibson, D.G., Young, L., Chuang, R.-Y., Venter, J.C., Hutchison, C.A.,

and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to

several hundred kilobases. Nat. Methods 6, 343–345. https://doi.org/

10.1038/nmeth.1318.

113. Saito, T., and Nakatsuji, N. (2001). Efficient gene transfer into the embry-

onic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246.

https://doi.org/10.1006/dbio.2001.0439.

114. Gasperini, M., Hill, A.J., McFaline-Figueroa, J.L., Martin, B., Kim, S.,

Zhang, M.D., Jackson, D., Leith, A., Schreiber, J., Noble, W.S., et al.

(2019). A genome-wide framework for mapping gene regulation via

cellular genetic screens. Cell 176. 377.e19–390.e19. https://doi.org/10.

1016/j.cell.2018.11.029.

115. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018).

Integrating single-cell transcriptomic data across different conditions,

technologies, and species. Nat. Biotechnol. 36, 411–420. https://doi.

org/10.1038/nbt.4096.

https://doi.org/10.1093/nar/gkaa1070
https://doi.org/10.1093/nar/gkaa1070
https://doi.org/10.1126/science.aao1887
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btm404
https://doi.org/10.1093/bioinformatics/btm404
https://doi.org/10.1038/nbt.1630
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1073/pnas.1932072100
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref90
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref90
https://doi.org/10.1101/gr.1933104
https://doi.org/10.1101/gr.1933104
https://doi.org/10.1186/1471-2105-5-113
https://doi.org/10.1186/s12859-018-2283-2
https://doi.org/10.1186/s12859-018-2283-2
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref94
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref94
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref94
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref94
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref94
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1093/bib/bbq072
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.4161/fly.19695
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref98
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref98
https://doi.org/10.1002/0471250953.bi0104s40
https://doi.org/10.1002/0471250953.bi0104s40
https://doi.org/10.1093/sysbio/46.1.101
https://doi.org/10.1093/sysbio/46.1.101
https://doi.org/10.1126/science.155.3760.279
https://doi.org/10.1126/science.155.3760.279
https://doi.org/10.1111/jeb.12076
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref103
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref103
http://refhub.elsevier.com/S0092-8674(22)01358-7/sref103
https://doi.org/10.1016/B978-1-4832-3211-9.50009-7
https://doi.org/10.1016/B978-1-4832-3211-9.50009-7
https://doi.org/10.1038/217624a0
https://doi.org/10.1038/nature12886
https://doi.org/10.1038/nature12886
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
https://doi.org/10.1126/science.1202702
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1016/j.cell.2016.07.049
https://doi.org/10.1038/nmeth.1318
https://doi.org/10.1038/nmeth.1318
https://doi.org/10.1006/dbio.2001.0439
https://doi.org/10.1016/j.cell.2018.11.029
https://doi.org/10.1016/j.cell.2018.11.029
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096


ll
OPEN ACCESSArticle
116. Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I.W.H., Ng, L.G.,

Ginhoux, F., and Newell, E.W. (2018). Dimensionality reduction for visu-

alizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44.

https://doi.org/10.1038/nbt.4314.

117. Buniello, A., MacArthur, J.A.L., Cerezo, M., Harris, L.W., Hayhurst, J., Ma-

langone, C.,McMahon, A.,Morales, J.,Mountjoy, E., Sollis, E., et al. (2019).

The NHGRI-EBI GWAS catalog of published genome-wide association
studies, targeted arrays and summary statistics 2019. Nucleic Acids Res.

47, D1005–D1012. https://doi.org/10.1093/nar/gky1120.

118. Jordan, D.M., Verbanck, M., and Do, R. (2019). HOPS: a quantita-

tive score reveals pervasive horizontal pleiotropy in human genetic

variation is driven by extreme polygenicity of human traits and dis-

eases. Genome Biol. 20, 222. https://doi.org/10.1186/s13059-019-

1844-7.
Cell 185, 4587–4603, November 23, 2022 4603

https://doi.org/10.1038/nbt.4314
https://doi.org/10.1093/nar/gky1120
https://doi.org/10.1186/s13059-019-1844-7
https://doi.org/10.1186/s13059-019-1844-7


ll
OPEN ACCESS Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Stbl3 Chemically Competent E. Coli Invitrogen Cat# C737303

Chemicals, peptides, and recombinant proteins

Agencourt AMPure Beads Beckman Cat# A63881

DNase-I New England Biolabs Cat# M0303S

EcoRI New England Biolabs Cat# R3101S

Fast Green FCF Sigma-Aldrich Cat# F7252

FBS ThermoFisher Cat# 10438026

Hoechst 33342 Invitrogen Cat# H1399

NEG-50 Richard-Allan Scientific Epredia 6502

Phusion DNA Polymerase New England Biolabs Cat# M0530S

SphI New England Biolabs Cat# R3182S

Trypsin-EDTA Sigma-Aldrich Cat# 59428C

Vectashield Vector Laboratories H-1000-10

ZymoPURE II Plasmid Maxiprep Kit Zymo Research Cat# D4203

Critical commercial assays

LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit Invitrogen Cat# L10119

NovaSeq 6000 S-Prime Reagents Illumina Cat# 20040719

Chromium Next GEM Single Cell 3’ Reagent Kit v3.1 10x Genomics https://www.10xgenomics.com/support/single-cell-

gene-expression/documentation/steps/library-prep/

chromium-single-cell-3-reagent-kits-user-guide-v-

3-1-chemistry

NEBuilder HiFi DNA Assembly Master Mix New England Biolabs Cat# E2621L

NEBNext Ultra II FS DNA Library Prep Kit New England Biolabs Cat# E6177

Deposited data

1000 Genomes Project genomes Byrska-Bishop et al.26 https://www.internationalgenome.org/data-portal/

data-collection/30x-grch38

Altai Neanderthal genome Meyer et al.80 https://www.eva.mpg.de/genetics/genome-

projects/neandertal/

Combined Human Accelerated Region locations Doan et al.23 Table S1 of Doan et al.23

Denisovan genome Meyer et al.80 https://www.eva.mpg.de/denisova/index.html

ENCODE cCRE locations and ChromHmm Datasets Moore et al.25 https://www.encodeproject.org/

GWAS Catalog Variants GWAS Catalog https://www.ebi.ac.uk/gwas/

HiCAR H1 and GM12878 Wei et al.81 GEO: GSE162819

Human ChromHmm Roadmap Epigenomics Data Kundaje et al.37 http://www.roadmapepigenomics.org/

Human gained enhancer locations Reilly et al.38 GEO: GSE63648

Individual chimpanzee genomes Prado-Martinez et al.82 https://www.ncbi.nlm.nih.gov/sra?term=SRP018689

knownGene Navarro Gonzalez et al.83 https://hgdownload.soe.ucsc.edu/goldenPath/

hg38/database/

Meiotic Recombination DSB hotspots Pratto et al.47 GEO: GSE59836

Raw and processed sequencing reads This study GEO: GSE212159

Recombination frequency maps Zhou et al.51 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/

working/20130507_omni_recombination_rates

Reference genomes: hg38, panTro6, panPan2,

gorGor5, gorGor6, ponAbe3

UCSC Genome Browser https://hgdownload.soe.ucsc.edu/downloads.html
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Replication timing datasets Ding et al.49 https://www.thekorenlab.org/data

Ultraconserved Element locations Bejerano et al.45 https://hgwdev.gi.ucsc.edu/

Vindija Cave Neanderthal genome Prüfer et al.84 https://www.eva.mpg.de/neandertal/draft-

neandertal-genome/data.html

Experimental models: Organisms/strains

Mouse: C57BL/6J (B6) (WT) The Jackson Laboratory JAX: 000664

Oligonucleotides

Synthetic STARR-seq Insert Sequences This study Data S1

Targeted Enrichment Primers This study Data S1

Recombinant DNA

hSTARR-seq ORI vector Addgene RRID: Addgene 99296

PGK-EGFP Addgene RRID: Addgene 169744

Software and algorithms

bcl2fastq2 Conversion Software v2.20 Illumina https://support.illumina.com/downloads/bcl2fastq-

conversion-software-v2-20.html

BWA 0.7.17 Li and Durbin85 https://github.com/lh3/bwa

CellRanger v6.0 10x Genomics https://support.10xgenomics.com/

ClustalW2 Larkin et al.,86 https://www.ebi.ac.uk/Tools/phylogeny/

simplephylogeny/

gonomics Vertebrate Genetics

Laboratory

https://github.com/vertgenlab/gonomics

GraphPad Prism GraphPad https://www.graphpad.com/

GREAT version 4.0.4 McLean et al.87 http://great.stanford.edu/public/html/

ImageJ Schindelin et al.88 https://imagej.net/software/fiji/

kentUtils Kent et al.89 https://github.com/ENCODE-DCC/kentUtils

lastz Harris90 https://github.com/lastz/lastz

multiz Blanchette et al.91 https://bio.tools/multiz

muscle Edgar92 https://www.ebi.ac.uk/Tools/msa/muscle/

phylotree Shank et al.93 https://phylotree.hyphy.org/

Plink Purcell et al.94 https://zzz.bwh.harvard.edu/plink/

R version 4.0.5 R Foundation for

Statistical Computing95
https://www.r-project.org/

RPHAST Hubisz et al.96 https://github.com/CshlSiepelLab/RPHAST

Seurat v4.0 Hao et al.97 https://satijalab.org/seurat/

SNPeff Cingolani et al.98 http://pcingola.github.io/SnpEff/
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RESOURCE AVAILABILITY

Lead Contact
Further information and request for resources and reagents should be directed to and will be fulfilled by the lead contact, Craig B.

Lowe craig.lowe@duke.edu.

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All software written for this manuscript was implemented as a part of Gonomics, an ongoing effort to develop an open-source

genomics platform in the Go programming language (golang). Gonomics can be accessed at https://github.com/vertgenlab/

gonomics.

d Raw and analyzed datasets, including browser tracks, sequencing files, multiple alignments, and variant sets used in selection

analysis, have been made freely available on our lab website at https://www.vertgenlab.org/. Raw and analyzed datasets have
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also been deposited at GEO and are publicly available as of the date of publication at the accession number listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the Lead Contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

d Wild type B6 mouse embryos at stages E14.5 and E15.5 were used for in utero electroporations for both scSTARR-seq and

GFP enhancer reporter assays as described in method details. Embryos were assigned to experimental or control injection

plasmids sequentially by position in the uterine horn. We did not restrict our scSTARR-seq or GFP enhancer reporter assays

to embryos of only one sex; our data includes both developing males and females.

d All experiments were performed in agreement with the guidelines from the Division of Laboratory Animal Resources from Duke

University School of Medicine and the Institutional Animal Care and Use Committee of Duke University.
METHOD DETAILS

Human genetic variation preprocessing
To analyze the role of selection in shaping the fast-evolved regions of the human genome, we accessed haplotype-phased high-

coverage genotype data from 2,504 human samples gathered by the 1000 Genomes Project26 from the url: https://www.

internationalgenome.org/data-portal/data-collection/30x-grch38.

This genotype data underwent a series of transformations to prepare it for use in our selection analysis. First, we used gonomics:

vcfFilter to retain only autosomal biallelic substitution variants in unrelated individuals. To reduce the impact of population bottle-

necks introduced by human migration events, we only considered individuals from African populations (Gambian in Western Divi-

sion –Mandinka, Mende in Sierra Leone, Esan in Nigeria, Yoruba in Nigeria, or Luhye inWebuye, Kenya). We implemented gonomics:

vcfAncestorAnnotation to determine the ancestral allele for each variant using a pairwise alignment between the human reference

sequence and the inferred Human-Chimpanzee ancestor sequence (see ancestral state inference below).We retained variants where

the ancestral and derived states could be clearly determined because one of the two alleles present in the extant human population

matched the allele present in the inferred ancestral sequence. We removed polymorphic sites where neither allele matched the in-

ferred ancestral sequence. We retained a total of 29,739,731 bi-allelic sites with genotype calls in 501 individuals (a total of 1002 al-

leles per site) after filtering and annotation.

We created subsets of these variants that overlap regions of interest for our comparative analyses. These regions of interest

include six sets: HAQERs, HARs,33 Ultraconserved Elements45 (UCEs), missense variants, ENCODE candidate cis-regulatory

elements,25 a random neutral proxy (RAND), which includes regions of the genome that do not overlap exons in known genes83

or ENCODE cCREs pseudorandomly selected from all ungapped bases in the hg38 assembly (gonomics: simulateBed;

kentUtils: featureBits). We generated a set of missense variants from the 501 individuals from the 1000 Genomes Project using

SnpEff.98 We then subsampled these variant sets to contain a maximum of 1000 segregating sites for ease of computability in

subsequent analyses using gonomics:vcfFilter -subset and gonomics:sampleVcf. To limit the impact of linkage disequilibrium on

the shape of the derived allele frequency spectrum, we retained variants that had a minimum of 10,000 bases from any other

variant in the sample set using gonomics:proximityBlockVcf. We generated derived allele frequency spectra from variant data

with gonomics: vcfAfs.

For each population, we measured the proportion of three categories of derived allele frequencies (DAF): high frequency derived

alleles (DAF > 0.99), low frequency derived alleles (DAF < 0.01), and rare minor alleles (DAF < 0.01 or DAF > 0.99). We then calculated

the enrichment of each category as the proportion of alleles observed in each category relative to the proportion observed in our

random neutral proxy set (RAND). Enrichments for a category of allele frequencies for a set of regions were calculated by a Bonfer-

roni-adjusted Mann-Whitney U test compared to RAND (n = 5, corresponding to the five African populations).

Bayesian model design
To infer the direction and magnitude of selective pressure acting on the HAQERs, we implemented a hierarchical Bayesian model

based on a statistical framework developed to infer the selective pressure acting in highly conserved genomic regions, using allele

frequency data from human populations.34

We abstracted all filtered variant calls (see Human genetic variation preprocessing) for all base positions within the HAQER, or

other set of genomic regions, into a set of segregating sites. We define a segregating site as a tuple, Sk , containing the quantities

nk , the number of individual alleles with a genotype call for that segregating site, and ik , the number of individuals with the derived

allele at the kth segregating site.

Sk = fik; nkg
Cell 185, 4587–4603.e1–e14, November 23, 2022

https://www.internationalgenome.org/data-portal/data-collection/30x-grch38
https://www.internationalgenome.org/data-portal/data-collection/30x-grch38


ll
OPEN ACCESSArticle
ik=nk therefore represents the derived allele frequency, or the proportion of individual sequences with the derived allele at that

segregating site. Furthermore, we define S as a set of segregating sites, referred to henceforth as a derived allele frequency

spectrum.

S = ðS1;S2;S3;.SnÞ
We assume that each segregating site in an allele frequency spectrum S is associated with its own selection parameter a, which is

two times the product of a selection coefficient, s, and the haploid effective population size, Ne.

a = 2Nes

Therefore, the set of selection parameters corresponding to each of n segregating sites in a derived allele frequency spectrum S is

represented by the vector quantity a.

a = ða1;a2;a3;.anÞ
We assume that each ak in a is independently selected from a normal distribution withmean m and standard deviation s, where the

probability that an individual value a is selected follows the function f(a|m, s). Therefore, m represents themean selection parameter of

a set of variants. Regions under neutral selection should exhibit mz 0 with m < 0 and m > 0 indicating negative and positive selection,

respectively.

We also define the quantity Q to represent the following set of parameters.

Q = fa; m;sg
Using Bayes0 rule, we can represent the posterior distribution of a particular parameter set given an observed allele frequency

spectrum P(Q|S) with the following equation.

PðQjSÞ =
PðSjaÞfðajm;sÞgðmÞhðsÞR R R

PðSjaÞfðajm;sÞgðmÞhðsÞdadmds
Here P(S|a) represents the likelihood function of a derived allele frequency spectrum S for a given a, f(a|m, s) is a normally distrib-

uted prior, while g(m) and h(s) are hyperpriors. h(s) is a gamma-distributed hyperprior on s, Gamma(2, 10), and g(m) is a normally-

distributed hyperprior on m, Normal(0, 3). This model is therefore a hierarchical Bayesian model as f(a|m, s), the prior distribution

for the parameter set a, is governed by the hyperparameters m and s.

Likelihood calculations
In the Wright-Fisher model, the stationarity distribution of derived allele frequencies p can be described as a function of ak, the se-

lection parameter for a particular segregating site, with the following equation:99

4ðpjakÞ =
1 � e�akð1�pÞ

1 � e�ak

2

pð1 � pÞ
When a finite number of alleles, nk, are sampled from a population, we do not know the true derived allele frequency, but for a

particular segregating site, a density function, F, can be defined as the product of the stationarity density and the binomial density

of observing a segregating site at a particular discrete allele frequency ik/nk integrated over all possible derived allele fre-

quencies p34:

Fðikjnk;akÞ =

Z1
0

nk!

ik!ðnk � ikÞ!p
ik ð1 � pÞnk � ik4ðpjakÞdp

The probability of observing a particular derived allele frequency ik can then be expressed as follows:

Pðikjnk;akÞ =
Fðikjnk; akÞPnk � 1
j = 1 Fðjjnk;akÞ

Thus, the likelihood of observing a derived allele frequency spectrum, S, for a given set of selection parameters, a, can be repre-

sented as the product of the allele frequency probability for each segregating site.

PðSjaÞ =
Y
k

Pðikjnk;akÞ

MCMC evaluation of selection parameters
We evaluated the posterior distribution P (Q|S) with gonomics: selectionMcmc, which implements the Metropolis-Hastings algo-

rithm, a method of Markov Chain Monte Carlo (MCMC) sampling.
Cell 185, 4587–4603.e1–e14, November 23, 2022 e4



ll
OPEN ACCESS Article
TheMetropolis-Hastings algorithm begins with an initial set of parameters,Q, and draws a new set of parameters,Q0, based on the

current parameter set. To draw this new parameter set, a new value for s denoted s0 is first selected as a random value from a Normal

distribution, Normal(s, sigmaStep), where s is the value from the previous iteration and sigmaStep is a constant that may be changed

for optimal parameter space exploration (we use 0.01). This makes it possible for a proposed s0 to be less than zero, which is outside

the support for h(s) and will be evaluated to have a zero probability of acceptance. Next, a new value of m (m0) is drawn from a normal

distribution, Normal(m, muStep), where muStep is a second tuning parameter that controls parameter space exploration, which we

set to 0.5. We tuned sigmaStep and muStep to arrive at an acceptance probability near 0.5. We generated a proposal for a (a0) by
drawing each a0

k from a Normal(m0, s0).
Due to symmetry in the proposal functions, where proposing m0 and s0 when at the current values of m and s would be equal to

proposing m and swhen at current values of m0 and s0, we are able to reduce the acceptance probability for the candidate parameter

set Q0 to:

PðacceptÞ = min

�
1;
PðSja0Þ
PðSjaÞ � gðm0Þhðs0Þ

gðmÞhðsÞ
�

If a new parameter set Q0 is accepted, it serves as the initial parameter set in the following iteration. Over many iterations, the

random walk of the Q parameter set forms a Markov Chain whose stationarity distribution represents the posterior distribution for

its parameters.

We implemented gonomics: mcmcTraceStats to calculate the mean and 95% highest density credible interval for each chain, dis-

carding the first 5,000 iterations as burn-in for variant sets overlapping regions of evolutionary interest.

Divergence-based ascertainment corrections
HAQERs, and other sets of genomic regions in our analyses, were defined based on the level of divergence between the human refer-

ence assembly and other species. This creates a systematic bias where regions in the reference assembly with low divergence are

enriched for segregating sites with a low derived allele frequency. Similarly, regions in the reference assembly with a high divergence

are enriched for segregating sites with a high derived allele frequency. This is because segregating sites with low derived allele fre-

quencies are likely to appear non-divergent when sampling a single human allele (the reference assembly) and segregating sites with

high derived allele frequencies are more likely to appear divergent when sampling a single human allele. This issue has been exten-

sively explored by Kern,35 who describes a mathematical framework for correcting this ascertainment bias. Utilizing this framework,

we introduce a corrected version of the likelihood function that is conditioned on the divergence-based ascertainment,Asc, of a set of

variants:

PðSjAsc;aÞ =
Y
k

Pðikjnk;Asck;akÞ

To calculate this corrected likelihood function, we use a special case of the Kern correction where only one human allele (the allele

from the reference genome) has been used for ascertainment. We represent the probability that a segregating site Sk = {ik, nk} is iden-

tified as divergent between two genomes as:

PðAsckjik;nk; akÞ =
ik
nk

Here, nk represents the number of individuals with a genotype call for the segregating site k, including the reference genome as an

additional observation of an allele. Conversely, the probability of ascertaining a segregating site in the ancestral state of a function of

its allele frequency is:

PðAsckjik; nk;akÞ =
nk � ik

nk

Using Bayes0 Theorem, we can then represent the corrected allele frequency probability expression as:

Pðikjnk;Asck; akÞ =
Pðikjnk; akÞPðAsckjik; nk;akÞ

PðAsckjnk;akÞ
In this equation, the denominator represents a constant normalization factor:

PðAsck jnk ;akÞ =
Xnk � 1

j = 1

Pð jjakÞPðAsck jj;nk ;akÞ

We applied this correction to each segregating site in region sets generated through divergence-based criteria

(i.e., HAQERs, HARs, and UCEs) by using the options -divergenceAscertainment and -includeRef in the program gonomics:

selectionMcmc.
e5 Cell 185, 4587–4603.e1–e14, November 23, 2022



ll
OPEN ACCESSArticle
MCMC validation with synthetic datasets
In order to validate our MCMC selection model, we evaluated the ability of our model to recover known selection parameters used to

generate synthetic data. To this end, we designed and implemented gonomics: simulateVcf to generate synthetic allele frequency

spectra based on a particular selection parameter, a.

To generate an allele frequency spectrum, S, we generated individual segregating sites Sk with the parameters {ik, nk}. To simulate

segregating sites for a particular selection parameter, a, our program first generated Beta-distributed random variates p∈ (0, 1) from

a distribution with the parameters 5000 * Beta(a = 0.001, b = 0.5). We selected these parameters so that the resulting distribution B(p)

could serve as a bounding function for the allele frequency stationarity distribution 4(p|a) when a is between -10 and 10. In sym-

bolic terms:

½BðpÞ R 4ðpjaÞ�cp ˛ ð0; 1Þ;a˛ ½� 10;10�
With this function in hand, we could then perform bounded rejection sampling to recover random variates from the stationarity dis-

tribution 4(p|a) by accepting variates from B(p) with the following probability:

Paccept =
4ðpjaÞ
BðpÞ

This provides us with amethod for generating synthetic derived allele frequencies for a set of segregating sites in a large population

that are evolving under the given value of a.

To test our method we need segregating sites to be represented as finite samples from this population in the form (ik, nk). To that

end, we simulate nk draws from a binomial distribution with a success probability of pk. The number of successes becomes ik. If ik
were equal to 0 or nk (representing the cases where a site that is segregating in the population is not detected as segregating in

the sample), this result was discarded and the process repeated with a new pk.

We generated 10 independent synthetic datasets for five values of the selection parameter a (i.e. -4, -2, �0, 2, 4) for a total of 50

synthetic derived allele frequency spectra. As the stationarity distribution is undefined at a = 0, we used a = 0.01 to represent near

neutral selection (�0). Representative spectra are displayed in Figure S1A.

To estimate selection parameters from synthetic data, we performed MCMC sampling on each dataset for 50,000 iterations start-

ing from near neutral initial parameters Figure S1B. The mean and 95% credible intervals from the inferred posterior distributions for

the mean selection parameter are displayed in Figure S1C, calculated after discarding the first 5,000 iterations as burn-in. The true

value of the selection parameter used to generate each dataset is displayed as a vertical dashed line.

We implemented the program gonomics: simulateDivergentWindowsVcf to verify our ability to correct for divergence-based ascer-

tainment biases in synthetic derived allele frequency data sets, using our special case of the Kern correction.35 For each replicate

experiment, we generated 1000 sets of variants, each containing 100 simulated segregating sites generated from a stationarity dis-

tribution with a fixed selection parameter a. The number of divergent sites generated in each set was then calculated, and we re-

turned the top 1% or bottom 1% of sets ordered by the number of divergent sites. We generated 10 replicates of upper and

lower divergence variant sets for three values of the selection parameter a: strong positive selection (a = 5), strong negative selection

(a = -5), and neutral expectation (a = 0.01) We then used gonomics: selectionMcmc with and without the divergence-based ascer-

tainment bias correction to assess its impact on our estimation of the mean selection parameter.

Genome-wide multiple alignment
We generated a genome-wide alignment to identify the fastest-evolved regions in the human, chimpanzee, and gorilla genome using

the following assemblies: Human (Homo sapiens, hg38), Chimpanzee (Pan troglodytes; panTro6), Bonobo (Pan paniscus; panPan2),

Gorilla (Gorilla gorilla, gorGor5), and Orangutan (Pongo abelii, ponAbe3).

We downloaded each reference assembly from the UCSC Genome Browser100 and generated local pairwise alignments with

LASTZ.90 We used the human-chimp.v2 scoring matrix with parameters (O=600 E=150 T=2 M=254 K=4500 L=4500 Y=15000).100

We then chained the local alignments together using kentUtils: axtChain.89

We took several additional steps to prevent and remove misalignments during chaining. First, to prevent the generation of chained

alignments bridging assembly gaps, we chained alignments in each gapless regions of the genome independently and only consid-

ered gapless regions greater than 1 Mb of the human genome and greater than 20 kb for each of the query genomes. This filtering

allowed us to ensure a large genomic context to better separate orthologs from paralogs. We also generated a custom scoringmatrix

(O=20 E=5):
A C G T

A 3 -11 -8 -12

C -11 3 -11 -8

G -8 -11 3 -11

T -12 -8 -11 3
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and gap penalty function:
tableSize 5

smallSize 11

Position 1 2 3 11 111

qGap 12 19 24 43 420

tGap 12 19 24 43 420

bothGap 25 40 50 90 700
for the axtChain program to more conservatively chain local alignments by preventing the chaining of alignments spanning large

gaps in the target or query. We filtered the chains to have a minimum score of 50,000 and used kentUtils: chainNet to generate the

final pairwise alignments for each alignable position of the human genome.

We used MultiZ91 to generate the multi-species genome-wide alignment and converted the output into an aligned FASTA file

(gonomics: mafToFa). Subsections of this alignment were displayed using gonomics: multFaVisualizer.

Divergence velocity and acceleration analysis
To analyze the velocity and acceleration of genomic regions on the human branch we reduced our genome-wide alignment to four

species: Human (Homo sapiens, hg38), Chimpanzee (Pan troglodytes; panTro6), Gorilla (Gorilla gorilla, gorGor5), and Orangutan

(Pongo abelii, ponAbe3) using gonomics: faFilter and estimated the branch lengths in 500bp windows with gonomics:

multiFaAcceleration.

This method estimates the branch lengths for a phylogenetic tree as the set of branch lengths that minimizes the error term Q,

which represents the squared difference between the pairwise distances between the sequence of two species, D, and the patristic

distance separating these two species on the tree, d, while constraining branch lengths to be non-negative.101,102Wemeasured pair-

wise distances in terms of the number of differences separating two sequences, which includes both substitutions, insertions, and

deletions, where each insertion or deletion counts as one difference regardless of length. As all species needed to be present in the

alignment for us to calculate the branch lengths for a given region, we implemented gonomics: mafToBed to generate a BED file of all

such regions.

Q =
X
i˛S

X
j˛S

ðDij � dijÞ2

Two branch lengths from this tree are used in the subsequent calculations: b0, which represents the distance between the

human-gorilla ancestor and the human-chimpanzee ancestor, and b1, which represents the distance between the human-chim-

panzee ancestor and the extant human genome assembly. We then defined the quantity v as the velocity score, or the rate of

divergence over the branch b1 measured in units of mutations per site per million years of evolution. With 500 base pair win-

dows and 7.4 million years of evolution between the human-chimpanzee ancestor and extant humans,103 v can be calculated as

follows:

v =
b1

500bp,7:4My

Similarly, we define the initial velocity score v0, or the rate of divergence over the branch b0 in units of differences per site per 1

million years of evolution, as follows:

v0 =
b0

500bp,2:3My

Finally, we define the quantity a, the acceleration score, as the change in velocity between branches b0 and b1:

a a Dv = v � v0

The genome-wide average velocity score is 9.18 $ 10-4 differences per site per 1 million years of evolution. Given an estimate of

7.4million years of evolution between humans and the HCA, or a total of 14.8million years of independent evolution separating extant

humans from extant chimpanzees, our model would estimate an average sequence divergence of 1.36% in alignable regions be-

tween humans and chimpanzees, which is consistent with past estimates.36 The genome-wide average acceleration score is

3.12 3 10�5.

To calculate the relationships between initial velocity, velocity, and acceleration we first pseudorandomly sampled 2.9 million

500-bp genomic windows (gonomics: bedFilter -subset). We then partitioned these genomic windows into subsets
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corresponding to particular ranges of velocity and acceleration scores (gonomics: bedFilter -minNameFloat/maxNameFloat,

gonomics: intervalOverlap).

For each acceleration and velocity subset, we identified the biallelic SNPs that were segregating in these windows and calcu-

lated mean selection parameters associated with the given range of velocity or acceleration, as described in MCMC Evaluation of

Selection Parameters. MCMC chains were run for 10,000 iteration with the first 1,000 iterations discarded as burn-in. As these

regions were identified on the basis of divergence, we applied the Kern correction for divergence-based ascertainment bias for

all chains.

Alongwith calculating initial velocity, velocity, and acceleration for 500-bpwindows, we also calculate these scores for diverse sets

of genomic regions where the length of genomic segments is variable (gonomics: branchLengthsMultiFaBed). We use a length of

50bp as a minimum to prevent large fluctuations in these scores seen in very small elements and use the more general equation

with the genomic length, l, is a variable:

v =
b1

l,7:2My
v0 =
b0

l,2:3My

Ancestral state inference
We implemented gonomics: primateRecon to estimate the ancestral allele states using a maximum likelihood framework104 from our

alignment of the human, chimpanzee, bonobo, gorilla, and orangutan genomes. We used this program to estimate both the human-

chimpanzee ancestor and the human-gorilla ancestor.

We first estimated the neutral rate of evolution based on four-fold degenerate sites in codons using the knownGenes track

on the UCSC Genome Browser as our gene set. We used PHAST: msa_view to extract four-fold degenerate codon sites and esti-

mated branch lengths for a fixed-topology tree using a Jukes-Cantor model of evolution105 by maximum likelihood96 (PHAST:

phyloFit).

A base was determined to be present in the ancestral node if a base is present in at least two species on two independent lineages

connected to the ancestral node. For alignment columns where an ancestral base was determined to be present, we first recon-

structed the probabilities of A, C, G, and T in the ancestral node using the tree inferred from four-fold degenerate sites.104 We

then used one of twomethods to assign a single base to the ancestor from these four probabilities. These distinct methods of ances-

tral state inference reflect the specific experimental use cases for the resulting inferred sequences. In the first method, we bias the

reconstruction towards an extant species base by mandating that the sum of probabilities for the three other bases must be greater

than or equal to 0.8 for the most likely base to be assigned as the ancestral state. This method produced a conservative estimation of

divergent sites between modern and ancestral species and was used in the ascertainment of HAQERs, chimp-AQERs, and gorilla-

AQERs.We used our secondmethod of ancestral state inference for annotating the ancestral allele for segregating sites amongmod-

ern humans. In this method, we first implemented gonomics: vcfToFa to construct a FASTA format sequence of the human reference

genome where the reference allele at each segregating site is replaced with the alternate allele from a VCF format file. We then ap-

pended this sequence to our multiple alignment and treated both the reference and alternate human sequence with equal weight. we

then calculated the four base probabilities for the human-chimpanzee ancestor and accepted the most likely allele as the ancestral

state if its probability was greater than or equal to 99%. For uncertain positions, we assigned anN to the ancestral state to ensure that

only high confidence SNPs were retained for subsequent analysis of derived allele frequencies.

HAQER Identification
We identified Human Ancestor Quickly Evolved Regions (HAQERs), or regions of the human genome with an increased density of

differences when compared to the human-biased estimate of the human-chimpanzee ancestor.

We calculated the number of evolutionary operations (including substitutions, insertions, and deletions) that would be needed to

convert our reconstruction of the human-chimpanzee ancestor’s genome into the human reference genome (hg38), for every 500 bp

sliding window (gonomics: faFindFast). We used our reconstruction of the human-chimpanzee ancestor that conservatively uses the

identity of the human base when the statistical model is uncertain (when the most likely base has a probability of less than 0.8). This

results in us having high confidence in the changes on the human lineage that we do identify, which are likely to be a lower-bound on

the total number of evolutionary operations that occurred in each window.

To assign statistical significance to HAQERs, we first constructed a null model by scanning the genome with a 10 Mb window to

calculate the number of mutations in the fastest evolving 10 Mb section of the human genome since the split with chimpanzee. This

rate of high-confidence genomic changes is 0.0126899 evolutionary operations per site, which we use as the rate of divergence m in

our null model.45,106 With this rate of divergence for our null model, we are able to calculate uncorrected p-values associated with

observing N changes within a 500 bp window with the R command pbinom(N � 1, 500, m, lower.tail = FALSE, log.p = FALSE).
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When N = 29, our false discovery rate is 1.52096 $ 10�7. We merged all overlapping 500 bp windows containing at least 29 evolu-

tionary operations separating the human-chimpanzee reconstruction and the human reference genome (gonomics: bedFilter, bed-

Merge). This resulted in our final set of 1581 HAQERs.

We performed nearly identical procedures to identify the corresponding fastest-evolved regions in the chimpanzee genome

(chimp-AQERs) and gorilla genome (gorilla-AQERs) using biased ancestor estimates for each of these species. We identified

2497 chimp-AQERs and 2885 gorilla-AQERs. We report overlap enrichments between HAQERs, chimp-AQERs, and gorilla-AQERs

using gonomics:overlapEnrichments.

To generate ideograms for the visualization of the genomic locations of HAQERs, we converted a BED file of HAQER coordinates

into a text file compatible with the UCSC Genome Graphs visualization tool such that the amplitude of each region is proportional to

its maximum divergence density (gonomics: formatIdeogram). To visualize divergence density between the reconstructed human-

chimpanzee ancestor and the human reference genome, we converted the BED file listing divergences for each 500 bp window

into a wiggle (WIG) format track for the UCSC Genome Browser (gonomics: faFindFast, bedScoreToWig). We then converted this

WIG track into a binary wiggle (bigWig) format track for final visualization on the browser (kentUtils: wigToBigWig).

Chromosome location
We generated sets of BED files containing genomic elements that are pseudorandomly generated and uniformly distributed in the

human, chimpanzee, and gorilla genomes to quantify the enrichment of HAQERs near chromosome ends (gonomics: simulateBed).

As chimp-AQERs and gorilla-AQERs were identified on hg38 coordinates, we used kentUtils:liftOver to project these regions onto

coordinates for panTro6 and gorGor6, respectively, to measure distance from chromosome ends in the correct syntenic

context for each species. We then calculated the distance to chromosome ends for both HAQERs and pseudorandom regions

and compared the mean distance from the chromosome end (t-test) and proportion of elements within 5 megabases of the chromo-

some end (Chi-squared).

GREAT Ontology Analysis
We used the Genomic Regions Enrichment of Annotations Tool87 (GREAT) to identify enriched Gene Ontology (GO) Biological Pro-

cess gene sets nearby HAQERs, chimp-AQERs, and gorilla-AQERs lifted to the human reference genome hg38. We report significant

enrichments in terms of Bonferroni-adjusted Binomial p values using the whole genome as the background region.

We also used GREAT to identify GO Biological Processes enriched near 3D chromatin contact sites of HAQERs. To this end, we

accessed chromatin contact sites identified in H1 hESC and GM12878 cell lines by HiCAR.81We then identified the set of all genomic

regions forming distant 3D chromatin contacts with HAQERs in each cell type gonomics:intervalContacts. We report significant en-

richments in terms of Bonferroni-adjusted hypergeometric p-values using the set of all chromatin contact sites for each cell line as

background regions.

Mutation rate and fixation estimation
We first generated a list of all divergent positions between hg38 and the inferred human-chimpanzee ancestor (gonomics:

multiFaToVcf). We then generated a set of all divergent sites that overlap specified genomic regions, including HAQERs, HARs,

RAND, ENCODE, and UCE gonomics: intervalOverlap. Next, we calculated the divergent sites per base as the number of divergent

sites divided by the total length in base pairs of the input set of genomic regions. Similarly, polymorphic sites per basewere calculated

as the number of variants from the 501 African individual subset of the 1000 Genomes Project data (see Human genetic variation

preprocessing) that overlapped each set of genomic regions divided by the length in base pairs of that set.

We also intersected the set of divergent positions with the set of all polymorphic sites identified in the 501 African individual subset

of the 1000 Genomes Project data (gonomics: intervalOverlap). Positions found in both sets were labeled as polymorphic divergent

sites, and divergent sites not found in the 1000 Genomes Data were labeled as fixed divergent sites. We then determined the sets

of fixed and polymorphic divergent sites overlapping each set of genomic regions (gonomics: intervalOverlap). We plotted the pro-

portion of divergent sites that are polymorphic as the number of polymorphic sites divided by the sum of polymorphic and fixed diver-

gent sites and assigned significance via the Chi-squared test of independence against the observed ratio of polymorphic divergent

sites in RAND. The 2x2 contingency table for this analysis for a set of regions, X, had the dimensions {X, RAND} and {Fixed,

Polymorphic}.

Recombination and replication timing
To measure recombination frequencies for regions of interest, we intersected a genome-wide recombination map estimated from all

Yoruba individuals in the 1000 Genomes Project51 with HAQERs, HARs, and RAND. We also accessed a BED format file of meiotic

double stranded break hotspots47 (GEO: GSE59836) and intersected this dataset with HAQERs. Overlap enrichments were quanti-

fied with gonomics:overlapEnrichments and intersecting HAQERs were identified with gonomics:intervalOverlap. We also accessed

a dataset of replication timing in 300 iPSC lines49 and generated a dataset representing the average replication timing for each

genomic region across these 300 iPSC lines. This dataset was then lifted to hg38 coordinates (kentUtils: liftOver) and intersected

with HAQERs, HARs, and RAND gonomics: intervalOverlap.
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Mutation spectrum analysis
For each genomic region of interest, we gathered the set of all divergent positions between hg38 and the inferred human-chimpanzee

ancestor and partitioned this set into six classes of mutations (A/ G/T/ C) (G/ A/C/ T) (A/ T/T/ A) (G/ C/C/ G) (A/

C/T/G) (C/ A/G/ T) (gonomics: divergenceSpectrum). We then calculated the proportion of HCA divergent sites that are weak

to strong mutations for each genomic element (A / G/T / C) or (A / C/T / G). We constructed a matrix of six values for each

genomic region, with each value relating to the proportion of overlapping HCA divergent sites in each mutation class for principal

component analysis in the R programming language.

Back mutation analysis
We hypothesized that while most low frequency derived alleles (DAF<0.1) will represent nearly exclusively forward mutations (in which

the ancestor allele mutates to a derived variant), high frequency derived alleles (DAF>0.9) will represent a mixture of forward mutations

and back mutations (in which a since diverged derived allele mutates back to the ancestral state). Forward mutations occur with un-

equal probabilities of transitions and transversions. We estimated the proportion of transitions in forwardmutations tf to be equal to the

proportion of transitions across all segregating sites in RAND (tf = tseg = 0.685; gonomics: vcfInfo). Back mutations will also occur with

unequal probabilities of transitions and transversions. For the ancestral allele to be phased at a segregating site, a backmutation must

revert to the ancestral allele state. We define tdiv to be equal to the proportion of transitions across all divergent sites in RAND (tdiv =

0.668). This model allows tseg to differ from tdiv, as would be the case if transition/transversion biases change over evolutionary

time. However, in our analysis of the human lineage, tf and tdiv are similar. There are two scenarios in which a backmutation can occur.

First, the inverse transition of a divergent transitionwill occur at a rate proportional to tf $ tdiv. Second, the inverse transversion of a diver-

gent transversionwill occur at a rate proportional to (1�tf )(1�tdiv)/2, as there are two possible reverse transversions for a divergent site.

Thus, the expected proportion of transitions in back mutations will be equal to:

tb =
tf,tdiv

ð1� tfÞð1� tdivÞ
2

+ ðtf,tdivÞ
Based on our estimates of tf and tdiv, we estimate tb = 0.897. In other words, segregating sites that are back mutations should

exhibit a quantifiable elevation in the proportion of transitions.

We use the following mixture model to estimate the relative proportion of forward and back mutations in a set of segregating sites

with a proportion of transitions x:

x = tff+ tbð1 � fÞ
Here f represents the proportion of forward mutations and (1 � f) represents the proportion of back mutations. We measured that

segregating sites in HAQERswithDAF > 0.9 exhibit a proportion of transitions xz 0.75. This figure implies that approximately 30%of

segregating sites in HAQERs at DAF > 0.9 are back mutations.

Great ape genome divergence analysis
We constructed a 30-way whole-genome multiple alignment91 to analyze patterns of divergence and constraint in HAQERs. This

alignment included five reference genomes: hg38, panTro6, panPan2, ponAbe3, and gorGor5. In addition to these reference ge-

nomes, we generated reference-based haploid assemblies from individuals within a species to survey intraspecific variability. To

this end, we aligned the short-read sequencing data from individuals to the corresponding reference assembly and calculated the

consensus allele for each position (gonomics: samConsensus).

We generated consensus sequences for three high coverage sequencing data sets from archaic hominins: a 30x coverage Deni-

sovan genome fromDenisova Cave in the Altai Mountains,80 a 52x coverage Neanderthal genome also from the Denisova Cave in the

Altai Mountains,107 and a 30x coverage Neanderthal genome from the Vindija Cave in Croatia.84 In addition to these archaic ge-

nomes, we also included the consensus sequences from 10 diverse, unrelated human individuals accessed from the 1000 Genomes

Project (HG00096,HG01112,HG03052,NA18525,NA20502,HG00419,HG01879,HG01500,HG03742,NA18939 ).108 Additionally,

we included sequencing data from the following 12 chimpanzee individuals,82 comprised of three individuals from each chimpanzee

subspecies:Pan troglodytes verus (SRX243499,SRX243488, SRX243446),Pan troglodytes schweinfurthii (SRX237583, SRX237539,

SRX237526), Pan troglodytes ellioti (SRX243519, SRX243518, SRX24351), and Pan troglodytes troglodytes (SRX243489,

SRX243492, SRX243496).

We used the Dunn Index54 to quantify interspecies divergence in the context of intraspecies variability. We calculated the Dunn

Index for each region in a set of regions as the ratio of the minimum intercluster sequence distance to the maximum intracluster dis-

tance (gonomics: dunnIndex). We restricted our Dunn Index analysis to regions with at least 5 segregating sites and where every in-

dividual had aligned sequence to the region.

Chromatin state enrichment analysis
To analyze chromatin state enrichments and depletions we used the ChromHMM classification of 127 epigenomes, which was pro-

duced as part of the Roadmap Epigenomics consortium.37 We calculated the overlap enrichment and depletion between two sets of
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genomic elements (set 1 and set 2) in using our previously described statistical framework109 (gonomics: overlapEnrichments). We

define the search space for this method as the area in the genome in which elements of set 1 and set 2 can be found, which includes

all ungapped genomic regions greater than 1mb in length. If an individual genomic element from set 2 of length L were randomly

distributed in the search space, the probability that it overlaps an element in set 1 can be expressed as the number of positions

an element of size L can be placed in the search space that overlap an element of set 1 divided by the total number of positions

in the search space in which an element of length L can be placed. The probability of observing k overlaps out of n trials, where n

is equal to the number of elements in set 2, thus follows the Poisson binomial distribution. When the number of trials is large, the

Poisson binomial distribution can be approximated with a normal distribution with the following mean, m, and variance, s2:

m =
Xn
i = 1

pi
Xn

s2 =

i = 1

ð1 � piÞpi

We report the enrichment between two sets of elements as the ratio between the observed number of overlaps and m, the expected

value of overlaps. We calculate Bonferroni-adjusted p values for enrichment and depletion with the following formulas:

penrichment = min

 
1;2C ,

Xn
i = k

Normalðm;sÞ
!

 

pdepletion = min 1;2C ,

Xk
i = 0

Normalðm;sÞ
!

We used 2C, whereC is the number of comparisons, as the Bonferroni adjustment, as we tested for both enrichment and depletion

for each pair of genomic elements. Significance was assigned for enrichment and depletion at p < 0.05.

To investigate the relationship between HAQER bivalent chromatin enrichments and environmental response, we accessed 17

ChromHMM datasets from untreated human A549 cells or A549 cells at various timepoints following dexamethasone (dex) treatment.

These datasets were accessed from the ENCODE consortium website at the following accession numbers: ENCFF107YWL,

ENCFF662GGJ, ENCFF161LGJ, ENCFF524GBP, ENCFF877NZN, ENCFF246IPY, ENCFF146UIL, ENCFF113TCU, ENCFF324PWA,

ENCFF255QUQ, ENCFF052NXZ, ENCFF646AJN, ENCFF108TED, ENCFF910RII, ENCFF845TIM, ENCFF513UFQ, ENCFF418WHV.

From here, we classified 410 dex-responsive bivalent enhancers as genomic regions that were in the EnhBiv state in untreated cells

and in the EnhA1 or EnhA2 state in any post-treatment dataset. 2 HAQERs, HAQER0547 and HAQER0919, overlapped a dex-respon-

sive bivalent enhancer (expected overlap: 0.32. p < 0.01, gonomics:overlapEnrichments ).

Functional annotation of HAQERs
To identify enrichments between HAQERs and gene regulatory elements gained after the rhesus split, we accessed 15-state

chromHmm data from the Roadmap Epigenomics consortium37 for the active enhancer and active promoter states (7 Enh and 1

TssA) from the developing brain reference epigenomes E081 and E082. Next, we concatenated and merged BED format files with

gonomics: bedMerge to produce BED files representing all regions identified as either active enhancers or active promoters in either

fetal brain reference epigenome.We then used gonomics: intervalOverlap to identify promoter and enhancer regions that overlapped

gene regulatory elements gained after the rhesus split.38 We used gonomics: overlapEnrichments to calculate the enrichment be-

tween HAQERs and these recently-evolved regulatory elements.

To identify overlap between HAQERs and open chromatin, human fetal brain DHS-seq data was obtained from the Roadmap

Epigenomics Consortium data37 from the following three individuals: GSM595920, GSM595922, and GSM595926. BAM format

alignment files aligned to hg19 were disassembled to FASTQ format sequencing files using samtools:bam2fq110 and aligned to

hg38 with BWA MEM.85 To visualize DNase hypersensitivity sequencing (DHS-seq) data on the UCSC genome browser, we

developed gonomics: samToWig to convert SAM/BAM format alignment files into WIG graphing track format. WIG files were then

converted to binary bigWig files with kentUtils: wigToBigWig. We developed gonomics: bedValueWig to generate a score for each

region in an input BED format file corresponding to the highest value of an inputWIG file in the coordinate range of the queried region.

Regions with at least 10 reads overlapping a single position were considered for further analysis as possible regions of open chro-

matin. Overlaps between HAQERs and other genomic regions, including functional elements gained after the rhesus split38 and dif-

ferential Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) peaks from human and chimpanzee cerebral

organoids39 were determined using gonomics: intervalOverlap.

Gene synthesis and plasmid preparation
Test sequences for single-cell Self-transcribing active regulatory region sequencing (scSTARR-seq) were synthesized and cloned

into the STARR-seq screening vector111 using a commercial service (Twist Bioscience). We added an 8 base pair unique barcode
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to the 30 end of each insert to differentiate between closely related orthologous sequences with short read 30 RNA sequencing. Plas-

mids were transformed into One Shot Stbl3 chemically competent E. coli (Thermo Fisher), selected for ampicillin resistance, and

amplified in Luria broth (Invitrogen) with 100 mg/mL ampicillin. Endotoxin-free plasmids were then purified with the ZymoPURE II

Plasmid Maxiprep kit per manufacturer’s instructions (Zymo Research). As necessary, purified plasmids were then precipitated

with 3MNa-Acetate pH 5.2, and 100% ethanol for 2 hours to achieve desirable concentrations. For in vivo STARR-seq, an equimolar

solution containing each STARR-seq plasmid was prepared at a total plasmid concentration of 3 mg/mL. This pooled STARR-seq

solution was then mixed with a pCAG-GFP injection reporter plasmid, which represented 1/6 of the total plasmid content of the final

injection solution. Our input STARR-seq library included plasmids with a total of 77 distinct inserts: 60 corresponding to the orthologs

of 13 HAQER sequences, 7 sequences used only in the analysis in Figures S5E and S5F, and 10 pseudorandom sequences which

served as negative controls (STAR Methods). For the PGK-EGFP enhancer reporter assay, we amplified HAQER inserts from the

STARR-seq plasmid vector via polymerase chain reaction and introduced these inserts to a PGK-EGFP plasmid vector (Addgene

#169744) via Gibson assembly cloning,112 which we confirmed with Sanger sequencing.

In utero electroporation
In utero electroporation was performed as previously reported.113 Briefly, E14.5 or E15.5 wild type B6 pregnant females were anes-

thetized with isoflurane. Uterine horns were exposed by making an incision in the abdomen. Each embryo was injected with 1-1.5 ml

of plasmid solution (containing 0.01% fast green and 1-2 mg/ml of plasmids) and electroporated using the following parameters: five

50ms-pulses at 50V (E14.5) or 60V (E15.5) with 950ms pulse-interval, using platinum-plated BTX Tweezertrodes. Uterine horns were

then repositioned into the abdominal cavity and themuscle and skin incisions were sutured. Damswere then placed on a heating pad

for recovery and monitored.

Immunofluorescence staining and image acquisition
Brains were fixed overnight in 4% PFA-PBS at 4◦C, rinsed in PBS, and submerged in 30% sucrose-PBS until sinking (24 hours).

Brains were frozen in NEG-50 medium (Richard-Allan Scientific) and cryostat sections (20 mm) were prepared and stored at -80◦C

until use. Sections were washed 3 times 10 minutes with PBS and incubated 1 mg/ml Hoechst 33342 (Invitrogen) for 30 minutes

at room temperature. Sections were then mounted using Vectashield (Vector Laboratories) as mounting media. Images were ac-

quired with a Zeiss Axio Observer Z.1 microscope coupled with an apotome2. Imagemeasurements and quantifications were blindly

performed using Fiji.88 Statistical significance was assigned by 2-way ANOVA in GraphPad Prism. We analyzed anatomically com-

parable regions from sections from 2 embryos from 2 IUEs (n=4) per injection construct.

Fluorescence activated cell sorting
Electroporated brains were harvested after approximately 18 hours and dissected in ice-cold sterile PBS. Meninges were removed

and GFP+ portions of the cortices were incubated at 37◦C for 10 minutes in 0.25% trypsin-EDTA supplemented with 0.1% DNAse I

(New England Biolabs cat# M0303S). Following incubation, the trypsin solution was removed and replaced with ice-cold 10% FBS/

HBSS/Propidium iodide (Invitrogen) supplemented with 0.01% DNAse I. A single cell suspension was then generated by trituration

with a fire-polished glass pipette and filtered with a 30 mmcell strainer. Cells were then stainedwith the LIVE/DEADNear-IR Dead Cell

Stain per manufacturer’s instructions (Thermo Fisher). Following staining, viable GFP+ cells were bulk sorted using a FACS Aria II

cytometer (BD Biosciences).

scSTARR-seq reporter read targeted enrichment
In order to enrich reporter read sequences from cDNA generated from endogenous mouse mRNA and STARR-seq reporter RNA, we

performed a three-step PCR reaction based on a 10x targeted enrichment protocol developed by Gasperini et al.114 We began with

approximately 10-13 ng of unfragmented scRNA-seq cDNA and performed qPCR-monitored 50 ml Phusion PCR (annealing temp

62◦C, 1.5ml DMSO) with the following primers:

F1: tGFPOuter 5- ATGGCTAGCAAAGGAGAAGAACTCT -3

R1: R1-PCR1 5- ACACTCTTTCCCTACACGACG -3

Following 1x Agencourt AMPure XP bead cleanup (Beckman Coulter), 2 ml of cleaned product was amplified in a subsequent 50ml

Phusion reaction (12 cycles) with the following primers:

F2: tGFPInner 5-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTGTTGAATTAGATTGATCT -3

R2: RP5 5-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG -3

Following 1xAMPure cleanup, 2ml of cleanedproductwasused in a third 50ml Phusion reaction (12 cycles), with the followingprimers:

F3: 5- CAAGCAGAAGACGGCATACGAGATIIIIIIIIIIGTCTCGTGGGCTCGG -3 (standard NEXTERA P7 indexing primer)

R3: Same as R2.

Following this reaction, final libraries were cleaned once more with 1X AMPure and quantified using the Bioanalyzer.

scSTARR-seq sequencing and preprocessing
Up to 10,000 GFP+ cells were captured per lane of a 10X Chromium device and single cell libraries were prepared using protocols

from the ChromiumNext GEMSingle Cell 30 Reagent Kits v3.1 (Rev D) User Guide (10XGenomics, Inc.). Final libraries were quantified
Cell 185, 4587–4603.e1–e14, November 23, 2022 e12
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using the Bioanalyzer (Agilent) according to manufacturer’s protocols. Prior to enzymatic fragmentation, an aliquot of cDNA was

separated for targeted enrichment. Final 10X libraries were sequenced using the NovaSeq 6000 S-Prime reagents (Illumina; R1

28, I1 10, I2 10, R2 90). Reporter-targeted enrichment libraries were sequenced independently on the Illumina NextSeq platform.

Fastq files from both libraries were recovered with bcl2fastq (v2.20.0.422, Illumina). For targeted enrichment libraries, we used

the following bases mask: Y28n*,n*,I8n*,Y75n*. Output fastq files from both the unenriched and reporter-targeted enrichment li-

braries across multiple lanes were concatenated together for downstream analysis.

For input normalization, we used the NEBNext Ultra II FS DNA Library Prep Kit (New England Biolabs) to sequence our

STARR-seq injection plasmid library and sequenced the resulting library on the Illumina iSeq 100 platform. Fastq reads from

the input library were aligned using the Burrows-Wheeler Aligner (BWA) to a custom STARR-seq reference genome including

the sequence of the mouse reference mm10 with additional FASTA records containing the sequences of each STARR-seq re-

porter construct and the pCAG-GFP injection reporter sequence. For an input STARR-seq library with n constructs, the input

normalization factor Cs for an individual STARR-seq construct, s, was then calculated as the ratio of the expected number of

reads from s if all n constructs were present at equimolar concentration in the input library to the observed number of reads

from s: Cs = Es/Os where:

Es =

 Xn
i = 1

Oi

!,
n

Constructs with an input normalization factor greater than 5 (indicating a greater than 5-fold depletion that equimolar expectation in

the input library) were excluded from all subsequent analysis.

GFP+ cells were pooled from all embryos in each experiment to control for batch effects associated with anatomical differences in

electroporation and dissection. We sequenced 3494 single cells from the first library, which was comprised of GFP+ cells pooled

from 6 embryos from a singlemouse injected at E14.5. The second library, which was composed of GFP+ cells from 9 embryos in-

jected at E15.5, yielded 3676 single-cell transcriptomes.

Enhancer activity quantification
To score enhancer activity from scSTARR-seq data, we implemented gonomics: fastqFilter -collapseUmi to remove unique molec-

ular identifier (UMI) duplicates from our 10x libraries. We then used gonomics: fastqFormat -singleCell to parse the cell barcode and

UMI from R1 into the read name for the R2 fastq. We then used the BWA to align reads to our custom STARR-seq reference genome

described above. The enhancer activity score for each construct was then calculated as the input-normalized UMI count per 1000

total reporter UMI counts. To determine the basal level of transcription from the STARR-seq plasmid vector, we synthesized 10 plas-

mids with inserts of 500bp of pseudorandom DNA sequences generated using gonomics: randSeq. To guard against spurious

enhancer activity present in pseudorandom sequences, we used six of the ten negative control constructs with the lowest enhancer

activity scores to determine a limit of detection for enhancer activity, which we defined as the three standard deviations above the

average enhancer activity score from these six pseudorandom sequences. We attempted to generate STARR-seq orthologous

(human, Neanderthal, Denisova, chimpanzee, HCA) test sequences for each region of interest. However, some ortholog pairs ex-

hibited the same sequence for the 500bp region of interest. Duplicate constructs were not included in statistical analysis, but are still

displayed as faded bars in Figure 4C.

Single-cell cluster identification and cell-type specific enhancer activity quantification
Count matrices were produced using CellRanger v6.0 (10x Genomics) with the custom reference genome described above. Subse-

quent analysis for cluster identification was performed in Seurat v4.0.97 For each library, cells were removed which contained 200 or

fewer genes or more than 5,000 genes. Each library was independently normalized and 2,000 highly variable features were identified

for each library. Cells across independent libraries were integrated for joint analysis via canonical correlation analysis.115 Variation in

gene expression based on cell-cycle related genes was regressed from cluster analysis in dataset scaling using an annotated set of

G2M and S phase related genes provided in Seurat. k-nearest neighbors (k=20) were calculated in the space of significant principal

components (in this case, 30 principal components) and clustering was performed with the Louvain-Jaccard method. Visualizations

were generated in uniform manifold approximation and projection (UMAP) space.116 We identified the top 10 positive markers for

each cluster and manually assigned cluster identities based on marker gene expression in two previously published neurodevelop-

mental single-cell atlases in mouse62 and human.60 Multiple clusters corresponding to the same cell type (ex. Excitatory Neuron I-IV)

were pooled as metaclusters for subsequent analysis.

To perform cell-type specific enhancer activity quantification, reads from each library aligned to the custom STARR-seq refer-

ence genome described above were sorted by cell barcode using gonomics: mergeSort -singleCellBx and input-normalized count

matrices were generated with gonomics: scCount. Input-normalized count matrices were then partitioned by metacluster using

cluster identities determined for each cell barcode by Seurat. Cells with fewer than 4 pCAG-GFP UMIs were discarded. The

input-normalized reporter UMI counts for each cell were then further normalized to the pCAG-GFP UMI count for that cell. The

cell type enhancer activity score was then calculated as the average transfection-normalized, input-normalized UMI count per

cell in each cluster.
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Enhancer paralog phylogenetic analysis
We began with the hg38 human reference sequence for HAQER0059 and gathered the sequences for all paralogs in the human

(hg38), chimpanzee (panTro6), gorilla (gorGor5), orangutan (ponAbe3), and rhesus (rheMac10) assemblies as identified with

BLAT.68 From here, we used gonomics: faFormat -revComp for all reverse strand sequences before aligning all forward-strand pa-

ralogous sequences with muscle.92 We then constructed a Newick-format phylogenetic tree from this alignment with ClustalW2.86

Finally, we visualized phylogenies with phylotree.93

GWAS catalog trait enrichment analysis
We first sampled the set of all GWAS Catalog variants that report an association in European populations to obtain a record for each

SNP.117 We retained only those variants that also appeared as segregating among individuals in the GBR subpopulation in the 1000

Genomes Project variant set.26 To generate a comprehensive list of possible causal variants, we used plink��r294 to identify all other

1000 Genomes Project variants in linkage disequilibrium (Plink R2 > 0.7) with each GWAS Catalog variant.

We then merged the set of all GWAS variants and linked variation for each mapped trait from the Experimental Factor Ontology

from the GWAS Catalog association table and calculated overlap enrichment between this merged set of variants and HAQERs

gonomics: overlapEnrichments. We report significant enrichments for mapped traits with an FDR-adjusted p < 0.05.

We also calculated the distributions of the number of all possible causal variants (including a GWAS variant and all linked variation

(Plink R2 > 0.7)) and median distance of each linked variant to its corresponding GWAS variant for all possible causal variants over-

lapping HAQERs, HARs, or RAND.

The observed disease enrichments are unlikely to be influenced solely by haplotype structure or density of linked variation around

GWAS variants, as these features were similar between RAND and HAQERs (Figures S6F and S6G).

Horizontal pleiotropy score quantification
We accessed a dataset of 1,183,386 human genetic variants annotated with LD-corrected horizontal number of traits pleiotropy

scores (PLD
n generated by Jordan et al.118). We intersected these variant sets with HAQERs, RAND, and HARs and compared the

distribution of PLD scores in variants overlapping each set of genomic regions.

Briefly, Jordan et al. leveraged PheWAS relationships between genetic variants and human traits to calculate PLD
n as the expected

value of the number of statistically independent traits for which a given variant is associated in a set of 100 traits. This approach starts

with a matrix Zraw of Z-scores associating each genetic variant to a human trait. Many clinical traits exhibit covariance as a result of

either partially redundant or ambiguous terminology (i.e. Alzheimer’s Disease and Dementia) or vertical pleiotropy (i.e. a causal rela-

tionship between traits, such as between hypertension and heart disease). Thus, PLD
n corrects for covariance between traits by

applying the following Mahalanobis whitening transformation to Zraw:

Z = S� 1
2Zraw

where S is the covariance matrix of Zraw. The result of this transformation is that the covariance matrix of the resulting matrix Z will

be equal to the identity matrix, indicating no covariance between traits. Pn for a variant n is then calculated as the scaled number of

whitened traits significantly associated with the variant n:

Pn =
100

l

X1
i = 1

Hðzi � 2Þ

Where H(zi-2) is the Heaviside step function, which is equal to 1 when |zi| > 2 and 0 otherwise. The term 100/l scales the number

of significantly associated whitened traits by the number of traits l and the constant 100 so that the resulting term represents the

expected value of the number of significantly associated whitened traits in a dataset of 100 traits. Finally, this value is corrected

for linkage disequilibrium with the following transformation:

PLD
n = Pn � bnx

where x is the LD score of the variant position and bn is the regression coefficient for LD on Pn.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters were reported either in individual figures or corresponding figure legends. Statistical details of experiments can

be found in method details. All statistical analyses were performed in R or Go.

ADDITIONAL RESOURCES

The raw data and analyzed results are available at our website: https://vertgenlab.org/.
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Figure S1. A model to detect the strength and direction of selection from derived allele frequency spectra, validated with synthetic allele

frequency data, related to Figure 1

(A) Synthetic allele frequency spectra ordered by value of the selection parameter used to generate each spectrum.

(B) RepresentativeMarkov chainMonte Carlo (MCMC) traces for themean selection parameter acting on variants from synthetic derived allele frequency spectra.

Traces are colored by the value of the input selection parameter used to simulate each spectra.

(legend continued on next page)
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(C–E)Mean and 95%highest density credible intervals for the posterior distribution of themean selection parameter for 50 synthetic variant sets, 10 for each input

selection parameter (C). Posterior estimates are displayed from 50,000 iterations with the first 5,000 iterations discarded as burn-in. 47/50 (94%) of traces

contained the true input selection parameter in the 95%credible interval. Traceswhere the input selection parameter was not contained in the credible interval are

marked with an asterisk. Distribution of MCMC trace means for the mean selection parameter with and without the Kern correction for divergence-based

ascertainment bias are displayed for the least divergent 1% (D) or most divergent 1% (E) of variant sets. Mean selection parameters are estimated as the posterior

mean of 10,000 iterations with the first 1,000 iterations discarded as burn-in.
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Figure S2. Relationship between phylogenetic scores and selection; gene ontology of rapidly evolved regions across species, related to

Figure 1

(A and B) Pearson correlations between velocity and acceleration (A) or initial velocity (B) for 2,902,532 500-bp genomic regions.

(C) Heatmap of mean selection parameters for sets of variants overlapping all genomic regions binned by velocity and acceleration score. Mean selection

parameters are estimated as the posterior mean of 10,000 iterations with the first 1,000 iterations discarded as burn-in.

(D) Cumulative proportions of velocity, initial velocity, and acceleration for variants overlapping regions of interest. Here, HARs are split into the original HARs

(oHARs33] and the expanded HARs (eHARs23) (Bonferroni-adjusted Wilcoxon; *** p < 0.001; **** p < 0.0001).

(legend continued on next page)
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(E) Phylogenetic context of HAQERs, chimp-AQERs, and gorilla-AQERs. Venn diagram displays overlaps between rapidly evolved primate regions (**** p < 0.001

for overlap enrichment between these sets of genomic regions).

(F) Observed over expected proportion of elements within 5 mb of chromosome ends. Expected proportion was estimated from randomly distributed regions in

each genome.

(G) GREAT ontology enrichments for HAQER chromatin contact sites in H1 hESCs (red) and GM12878 (yellow). One ontology term, innate immune response, was

significant in both cell types.

(H) GREAT ontology enrichments for HAQERs, chimp-AQERs, and gorilla-AQERs.
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Figure S3. Mutation rate, fixation, and spectra in HAQER evolution; a 30-way alignment for population structure analysis in HAQERs, related

to Figure 2

(A) Density of sites divergent between the modern human sequence and the inferred human-chimpanzee ancestor (HCA) sequence against the density of

polymorphic sites observed in 501 unrelated African individuals for human ancestor quickly evolved regions (HAQERs), pseudo-randomly selected neutral proxy

regions (RAND), human accelerated regions (HARs), ENCODE candidate cis-regulatory elements (ENCODE), and ultraconserved elements (UCEs).

(B) Distribution of recombination frequency in HAQER, RAND, and HARs (Bonferroni-adjusted Wilcoxon).

(C) Distribution of replication timing in HAQERs, HARs, and RAND (Bonferroni-adjusted Wilcoxon).

(D) Proportion of HCA divergent sites that are weak to strong mutations (A to G/T to C or A to C/T to G) in HAQERs, HARs, and RAND.

(E) Principal component analysis of the mutation spectrum for all HAQERs. HAQERs do not demonstrate distinct mutation spectrum subtypes.

(F) Proportion of HCA divergent sites that are polymorphic (observed as segregating in the 501 unrelated African individuals from A) as opposed to fixed (not

observed as segregating). The dotted line represents the proportion of polymorphic variants in RAND (1,069 polymorphic sites; 8,487 fixed sites) (chi-square test).

(G) Proportion of segregating sites that are transitions in segregating sites from five African populations binned by low derived allele frequency (DAF < 0.1) and

high derived allele frequency (DAF > 0.9) (Wilcoxon).

(H) The samConsensus program generates consensus sequences from individuals calling substitutions (represented as red positions) from sequencing reads

aligned to a reference genome and editing the corresponding positions of the reference assembly.

(I) Phylogenetic history and geographic distribution of 30 great ape genomes used to construct the multiple alignment.

(J) A representative 100-bp block of sequence sampled from the 30-way whole-genome alignment (** p < 0.01; *** p < 0.001; and **** p < 0.0001).
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Figure S4. HAQER chromatin state enrichment analysis, related to Figure 3

(A) Overlap enrichment/depletion matrix between HAQERs (left) or HARs (right) and chromatin states from 127 reference epigenomes with sample level anno-

tation. Both sets are depleted from transcribed regions; this reflects the ascertainment bias that some HAR studies specifically excluded coding regions.18

(B) Comparisons between HAQER and HAR overlap enrichment scores for each chromatin state across 127 reference epigenomes, quantified by Bonferroni-

adjusted t test (**** p < 0.0001).

(C) Comparison of HAQER overlap enrichment between adult and developing tissue-derived reference epigenomes.

(D) HAQERs are enriched for overlaps with active promoters and active enhancers gained after rhesus split, defined as increasedH3K27ac or H3K4me2ChIP-seq

signal in the developing human brain relative to mouse and rhesus macaque38 (Bonferroni-adjusted overlap enrichment; **** p < 0.0001 and * p < 0.05).

(E) Volcano plot of significant overlap enrichments for HAQERs (left) or HARs (right) for 7 gene regulatory chromatin states.
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Figure S5. scSTARR-seq cluster analysis, marker gene expression, and impact of injection time point and input normalization, related to
Figure 4

(A) UMAP representation of 7,170 cells from scSTARR-seq in the developing mouse brain. Insert UMAP labels cells from two independent STARR-seq ex-

periments, performed at E14.5 and E15.5.

(B) Gene expression for canonical markers of each cell identity.

(C) pCAG-GFP transfection reporter expression in each cell cluster. As radial glia and their progeny were targeted, limited GFP expression is observed in the

inhibitory neuron, microglia, fibroblast, and vascular clusters.

(legend continued on next page)
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(D) Dotplot representation of the top five marker genes by cluster. The pCAG-GFP transfection reporter, which was electroporated preferentially into radial glia,

was identified as a radial glial marker.

(E) Pearson correlation between enhancer activity score measurements for each test sequence at the E14.5 and E15.5 injection time points.

(F) Pearson correlation between the input normalization factor and enhancer activity score estimates for all test sequences with input normalization factors

below 5.
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Figure S6. Genomic context of HAQERs with hominin-specific neurodevelopmental regulatory innovation; features of disease-linked vari-

ation overlapping HAQERs, related to Figures 4, 5, and 6

Each panel displays the GENCODE gene track, open chromatin in the developing human brain,37 and divergence density in the genomic context of HAQERs with

neurodevelopmental function. The dashed line corresponds to a divergence density of 29 mutations per 500 bases, the statistical threshold for HAQER iden-

tification. Also labeled are the positions of STARR-seq test sequences used in this study, human accelerated regions,23 functional elements gained after the

rhesus split,38 and differentially accessible (DA) scATAC-seq sites in cerebral organoids.39

(A–C) The genomic context is shown for HAQER0710, a hominin-specific enhancer in the locus of DPP10, an autism spectrum disorder-related gene40 (A);

HAQER0223, a hominin-specific enhancer in the locus of EMILIN241 (B); and HAQER0035, which corresponds to HAR1, a previously described rapidly evolving

region33 (C).

(D) The genomic context for the gene ADCYAP1, which harbors three HAQERs. HAQER0780 and HAQER0911 were both observed as hominin-specific neu-

rodevelopmental enhancers. ADCYAP1 is associated with neurodevelopment,42 human evolution,43 and psychiatric disease.44

(E) Genome browser snapshot of a 10-Mb region of hg38 chr1. Members of the NBPF gene family are highlighted in yellow.

(F) Distributions of the number of variants in significant linkage disequilibrium (Plink R2 > 0.7) for each disease-linked variant overlapping HAQERs, RAND, and

HARs (Bonferroni-adjusted Wilcoxon; **** p < 0.0001 and ** p < 0.01).

(G) Distributions of the median distance of significantly linked variants (Plink R2 > 0.7) to corresponding GWAS variants for disease-linked variants overlapping

HAQERs, RAND, and HARs (Bonferroni-adjusted Wilcoxon; **** p < 0.0001).

(H) Proportion of variants overlapping HAQERs, RAND, and HARs with significant (p < 0.05) HOPS (horizontal pleiotropy scores) (chi-square test; **** p < 0.0001).

ll
OPEN ACCESSArticle


	Adaptive sequence divergence forged new neurodevelopmental enhancers in humans
	Introduction
	Results
	Acceleration and velocity are associated with signatures of positive selection
	The fastest-evolved regions of the human genome
	Sequence evolution in HAQERs was driven by both elevated mutation rates and directional positive selection prior to the Nea ...
	HAQERs are enriched in chromatin states
	HAQERs are enriched for recently evolved neurodevelopmental gene regulatory elements
	A multiplex, single-cell in vivo enhancer assay reveals hominin-specific neurodevelopmental enhancer activity in HAQERs
	Segmental duplication of human-specific paralogs follows rapid divergence in HAQERs
	HAQER evolution shapes human disease susceptibility

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead Contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Human genetic variation preprocessing
	Bayesian model design
	Likelihood calculations
	MCMC evaluation of selection parameters
	Divergence-based ascertainment corrections
	MCMC validation with synthetic datasets
	Genome-wide multiple alignment
	Divergence velocity and acceleration analysis
	Ancestral state inference
	HAQER Identification
	Chromosome location
	GREAT Ontology Analysis
	Mutation rate and fixation estimation
	Recombination and replication timing
	Mutation spectrum analysis
	Back mutation analysis
	Great ape genome divergence analysis
	Chromatin state enrichment analysis
	Functional annotation of HAQERs
	Gene synthesis and plasmid preparation
	In utero electroporation
	Immunofluorescence staining and image acquisition
	Fluorescence activated cell sorting
	scSTARR-seq reporter read targeted enrichment
	scSTARR-seq sequencing and preprocessing
	Enhancer activity quantification
	Single-cell cluster identification and cell-type specific enhancer activity quantification
	Enhancer paralog phylogenetic analysis
	GWAS catalog trait enrichment analysis
	Horizontal pleiotropy score quantification

	Quantification and statistical analysis
	Additional resources



