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SUMMARY
Brain metastasis (BrM) is the most common form of brain cancer, characterized by neurologic disability and
an abysmal prognosis. Unfortunately, our understanding of the biology underlying human BrMs remains rudi-
mentary. Here, we present an integrative analysis of >100,000malignant and non-malignant cells from 15 hu-
man parenchymal BrMs, generated by single-cell transcriptomics, mass cytometry, and complemented with
mousemodel- and in silico approaches. We interrogated the composition of BrM niches, molecularly defined
the blood-tumor interface, and revealed stromal immunosuppressive states enriched with infiltrated T cells
andmacrophages. Specific single-cell interrogation ofmetastatic tumor cells provides a framework of 8 func-
tional cell programs that coexist or anticorrelate. Collectively, these programs delineate two functional BrM
archetypes, one proliferative and the other inflammatory, that are evidently shaped through tumor-immune
interactions. Our resource provides a foundation to understand the molecular basis of BrM in patients with
tumor cell-intrinsic and host environmental traits.
INTRODUCTION

Brainmetastases (BrMs)are themostcommon intracranial tumors

in adults; approximately 20% to 40% of cancer patients will

develop BrMs (Kamp et al., 2018; Shojania et al., 2003). Currently,

despite aggressive therapies, BrM is incurable, with medians of

8.1% and 2.4% overall survival, for 2 and 5 years, respectively

(Achrol et al., 2019; Hall et al., 2000). Furthermore, BrM diagnosis

is associated with extreme deterioration in quality of life.

Despite the urgency associated with the high incidence, high

morbidity, and poor prognosis of BrM, our current understanding

of the colonization of the human brain by metastatic tumor cells

(MTCs) remains rudimentary. It has been proposed that MTCs

may reside in a specialized ecosystem—termed the brain meta-

static niche—that sustains their survival in patients (Lambert

et al., 2017). As a function of this niche, MTCs may orchestrate

functional programs that foster the colonization process. How-

ever, we lack detailed information about the specific composi-

tion of brain metastatic niches and their cellular diversities, and

the functional programs adopted by MTCs in human tumors

remain speculative.
Recent studies applying high-dimensional, single-cell analyses

to primary tumors have had a profound impact on cancer biology

(Rozenblatt-Rosen et al., 2020). Similar studies in human metas-

tases are rare, largely due to the clinical, logistical, and technical

challenges inherent in collecting and profiling metastases at a

single-cell level (Bova, 2017). Instead, studies thus far have either

used experimental mouse models or bulk analyses of human tu-

mors (Valiente et al., 2014; Zeng et al., 2019; Zhang et al., 2015).

Here, we extensively profiled MTCs and BrM-associated stro-

mal cells from parenchymal human BrM tumors at single-cell

resolution using transcriptomics, mass cytometry, correspond-

ing single-cell analytical methods, and complementary ap-

proaches. Our broad cancer type focus and deep analysis

improve on existing knowledge of BrM biology.

RESULTS

Brain metastases from different cancer types reveal
comparable metastatic niches
We obtained fresh parenchymal BrM specimens from fifteen pa-

tients with diagnoses of melanoma (n = 3), breast cancer (n = 3),
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lung cancer (n = 3), ovarian cancer (n = 2), colorectal cancer

(CRC) (n = 1), renal cell carcinoma (n = 1), unknown primary car-

cinoma (n = 1), and a case of adult rhabdomyosarcoma. All cases

were located predominantly in the brain cortex (Figure 1A) (clin-

ical characteristics are listed in Table S1). Dissociated tumors

were profiled by single-cell RNA sequencing (scRNA-seq) with

the 10x drop-seq platform (10x Genomics). We achieved a me-

dian of 6,798 cells per tumor, with a mean of 79,609 read counts

and a median of 2,865 genes per cell. For each sample, we de-

tected a median 23,525 total genes. In parallel, 11 of these 15

samples were analyzed by mass cytometry using an immune

panel (Figure 1A). Single-cell transcriptomes were analyzed us-

ing a custom computational pipeline based on the Seurat pack-

age (Butler et al., 2018) and visualized onto uniform manifold

approximation and projection (UMAP) (Becht et al., 2018).

Stromal cells from different tumors formed shared and well-

separated clusters that allowed us to annotate cell types by clus-

ter-specific markers. In contrast, MTCs formed independent

clusters without overlap between cases, revealing a high inter-

patient transcriptional heterogeneity among MTCs (Figure 1B).

We took advantage of carcinoma andmelanomamarkers, which

are absent in brain tissue, to accurately identify MTCs in all

analyzed cases and confirmed the annotations of malignant cells

by evaluation of chromosomal aberrations, estimating copy-

number variations (CNV) in each tumor (STAR Methods). From

carcinoma and melanoma BrMs, 80,377 single-cell transcrip-

tomes were analyzed, including 49,488 cells annotated as

MTCs and 30,889 non-malignant BrM-associated cells. For

downstream analyses, unless specified, we sought to reveal

the commonalities across BrM tumors, with an emphasis on in-

flammatory immune and malignant cell states.

The cancer cell contribution of this BrM set ranged from 3.6%

(Lung-3) to 98.1% (Melan-2), with a median of 56.6% across bi-

opsies (Figure 1C), which was confirmed and further illustrated

by single BrM sample clustering (Figure S1A) and immunostain-

ing for KRT19 or MELAN-A to mark cancer cells (Figures 1D

and S1B).

The unbiased clustering of non-malignant cells (STAR

Methods) revealed a structure of the brain metastatic niche

with UMAP clouds of vascular cells (endothelial and mural

vascular cells), inflammatory immune cells, and mesenchymal

progenitors (Figure 1E). Only a very few astrocytes were de-

tected in BrM lesions (Figure S1C). We observed comparable

niche composition when clustering melanoma and carcinoma

BrMs separately (Figures S1D and S1E).

We identified twenty distinct clusters that we assigned on the

basis of marker gene expression as endothelial cells (EC-1,

EC-2, and EC-3 clusters) with marker genes CLDN5 and PE-

CAM1, mural vascular cells including pericytes (PC), and
Figure 1. Cellular census of human brain metastases using scRNA-se

(A) Experimental approach.

(B) Visualization of 80,377 malignant (MTCs) and non-malignant single cells. Cells

displays feature plots for selected markers.

(C) Pie charts illustrating the tumor purity of each BrM biopsy.

(D) IHC staining showing the expression of KRT19 or Melan-A in selected carcin

(E) Projection of 30,889 BrM-associated stromal cells including immune and non

(F) Dot plots of conserved and cell-type-specific markers in BrM-associated stro
vascular smooth muscle cells (vSMCs) (PC-1, PC-2, PC-3, and

vSMCs) with marker genes RGS5 and ACTA2, and mesen-

chymal stromal cell-like cells (MSC-like-1 and MSC-like-2) with

marker genes ISLR and CTHRC1 (Figures 1E and 1F). T cells

(T:CD8+:EM, T:CD4+:CM1, T:CD4+:CM2, Tregs and T:CM)

were identified with marker genes CD3D and IL7R, B cells

(B-c1 and B-c2) with marker genes JCHAIN and MZB1,

metastasis-associated macrophages (MAMs:APOE+ and

MAMs:S100A8+) with marker genes AIF1 and LYZ, and dendritic

cells (DCs) (cDC2:CD1C+/CLEC10A+) with marker genes CD1C

and CLEC10A. We also identified one cluster of reactive astro-

cytes with marker genes GFAP and S100B (Figures 1E and

1F). Two ambiguous clusters characterized by mural cell

markers and immune cell markers, detected in the Breast-1

and Unknown Carc. samples, were excluded from further anal-

ysis (Figure S1F). All markers and curated gene signatures

used for annotations are listed in Table S2.

Our analysis of stromal composition indicates that human

brain metastatic niches are comparable across multiple patients

and cancer types (Figures 1E and S1A) but display major differ-

ences at the immune composition level. Profiling of 6,325 cells

from adult rhabdomyosarcoma BrM resected from the brain cor-

tex and unbiased clustering identified a stromal structure that

mirrored the stroma in melanoma and carcinoma BrMs (Fig-

ure S1G). This well-annotated dataset of human parenchymal

BrMs allowed us to next perform a deep characterization of

the metastatic niche and malignant populations.

Molecular definition of the blood-tumor-interface in BrM
The blood-tumor-interface (BTI) is of relevance and problematic

with chemotherapy in BrM patients (Arvanitis et al., 2020;

Sprowls et al., 2019), but understanding of its cellular composi-

tion and properties remains incomplete. Here, we characterized

the BrM-BTI through the capture of 12,521 endothelial andmural

vascular cells (Figure 2A). RNAscope in situ hybridization

confirmed the perivascular location of RGS5+ mural vascular

cells (Figure S2A). Across tumors, the proportion of vascular

cells ranged from 5% to 77%, with a median of 40% of the total

stromal fraction (Figure 2B), which we also confirmed by immu-

nostaining for CD31 (PECAM1) (Figure S2B).

Mural vascular cells were composed of three types of PC

and a single cluster of vSMCs (marked by ACTG2 and ACTA2

expression) (Figure 2A). Most marker genes are associated

with tumor-associated processes such as angiogenesis

(e.g., MMP9) and extracellular matrix (ECM) remodeling (e.g.,

TINAGL1 and TGFB3) (Figure S2C) (Kessenbrock et al., 2010;

Shen et al., 2019). In close relation to mural vascular cells,

MSC-like cells upregulated the multifunctional secreted Wnt

modulator CTHRC1 (Yamamoto et al., 2008) and the stem cell
q analysis

are colored by sample and number of cells per sample are shown. Right panel

oma or melanoma BrMs (Scale bars, 60 mm).

-immune fractions.

mal cells. See also Figure S1 and Table S2.

Cell 185, 729–745, February 17, 2022 731



A B

D E

C

(legend on next page)

ll

732 Cell 185, 729–745, February 17, 2022

Resource



ll
Resource
marker ISLR (Maeda et al., 2016) (Figure S2C), but expressed

low levels of RGS5; RNAscope in situ hybridization for CTHRC1

reveals a perivascular location for these cells (Figures S2D and

S2E). MSC-like cells were enriched for ECM-related genes

(e.g., POSTN, COL1A1, and PDGFRA).

The three endothelial clusters (EC-1, EC-2, and EC-3) encom-

pass 3,292 cells. UMAP trajectories reflect a gradual progression

along an arteriovenous axis (Figure S2F), in which cells with

higher expression of arterial markers (e.g., EFNB2 and GJA5)

or venous markers (e.g., ACKR1 and NR2F2) (Hirashima and

Suda, 2006; Vanlandewijck et al., 2018) occupy more peripheral

positions in the UMAP projection, consistent with a pattern of

continuous phenotypic change (zonation), and confirmed using

the molecular atlas of brain vasculature (Vanlandewijck et al.,

2018) (Figures 2C and S2G). 60% of the total endothelial cells

were assigned to the cluster EC-1 enriched with tip cell markers

APLNR and ESM1 (tip-like ECs) (Zhao et al., 2018) (Figure S2H;

Table S2), and characterized by processes such as angiogenesis

and collagen deposition. EC-2 (venous-like) expressed genes

related to hypoxic, inflammatory, and antigen-presentation

related processes (Figures S2I and S2J), pointing to the role of

the local intra-metastatic microenvironment in the phenotypic

states of ECs.

Disappointing results in multiple clinical trials for BrM tumors,

comparedwith extracranial metastases (Achrol et al., 2019), may

stem from the retention of blood-brain barrier (BBB) efflux prop-

erties by BrM-associated BTI. We explored gene expression that

could relate to drug resistance and detected 6 multi-specific

ATP-binding cassette (ABC) transporters expressed by BrM-

ECs (Figure 2D), including ABCB1 (or multidrug resistance pro-

tein 1 [MDR1]) and ABCG2. Both transporters, crucial players

in normal BBB, are expressed along the arteriovenous axis,

with prominence in the zone where vein-like and tip-like ECs

converge (Figure 2E).

scRNA-seq of BrM-infiltrated immune cells reveals
heterogeneous T cell responses
Metastasis-associated innate and adaptive immune cells play

major roles in determining the fate of MTCs in experimental

mouse models of metastasis (Gonzalez et al., 2018a; Gonzalez

et al., 2018b). Detailed information on cell types and states that

integrate host immune responses in distant human metastases

remains scarce (Friebel et al., 2020; Klemm et al., 2020). By

annotating 14,499 single immune cell transcriptomes based on

marker genes and curated gene signatures (Table S2), we iden-

tified fivemajor T cell clusters, twomacrophage clusters, one DC

cluster, and two B cell clusters. All melanoma and carcinoma

BrMs displayedmixed immune cell compositions; thus, each im-

mune cluster was composed of cells from multiple tumors (Fig-
Figure 2. Uncovering the BrM-associated blood-tumor-interface (BTI)

(A) Visualization of 3,292 endothelial cells and 9,229 mural vascular cells using U

(B) Pie charts illustrating the endothelial and mural vascular cell frequency per

are shown.

(C) Zonal expression of arterial and venous transcripts across endothelial cells s

above. Right panel illustrates feature plots for selected endothelial markers.

(D) Expression of multi-specific ATP-binding cassette (ABC) transporters detecte

(E) Expression of ABCB1 (MDR1) and ABCG2 across the arteriovenous axis sort
ures 3A and 3B). High frequencies of T cells and macrophages

dominate the immune landscape of BrMs (Figure 3B), consistent

with recent evidence (Friebel et al., 2020). Analysis of immune

frequencies by cancer type suggests that BrMs from different

breast cancer patients display higher frequencies of macro-

phages. By contrast, lung cancers exhibited higher frequencies

of T cells, while higher frequencies of B cells were observed in

melanomas and ovarian cancer (Figures 3B and S3A). We postu-

lated that BrM-specific therapies could impact the observed im-

mune clusters and immune frequencies but found no evidence

for this (Table S1).

The abundance and functional states of tumor-infiltrated

T cells are prognostic in several cancer types (Binnewies et al.,

2018), and can impact cancer dissemination and metastatic

outgrowth (Gonzalez et al., 2018a). Here, T cells showed the

greatest degree of phenotypic heterogeneity among immune

infiltrates in our BrM set. The 8,266 analyzed T cells were

composed of CD8+ effector memory T cells (T:CD8+:EM), cen-

tral memory T cells (T:CD4+:CM1, T:CD4+:CM2, and T:CM)

and regulatory T cells (Tregs) (Figure S3B). Functionally, the

T:CD8+:EM cluster was enriched in cytotoxic molecules (e.g.,

GZMA and IFNG) (Figure S3C). Markers for immunomodulation

(e.g., LTB and IL32) and stress response (e.g.,HSPA1A), defined

similar but not identical T cell states (Figures S3C and S3D). For

instance, the T:CD4+:CM cluster represented an activation state

enriched with LTB, IL32, and IL7R, while the T:CM cluster that

expressed low levels of CD4 and CD8A displayed a similar state

(LTB+ and IL32+) but was differentiated by the enrichment of

interferon-related genes like ISG15 and MX1.

To better understand the functional transitions of these T cell

states, we used diffusion maps—a non-linear dimensionality

reduction technique that captures geometric structure and func-

tional states in high-dimensional data (Coifman et al., 2005;

Haghverdi et al., 2015). This analysis revealed that the five

T cell clusters are organized into a phenotypic variation that is

coherently ordered by DC1 (diffusion component 1) (Figure 3C).

Among the top 50 genes positively correlated with DC1 are mol-

ecules associated with lymphocyte activation (e.g., CORO1A

and LCK) and chemotaxis and migration (e.g., CCR7 and

CXCR4) (Figure S3E; Table S2). There is a strong correlation be-

tween the expression of these top 50 DC1 genes and a curated

T cell activation gene signature (GO:0042110) (Figure 3D), further

supporting the notion that the activation state drives the

observed diversity of T cell clusters.

To understand the context-dependent role of each T cell state,

we evaluated the expression of microenvironmental and meta-

bolic gene signatures (Table S2). We observed variable expres-

sion for processes related to hypoxia, type-I and type-II inter-

feron responses, and inflammation (Figure 3E). The enrichment
MAP embedding.

sample. Number of cells and percentage of the stromal fraction per sample

orted by the UMAP-2 coordinate, with clusters and sample distribution shown

d in BrM-associated endothelial cells.

ed by the UMAP-2 coordinate. See also Figure S2.
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Figure 3. Immune cell types and activation states enriched in human BrMs

(A) UMAP plot of immune clusters. Bottom panel displays feature plots for selected markers.

(B) Frequencies of immune clusters per sample, indicating the number of cells.

(C) T cell clusters ordered by the diffusion component 1 score, visualized with density ridgeline plot.

(D) Scatterplot showing the co-expression of the diffusion component 1 genes and a curated T cell activation signature (GO:0042110). T cell clusters are labeled

by colors.

(E) Heatmap reporting the average expression of microenvironmental and metabolic gene signatures in each T cell cluster.

(F) Boxplots displaying the normalized expression of known and new T cell anergic markers.

(G) Heatmap of myeloid clusters, and representative markers.

(legend continued on next page)
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of the interferon signature wasmost dominant in cluster T:CM. In

contrast, enrichment of the exhaustion signature associated with

high T cell activation programs was most present in clusters

T:CD8+:EM and T:CD4+:CM. Those T cell clusters with a lower

DC1 score (T:CD4+:CM2, Treg and T:CM) exhibited a strong

anergic signature (Figure 3E). Interestingly, this phenotypic tran-

sition from activated to anergic T cell coincides with a switch in

metabolic signatures to lipid metabolism from glycolysis and

the tricarboxylic acid (TCA) cycle (Figure 3E). Recent data sup-

port the notion that impairment in TCA metabolism induces

defective effector T cell function (Vardhana et al., 2020). Unex-

plored markers identified in the anergic T cell states included

SERPINE1,PMP22, andNDRG1 (Figure 3F). In summary, our an-

alyses revealed a spectrum of functional T cell states ranging

from activated/exhausted to anergic, associated at a single-

cell level with concomitant metabolic and microenvironmental

reprogramming.

Myeloid composition of brain metastases
Myeloid cells, including MAMs and DCs, have been identified as

important players in the formation of the metastatic niche—

either sustaining or restricting the metastatic outgrowth (Gonza-

lez et al., 2018a; Hagerling et al., 2019; Headley et al., 2016; Qian

and Pollard, 2010). Here, we identified two major subsets

of MAMs in our collection of BrMs; APOE+/C1QB+/TREM2+

MAMs (MAMs:APOE+) and IL1B+/FCN1+/S100A8+ MAMs

(MAMs:S100A8+) (Figure 3G). MAMs:APOE+ express a core

set of immunomodulatory molecules, including complement

C1Q chains, SPP1, and HLA-related molecules, resembling tu-

mor-associated macrophages (TAMs) programs enriched in

lung, liver, and CRC tumors (Lavin et al., 2017; Zhang et al.,

2020; Zhang et al., 2019). MAMs:S100A8+ express an inflamma-

tory program characterized by high expression of S100A family

genes, CXCL8, FCN1, and low expression of HLA-related genes

(Figure 3G), resembling inflammatory FCN1+ myeloid-derived

suppressor cells (MDSC) (Zhang et al., 2019). Thus, as previously

reported in primary TAMs (Azizi et al., 2018), the identified BrM

MAM states are more complex than the classical M1/M2 polar-

ization paradigm.

Functionally, a Gene Ontology (GO) analysis using the top 50

differentially expressed (DE) genes between MAM subsets re-

vealed a strong enrichment of antigen processing and presenta-

tion (p < 10-22, hypergeometric test) in MAMs:APOE+ versus

an enrichment of cytokine-mediated signaling (p < 10-12, hyper-

geometric test) and response to interleukin 1 (p < 10-8, hyper-

geometric test) in MAMs:S100A8+ (Figure S3F). UMAP projec-

tion and diffusion map trajectories suggest that these two

MAM clusters represent differentiated cell states across a con-

tinuum of phenotypes (Figures 3A and 3H). For instance, expres-

sion of HLA-DQA1 gradually decreased across the DC1 dimen-

sion from MAMs:APOE+ to MAMs:S100A8+ (Figure 3H). RNA
(H) 2D projection of the diffusionmap analysis ofmacrophages clusters, which sho

panel shows the normalized expression of selected markers.

(I) RNA velocity analysis embedded in 2D diffusion map plot for samples Breast-

(J) Boxplots of transcriptional factors differentially expressed between macropha

(K) Heatmap showing the normalized expression level for selected markers fo

cDC2:CD1C+/CLEC10A+ cluster (879 cells). See also Figures S3, S4, and 4 and
velocity analysis (La Manno et al., 2018) supported this notion

and suggested a putative trajectory from MAMs:APOE+ to

MAMs:S100A8+ (Figure 3I), and thus, MAMs:APOE+ and

MAMs:S100A8+ subsets can scale across this continuum in a

dynamic manner. Moreover, each MAMs program expressed

distinctive transcription factors; for instance, CREG1 and

EGR2 were preferentially expressed in MAMs:APOE+, while

ZFP36 and MAFF were preferentially expressed in MAMs:

S100A8+ (Figure 3J).

Finally, our myeloid compartment analysis identified one pre-

dominant DC cluster characterized by conventional type-2 DC

markers (CD1C and CLEC10A) (Figure 3G). Within this cluster,

DCs with high expression of the migratory receptors (e.g.,

CXCR4 and GPR183) and high expression of the transcriptional

regulators, JUNB and NR4A2, downregulated most of the anti-

gen processing and presentation molecules (e.g., CD74 and

HLA-DPB1) and vice versa (Figure 3K). These DCs may exhibit

mutually exclusive intra-metastatic migratory and antigen-pre-

senting properties.

CyTOF analyses of immune cell protein markers in brain
metastases
To extend our analysis with an orthogonal approach, we used

high-dimensional mass cytometry (cytometry by time-of-flight,

CyTOF) analysis to quantify 30+ protein parameters simulta-

neously in single cells (Table S3), for 11 of the 15 BrM biopsies

with sufficient tissue. Distinct cell populations were projected

in two dimensions with UMAP, representing a total of 20,900

cells from the 11 BrM biopsies (Figure 4A). Supervised analysis

of the abundance and activity states of the major immune cell

subsets confirmed that T cells and macrophages are the domi-

nant immune infiltrates in BrMs (Figure 4B). Proliferation of

CD45+ cells, as evaluated by Ki67 expression, was modest in

all samples, indicating a predominantly indolent immune micro-

environment in BrMs (Figure 4B).

In-depth analyses of T cells by UMAP and FlowSOM (VanGas-

sen et al., 2015) (STAR Methods) identified 6 clusters of CD8+

and CD4+ T cells on the basis of protein markers. Most CD8+

T cells (�69%) displayed a CD45ROhigh:CD45RAlow:CCR7neg:

CD27high effector memory phenotype Figures 4C–4E). CD4+

T cell clusters were phenotypically heterogenous, existing in a

continuum across effector memory and central memory pheno-

types (CD45ROhigh:CD45RAlow:CCR7pos:CD27low) (Figures S4A,

S4B, and S4C). Comparing both approaches, by and large, the

T cell type annotations by single-cell transcriptomics (Figures 3

and S3) are in line with the T cell annotations observed by

CyTOF. Similarly, gating on CD11b+/CD14+ cells (monocytes/

macrophages) revealed two major subpopulations of cells,

HLA-DRhigh and HLA-DRlow (Figure 4F), supporting the notion

of the co-existence of two monocyte/macrophage states in

each BrM tumor differentiated by antigen-presenting properties.
ws a continuum phenotypic change between twomacrophages states. Bottom

1 and Melan-2

ge clusters, with t test statistics.

r antigen presentation and inflammatory and migratory related processes in

Table S2.
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Figure 4. Mass cytometry analysis of BrM-associated immune infiltrates

(A) UMAP projection of 20,900 immune cells showing the major immune cell populations. Cells are colored by sample.

(B) Frequencies of major immune cell populations.

(C) CD8+ T cell population clustered by FlowSOM and visualized by UMAP (see STAR Methods).

(D) Functional and phenotypic median expression profiles for each CD8+ T cell clusters.

(E) CD8+ T cell cluster proportions by patients.

(F) Frequency of HLA-DR-high and HLA-DR-low cells within the CD11b+CD14+ population.

(G) Scatterplot showing the correlated expression of PD-L1 by myeloid cells and PD-1 by T cells. See also Figure S4 and Table S3.
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Encouraging studies suggest that immune checkpoint inhibi-

tors cross the blood-tumor-barrier and may be effective in treat-

ing BrMs (Nieblas-Bedolla et al., 2021). We analyzed PD1 and its

receptor (PD-L1), two of the most common targets for cancer

immunotherapy (Sharma and Allison, 2015). PD1 expression

was elevated in CD8+ and CD4+ T cell effector memory clusters

(Figures 4D and S4B), associated with medium/low expression

of activation marker HLA-DR and proliferation marker Ki67;

we also detected moderate expression of PD-L1 (Figures 4D

and S4B). Increased PD-1 levels and PD-L1 co-expression likely

represent increasingly exhausted T cell states (Wherry and Kur-

achi, 2015). Across all CD45+ T- and myeloid cells, �20% of

T cells expressed PD1 and �28% of myeloid cells expressed

PD-L1, with a significant correlation between PD-1+ T cells

and PD-L1+ myeloid cells (Pearson’s r = 0.77, p = 0.005) across

patients (Figure 4G), indicating a co-ordinated intra-metastatic

pattern of immune checkpoint molecule expression.

Eight functional metaprograms in MTCs define brain
metastases
Successful metastasis depends on functional programs that

allow MTCs to survive, modify, and ultimately dominate the pa-

renchyma of distant organs while interacting with host-specific

characteristics of the stroma (Lambert et al., 2017). Elucidating

these programs has been challenging (Robinson et al., 2017).

We next performed a systematic analysis of MTC populations

in BrMs to explore and characterize such potential programs.

We first evaluated inter-patient heterogeneity byUMAP and tran-

scriptional variance. As previously observed in Figure 1B, MTCs

from all patients formed discrete individual clusters (Figure S5A),

revealing a significant inter-patient heterogeneity (72% of tran-

scriptional variance explained by the first 10 principal compo-

nents) (Figure S5B). Moreover, 3D diffusion map analyses and

unsupervised clustering of MTCs pointed out a rich functional di-

versity within individual tumors. Examples are proliferation, ECM

deposition, inflammation, or response to stress (Figures 5A,

S5C, and S5D).

Next, to define coherent gene sets (programs) within single-

cell populations and to explore the existence of common pro-

grams that define MTCs among different patients, we applied

non-negative matrix factorization (NMFs) (Puram et al., 2017).

Hierarchical clustering based on shared genes of 150 transcrip-

tional programs (10 programs of each patient) identified 8 meta-

programs (P1–P8) recurrent in multiple or all BrMs (Figure 5B).

The observed metaprograms were functionally annotated using

their top 50 genes, ranked on the basis of NMF scores (meta-

genes) (Table S4). Metaprograms P1 and P2 were classified

as cell cycle programs; the P1 program was enriched for genes

of the DNA replication (e.g., MCM7, FEN1, and RFC4), while P2

was characterized by G2/M phase genes (e.g., BIRC5, CDK1,

and AURKB) that were highly similar across samples, defining

conserved proliferation programs in BrMs (Figure 5C). Metapro-

gram P3 was enriched by structural ribosomal proteins (RPs) of

the 60S ribosome (e.g., RPL37, RPL29, and RPL12) and was

identified in 14 out of 15 samples. P4 was present in 12 out of

15 samples and characterized by stress response genes

(e.g., ATF3, DUSP1, and CYBA). P5 represents markers of

developmental processes—for example, transcription factors
such as MEIS2, PAXBP1, SOX4, and HOXB3—and was identi-

fied in 5 carcinoma BrMs. Metaprogram P6 encompasses pre-

mRNA maturation and core spliceosome genes (e.g., DDX5,

HNRNPA1, and SRSF3). P7 represents ECM components

such as COL1A1, COL3A1, MMP2, and SPARC, and was en-

riched for epithelial-to-mesenchymal transition (EMT) markers

(e.g., VIM, MYL9, and FN1) (Figure 5C; Table S4). The final

metaprogram (P8) was present in all 15 analyzed samples and

defined by inflammatory and interferon-related genes (e.g.,

IFI6, HLA-A, and S100A11). Of note, we also examined the ge-

netic heterogeneity of MTCs in all samples by estimation of

large-scale CNVs (Tirosh et al., 2016b). Consistent with recent

evidence (Reiter et al., 2020), we observed that BrM lesions

are predominantly composed of genetically homogeneous pop-

ulations of MTCs (Figures S5E and S5F). In summary, the selec-

tive analysis of MTC populations revealed eight recurrent meta-

programs (P1–P8) associated with highly specialized functional

processes.

Two archetypes of MTCs support brain metastases
Deeper analysis of the 8 metaprograms (STAR Methods) re-

vealed that these are not utilized in a random fashion; instead,

they delineate two well-defined functional archetypes (Fig-

ure 5D); for instance, P3 (ribosome biogenesis/translation pro-

gram) positively correlated with P7 (ECM deposition and EMT

program) (Pearson’s r = 0.61, p < 2.2e-16). Interestingly, P3

and P7 followed a strong pattern of co-exclusion with P1 (p <

2.2e-16; p < 2.2e-16) and P2 (p < 2.2e-16; p < 2.2e-16) cell cycle

metaprograms (Figure 5D). Furthermore, there was a striking

positive correlation between P1 and P2 (proliferation) and P6

(pre-mRNA splicing program) (p < 2.2e-16; p < 2.2e-16), and

concomitant mutual exclusivity with P4 (stress) (p < 2.2e-16)

and P8 (inflammatory) (p < 2.2e-16), either in combined analyses

or across individual BrMs (Figures 5D and 5E). Our analyses of

the eight metaprograms put forth the model that there are two

underlying single-cell archetypes that coexist in BrMs, one

high in proliferation and pre-mRNA splicing (P1, P2, and P6)

and the other high in stress, inflammation, translation, and

ECM deposition (P3, P4, P7, and P8). In addition, plotting sin-

gle-cell data by P1 score showed a continuum of intermediate

states between these two archetypes (Figure 5E). These results

imply that those MTCs that are not proliferating may get reprog-

rammed into the other archetypes (enriched in P3, P4, P7, and

P8). Importantly, scoring bulk transcriptomes from 868 multi-or-

gan metastatic tumors, or 24 BrMs available in the MET500

cohort dataset (Robinson et al., 2017) through our 8 metapro-

grams showed similar patterns of metaprogram co-expression

and anti-correlation (Figure 5F).

Next, we interrogated the two MTC archetypes in terms of

the immune and stromal phenotypes described in this study.

Expression of the inflammatory metaprogram (P8) by MTCs

was positively associated with the percentage of immune cells

(r = 0.55, p = 0.042) and negatively associated with non-immune

stroma (r = �0.55, p = 0.042) (Figure 5G). Among immune cells,

the T cell clusters with higher activation and low anergic signa-

tures, T:CD8+:EM, T:CD4+:CM1 (See Figure 3E), and B-c1,

showed positive associations with P8 expression by MTCs. In

contrast, MAMs:APOE+, Treg, and the highly anergic cluster
Cell 185, 729–745, February 17, 2022 737
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Figure 5. Metastatic cells acquire two well-defined functional archetypes

(A) Intra-tumoral diversity of metastatic cells in two selected samples evaluated by diffusion map analysis and clustering. Right panel shows the normalized

expression of selected markers.

(B) Hierarchical clustering of pairwise similarities between NMF programs identified across metastatic cells from all the analyzed samples. Bottom panel displays

the NMF scores of signature genes (rows) for each metaprogram (columns).

(C) Annotation and selected top genes for each metaprogram.

(D) Heatmap displays the Pearson correlation coefficients calculated between the single-cell gene signature scores of NMF metaprograms.

(E) Heatmap showing the expression of selected metaprograms. Cells were plotted by cancer type (breast, lung, and melanoma) and ordered by the P1 score.

(F) Correlation coefficients calculated by scoring the 868 samples from MET500 cohort for the NMF metaprograms. Samples were plotted including all (n: 868)

metastatic samples (left) and just BrM (n: 24) (right).

(G) Scatter plot comparing themedian score values for inflammatory (P8) or proliferative (P2) metaprograms onMTCs and the composition of the stromal fraction

in each sample.

(H) Interrogation of the functional equivalence of human versus mouse BrM programs. Top panel shows the schematic illustration of the murine brain metastasis

and scRNA-seq analysis approach. Scatterplots display the co-expression of human NMF metaprograms scores (x axis) and mouse programs scores (y axis) in

single cells from the 3 breast cancer BrM samples. See also Figures S5 and S6 and Table S4.
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T:CM2 (See Figure 3E), exhibit negative associations with the

expression of P8 by MTCs (Figures S6A and S6B). These obser-

vations suggest a correlation between the composition of the

stromal niche and the generation of the two described MTC

archetypes.

Finally, we interrogated the specificity of the P1–P8 metapro-

grams in publicly available single-cell datasets of primary breast

cancer, lung cancer, melanoma, and glioblastoma (Kim et al.,

2020; Neftel et al., 2019; Tirosh et al., 2016a; Wu et al., 2021),
738 Cell 185, 729–745, February 17, 2022
by analyzing the expression of the top 30 genes of each program.

We observed that programs such as P1/P2 (cell cycle), P3 (pro-

tein synthesis), and P6 (pre-mRNA maturation/core spliceo-

some) were clearly identified in primary tumors (Figure S6C). In

contrast, a fragmented expression of programs P8, P5, and P4

was observed. The most striking difference was the scarce

expression ofmetaprogramP7 (ECMdeposition/EMT) in primary

tumors. More importantly, the co-expression patterns of pro-

grams differ between primary tumors and MTCs. For instance,
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the co-expression of P6 and P1/P2 metaprograms observed in

MTCs appears absent in primary tumors. We made similar ob-

servations related to P8 and P3 with cell cycle programs P1

and P2 (Figure S6C). These comparisons suggest that the

expression of the MTC metaprograms and their co-ordinated

patterns of expression are specific characteristics of human

metastatic cells.

Testing our metaprograms of metastasis with two
experimental BrM models
As a functional exploration of our BrM metaprograms, we inves-

tigated if experimental mouse models of BrM could recapitulate

these programs. Here, we used the breast cancer cell (human

MDA-MB-231Br) as a case study, a model widely used to study

BrM formation (Bos et al., 2009; Chen et al., 2016; Gril et al.,

2018; Priego et al., 2018; Valiente et al., 2014; Zeng et al.,

2019; Zhang et al., 2015). 3,194 high-quality single-cell transcrip-

tomes from sorted metastatic MDA-MB-231Br cells were pro-

filed (STAR Methods). We uncovered 6 mouse transcriptional

programs (NMF programs [mP1–mP6]) (Figures S7A and S7B;

Table S4). mP4 and mP6 reflected proliferation processes,

mP2—a hybrid program—was defined by developmental pro-

cesses and collagen biosynthesis, mP1 represented a develop-

mental program, mP3 reflects a translation and ribosome

biogenesis process, and mP5 reflects an angiogenic program

(Figure S7B). The mP1, mP2, and mP3 programs partially reca-

pitulated the functional counterparts of P5, P7, and P3 metapro-

grams in breast cancer BrM patients (Figure 5H). On the other

hand, theMDA-MB-231Br experimental model lacked inflamma-

tory and stress response programs or a discrete ECM/EMT re-

modeling program as observed in patients.

Second, we explored the 4T1Br breast cancer model that is

immunocompetent (STAR Methods). Single-cell profiling of

1,472 sortedmetastatic cells andNMFpipeline analysis revealed

6 transcriptional programs (mP1_4T1Br to mP6_4T1Br) (Figures

S7C–S7E; Table S4). As in the MDA-MB-231Br model, we iden-

tified cell cycle programs, developmental growth programs,

translation, angiogenic programs, and new programs associated

with oxidative phosphorylation (Figure S7E; Table S4). We did

not observe discrete inflammatory, stress, or ECM remodeling/

EMT programs. Staining for metastatic cells and immune cells

on mouse brain sections at endpoint (Figure S7F) suggests

that the absence of inflammatory and stress programs stems

from a lack of anti-tumoral immune response in metastatic

lesions.

An immune evasive program in MTCs supports tumor
cell proliferation
The anticorrelations in the P1, P2, and P6 metaprograms with

those in P4, P3, P7, and P8, prompted us to understand the

mechanistic underpinnings of the anticorrelated archetypes.

Combined principal component analysis (PCA) revealed two

predominant functional trajectories: cells with a high PC1

score (proliferative processes) and cells with a low PC2 score

(inflammatory processes), and a continuum of states in be-

tween (Figure 6A). Immunostaining for Ki67 protein confirmed

the existence of heterogeneously distributed, proliferating

MTCs, with variable levels of proliferating cells across sam-
ples (Figure 6B). We derived a conserved core signature

(excluding cell cycle genes, see STAR Methods) that specifies

the transition (or reactivation) from quiescence to active prolif-

eration. This core signature contains 190 genes in cycling

MTCs among patients, 89 downregulated and 101 upregu-

lated genes (Table S5). Downregulated genes in actively

cycling MTCs reflected processes related to inflammatory

stress, such as major histocompatibility complex (MHC) class

I molecules (e.g., HLA-A and B2M), inflammation (e.g.,

S100A6 and IFI6), macro-autophagy genes (e.g., NUPR1

and SQSTM1), and the exosome marker CD63 (Figure 6C).

Among the genes specifically upregulated in cycling cells

were members of the core spliceosome and MYC targets (Ta-

ble S5). Of note, two known imprinted genes were identified

among the top hits: MEST (Mesoderm-Specific Transcript)

and PEG10 (Paternally Expressed Gene 10), both previously

implicated in poor prognosis in multiple cancer types (Ishii

et al., 2017; Li et al., 2016; Pedersen et al., 1999; Shapovalova

et al., 2019; Vidal et al., 2014) (Figure 6C). We confirmed these

patterns by immunostaining for PEG10 and S100A6 in cycling

(Ki67+) MTCs (Figure 6D). The core signature has 12 tran-

scriptional regulators that distinguish these two cell states.

For instance, the transcriptional repressor HES1 and its

repressor HES6 (Bae et al., 2000) followed a pattern of mutual

exclusion. Interestingly, the DNA methyl transferase DNMT1

was found to be upregulated in cycling MTCs (Figure 6C; Ta-

ble S5); furthermore, the enrichment of DNMT1 has been

recently causally associated with immune evasion by cancer

cells (Luo et al., 2018; Peng et al., 2015).

We interpreted the core signature as a reflection of the immune

effector response imposed on MTCs and their ability to adapt to

and escape from such control. In support of this idea, when we

inferred the magnitude of leukocyte infiltration from bulk RNA-

seq in the MET500 cohort by Mimmscore estimation (Robinson

et al., 2017), we found that leukocyte infiltration was positively

correlated with genes downregulated in cycling MTCs, while

genes upregulated in cycling MTCs were negatively correlated

with immune infiltration (Figure 7A). In addition, the estimation

of immune cell types in the MET500 cohort (Newman et al.,

2019) revealed that metastatic tumors expressing higher levels

of genes downregulated in cyclingMTCswere enriched inmono-

cytes/macrophages and T cells (Figure 7B). We therefore as-

sessed the level of tumor proliferation, immune infiltrates, and

selected markers of the core signature by immunostaining in

an independent cohort of 13 patients diagnosed with melanoma

(n:5), lung cancer (n:5), and breast cancer BrMs (n:3). We

confirmed the negative correlation between proliferating meta-

static cells and immune infiltrates (Spearman’s rank correlation

coefficient, r = �0.69, p = 0.009) (Figures 7C and 7D). Further-

more, in this cohort, biopsies with higher proliferation scores

and lower grades of immune infiltrates upregulated PEG10 (up

in cycling MTCs) and downregulated CD63 (down in cycling

MTCs) at protein levels. The inverse correlation was observed

in biopsies with low proliferation and high immune infiltrates (Fig-

ure 7E). In summary, we identified a conserved core gene signa-

ture that we believe illustrates escape from control imposed by

effector immune response and allows the proliferation of MTCs

in patients.
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Figure 6. Reconstruction of the transition from quiescence to proliferation in metastatic cells

(A) Principal component analysis (PCA) of all metastatic cells colored by patient.

(B) Immunohistochemical staining of the proliferative marker Ki67 in two selected samples. Two representative images per sample are shown. Scale

bars, 100 mm.

(C) Heatmap showing the conserved core signature that describes the transition from cell cycle arrest to proliferative reactivation in metastatic cells. Cells are

ordered from left to right by cycling score (CS).

(D) Validation at protein level of the patterns observed in scRNA-seq. Images of dual immunofluorescent staining of Ki67 and PEG10 or S100A6 in multiple BrM

samples. DAPI denotes nuclear staining. For each field, representative cells that denote the differential expression of S100A6 and PEG10 in cycling and non-

cycling cells are indicated by arrowheads. Scale bars, 50 mm. See also Figure 7 and Table S5.
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Figure 7. Immune evasive state of proliferating metastatic cells
(A) Scatterplots showing the correlation of the expression of genes downregulated and upregulated in cycling metastatic cells (y axis) with the magnitude of

immune infiltration (MimmScore) across 868 metastatic tumors (MET500 cohort) (x axis).

(B) Relative proportions of immune infiltrates in MET500 samples with high immune composition evaluated by CIBERSORT with the estimation confidence

(empirical p val < 0.05). The color represents the Spearman correlation coefficients between estimated cell type fractions and the expression of a signature called

"genes down in cycling MTCs."

(C and D) Immunohistochemical staining and quantification of the proliferativemarker Ki67 and the immunemarker CD45 in an external cohort of 13 BrM samples

(lung = 5, melanoma = 5, breast = 3). Scale bars, 100 mm. Bottom panel shows the correlation between the percentage of proliferation (x axis) and immune

infiltration (y axis).

(E) Immunohistochemical staining of the proliferative marker Ki67, immune marker CD45, markers downregulated (CD63) and upregulated (PEG10) in cycling

metastatic tumor cells. Two BrM cases of patients are shown. Scale bars, 100 mm. See also Figure 6 and Table S5.
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DISCUSSION

Here, we generated and analyzed a comprehensive catalog of

the functional cell types and cellular states present in human

parenchymal BrMs as a resource for the research community.

In the first part, we focused on immunoprofiles of BrM.

We identified two macrophage states, MAMs:APOE+ and

MAMs:S100A8+, in BrM. Recent evidence from melanoma and

carcinoma patients suggests that BrM-associated macro-

phages may be derived from both resident microglia cells (�
10%–50%) and infiltrated monocytes (� 25%–75%) (Friebel
et al., 2020). The MAMs:APOE+ population expresses SPP1

and SPP1+ TAMs have been described as macrophages in

CRC linked to therapy resistance and angiogenesis (Zhang

et al., 2020). Relevant to the MAMs:S100A8+ we describe

here, enrichment of S100A8+/S100A9+ TAMs is associated

with immunosuppression and shorter survival in patients with

head and neck cancer (Kwak et al., 2020), and poor response

to checkpoint inhibitors in patients with metastatic melanoma

(Wagner et al., 2019). T cells are a dominant immune cell type

in BrM, and we uncovered correlations between functional

T cell states and metabolic and microenvironmental signatures.
Cell 185, 729–745, February 17, 2022 741
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Recent evidence points to the role of hypoxic and acidic tumor

microenvironments in sustaining immunosuppressive T cell

states (Watson et al., 2021) and promoting dysfunctional effector

T cells (Scharping et al., 2016). Continuous antigen stimulation

co-ordinated with hypoxia results in impaired mitochondrial

function and promotes terminal T cell exhaustion in melanoma

(Scharping et al., 2021).

In the second part, we revealed two well-defined cellular ar-

chetypes by the selective characterization of MTCs that resulted

in a framework of the P1–P8 metaprograms. Previous pan-can-

cer transcriptomic analyses identified two major categories of

metastases in patients: highly proliferative or highly inflammatory

(Robinson et al., 2017). Our observations support and expand

this notion by identifying that proliferative and inflammatory pro-

cesses coexist as opposite major cell states, and suggest that

immune scape and proliferation act as concerted events in

MTCs. Our work here, and that of others, supports the theory

that distant metastases are formed by genetically homogeneous

populations (Priestley et al., 2019; Reiter et al., 2020). Our study

with single-cell resolution analysis of MTCs, stromal, and im-

mune cell types puts forth testable hypotheses to understand

the interplay between tumor cell-intrinsic traits and host environ-

ment traits in human metastasis.

Limitations of the study
Our study suggests that our findings may not be driven by recent

therapies. However, we have not definitely determined the

impact of previous therapies. It is common for cancer patients

to develop distant metastases long after treatment and removal

of primary tumors. Likewise, we have not determined the prog-

nostic impact of our findings for BrM patients. Future efforts

aimed at assembling single-cell datasets with clinical information

from larger cohorts will be required to infer clinical outcomes and

to study the impact of the therapies aimed to treat primary can-

cer on the programs observed in metastases.

Although our single-cell transcriptomic dataset exceeds the

scale of previous efforts to systematically characterize BrM tu-

mors, or any other distant metastases for that matter, our study

does not have a large enough sample size to demonstrate unique

features for cancer type, cancer subtypes, or BrM specificity due

a lack of comparisons with matched primary tumors or extracra-

nial metastases. Much remains to be gained by further

increasing the sample size. Metastatic biopsies remain rare,

and factors such as small specimens and poor patient prognosis

make it difficult to collect them, and those that are obtained are

often not profuse enough to offer multiple layers of information

(Bova, 2017). Future efforts in collecting and biobanking fresh re-

sected specimens will facilitate cancer-specific studies at sin-

gle-cell resolution, especially in metastatic biopsies from less

studied metastatic cancers such as ovarian, renal, colorectal,

or sarcomas.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE
742 Cell 185, 729–745, February 17, 2022
d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODELS AND SUBJECT DETAILS

B Human specimens

B Experimental brain metastasis

d METHOD DETAILS

B Sample collection and single cell RNAseq library

preparations

B Single cell sorting ofmetastatic cells from experimental

models and library preparation

B Mass cytometry staining

B RNAscope

B Histology, immunohistochemistry, and

immunofluorescence

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Data pre-processing with Seurat package

B Identification of cluster-specific genes in stromal cells

and marker-based classification

B CNV analysis

B Definition of single-cell gene signature scores

B Diffusion component analysis

B Identification of recurrent expression programs in hu-

man brain metastases with Non-Negative Matrix

Factorization (NMF)

B Principal component analysis

B NMF program interrogation on primary tumors

B Cell cycle analysis

B Correlation analysis in MET500 cohort

B Single cell RNAseq analysis of experimental brain

metastasis

B RNA velocity analysis

B Mass cytometry analyses
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.

2021.12.043.

ACKNOWLEDGMENTS

This study is dedicated to the memory of our friend, teacher, andmentor, Zena

Werb, who first envisioned the potential of this study. Our deepest gratitude for

her encouragement, support, brilliance, and kindness. We thank the patients

and their families for their generosity in contributing to this study, the surgeons

and all members of the UCSF Brain Tumor SPORE Biorepository, and patient

advocate Susan Samson for insightful discussions. This study was supported

by grants from the National Cancer Institute (CA057621, CA180039,

CA199315, CA190851, and 5U01CA199315-05 to Z.W.), the NIH Office of

the Director (OD023056 to M.H.S.), and the Oncology Research Fund (to

Z.W. and H.G.). General infrastructure in the Roose lab has been supported

by grants from the NIH/NCI (R01-CA187318), NIH/NIAID (R01-AI104789 and

P01-AI091580), and the NIH/NHLBI (R01-HL120724) (all to J.P.R.). This spe-

cific project was supported by a Mark Foundation for Cancer Research

Endeavor Program grant (A136299) and California Breast Cancer Research

grants (B26IB1494) (both to J.P.R.). The Becas Chile Post-Doctoral Fellowship

(to H.G.) and the Parker Institute for Immunotherapy (to M.H.S. and Z.W.); the

Emerson Collective Cancer Research Fund (to H.G and Z.W.); the National In-

stitutes of Health (5P50CA097257-18) (to J.J.P.); by funds from Swedish Soci-

ety of Medicine, Gunnar Nilsson Cancer Foundation, Swedish Society for

https://doi.org/10.1016/j.cell.2021.12.043
https://doi.org/10.1016/j.cell.2021.12.043


ll
Resource
Medical Research, and governmental funding of clinical research within the

National Health Services (ALF) (to C.H.). The Carlsberg Foundation

(to T.L.H.O.).

AUTHOR CONTRIBUTIONS

H.G. and Z.W. designed and supervised research; H.G., W.M., I.R., C.H., A.N.,

T.V., S.K., M.v.G., and S.G. performed research; H.G. and W.M. analyzed

data; H.G., B.M.A., T.L.H.O., and M.H.S. developed and analyzed CyTOF ex-

periments. H.G. and J.P.R. wrote the paper; Z.W. and J.P.R. contributed with

reagents, resources, and access to laboratory facilities; J.J.P. coordinated the

collection of human brain metastases; M.D. collected clinical records of

patients.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: July 2, 2021

Revised: November 12, 2021

Accepted: December 23, 2021

Published: January 20, 2022

REFERENCES

Achrol, A.S., Rennert, R.C., Anders, C., Soffietti, R., Ahluwalia, M.S., Nayak, L.,

Peters, S., Arvold, N.D., Harsh, G.R., Steeg, P.S., and Chang, S.D. (2019).

Brain metastases. Nat. Rev. Dis. Primers 5, 5.
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Antibodies

Full list of CyTOF antibodies This paper Table S3

Mouse CD45-FITC Biolegend Cat# 103108; RRID:AB_312972

Mouse Ter119-FITC eBioscience Cat# 11-5921-82; RRID:AB_465311

Mouse CD31-FITC eBioscience Cat# 11-0311-85; RRID:AB_465013

Human CD298-PE Biolegend Cat# 341704; RRID:AB_2274458

Human KRT19 Sigma-Aldrich Cat# HPA002465; RRID:AB_1079179

Human PECAM1/CD31 Invitrogen Cat# MA5-16337; RRID:AB_2537856

Human PEG10 Proteintech Cat# 14412-I-AP; RRID:AB_10694427

Human CD63 Sigma-Aldrich Cat# HPA010088; RRID:AB_1846323

Human S100A6 Proteintech Cat# 10245-I-AP; RRID:AB_2183801

Human CD45 DACO Agilent Cat# GA75161-2; RRID:AB_2661839

Human Ki67 DACO Agilent Cat# GA62661-2; RRID:AB_2687921

Human Melan-A Invitrogen Cat# MA5-14168; RRID:AB_10985481

Mouse CD45 Thermo Fisher Cat# BDB550539; RRID:AB_2174426

Anti-mCherry Abcam Cat# Ab167453; RRID:AB_2571870

Biological samples

Fresh Human Brain Metastases This Study Table S1

Critical commercial assays

Chromiun Controller and the Single Cell

Reagent kit 30 v2
10X Genomics Cat# PN-120237

RNAscope Fluorescent Mutiplex Assay ACD Cat# 320850

Deposited data

Raw and analyzed data This paper GSE186344

MET500 Cohort Dataset (Robinson et al., 2017) http://met500.path.med.umich.edu

Glioblastoma (Neftel et al., 2019) GSE131928

Primary Breast Cancer (Wu et al., 2021) GSE176078

Primary Lung Cancer (Kim et al., 2020) GSE131907

Primary Melanoma (Tirosh et al., 2016a) GSE72056, GSE77940

Experimental models: Cell lines

MDA-MB-231BR (Zhang et al., 2015) NA

4T1 ATCC CRL-2539

Experimental models: Organisms/strains

Female Nude mice Charles River Strain Code: 088

Female BALB/c mice Charles River Strain Code: 028

Recombinant DNA

PLKO-mCherry-Luc Addgene Cat# 29783

Software and algorithms

Seurat version: 4.0.0 (Butler et al., 2018) https://satijalab.org/seurat/index.html

R version: 4.0.3 NA https://cran.r-project.org/

Cell Ranger version 3.0.2 10X Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

pipelines/latest/using/tutorial_ov

(Continued on next page)
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CONICSmat (Muller et al., 2018) https://github.com/diazlab/CONICS

Destiny Package version 2.14.0 (Angerer et al., 2016) https://github.com/theislab/destiny

CIBERSORTx tool (Newman et al., 2019) https://cibersortx.stanford.edu/

PRINSEQ-lite 0.20.4 NA https://edwards.sdsu.edu/cgi-bin/prinseq/

prinseq.cgi

STAR 2.7.5a NA https://github.com/alexdobin/STAR

GSVA (Hanzelmann et al., 2013) https://bioconductor.org/packages/

release/bioc/html/GSVA.html

scVelo 0.2.2 (Bergen et al., 2020) https://pypi.org/project/scvelo/

CellEngine NA https://cellcarta.com/cellenginesoftware/
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Hugo Gonzalez Velozo

(Hugo.GonzalezVelozo@ucsf.edu).

Materials availability
This study did not generate new reagents.

Data and code availability
d Raw mapped counts from patients, raw mapped counts and FASTQ data from experimental mouse models, and normalized

expression data with cell type annotations can be found in the National Center for Biotechnology information Gene Expression

Omibus (https://www.ncbi.nlm.nih.gov/geo/) with accession number GSE186344).

d We did not generate original codes in this study. Codes used are available upon request without restrictions.

d Any additional information required to reanalyze the data reported in this paper is available from lead contact upon request.
EXPERIMENTAL MODELS AND SUBJECT DETAILS

Human specimens
Human specimens from fifteen patients who were pathologically diagnosed with brain metastases, were enrolled in this study after

approvals by the Ethics Committee of University of California San Francisco, IRBNumber 10-01318. Resources were provided by the

UCSF Brain Tumor SPOREBiorepository NIH/NCI 5P50CA097257-18 (J.J.P.). The sample R.C.C. (renal cell carcinoma) brain metas-

tasis was collected and sent from UCSD by Dr. Clark Chen. All patients in this study provided written informed consent for sample

collection and data analyses. Their ages ranged from 42 to 76, with a median age of 63 years. Eleven of the cases were women and

four men. With the exception of patients Breast-1 and Breast-3 that received gamma radiation 24hrs before surgery, none of the pa-

tients was treated with chemotherapy or radiation aimed to treat brain metastasis prior to surgery. The time to brain metastasis pro-

gression since initial cancer diagnosis ranged from 0months (7 cases) to 171months (Ovarian-1). Anatomically, fourteen cases were

located in brain cortex and one (Breast-3) in the cerebellum. The available clinical characteristics of these patients are summarized in

Table S1. Fresh tumor sizes ranged from 10-200mg.

Formalin-fixed and paraffin-embedded of 13 cases of brain metastases from melanoma and cancer patients diagnosed at Skåne

University Hospital, Sweden, were used for immunohistochemical staining. The ethical permit was obtained from the regional ethical

committee at Lund University (Dnr 2019-04998).

Experimental brain metastasis
Female athymic nude or BALB/c mice (4–6 weeks old) were obtained from Charles River (Wilmington, MA, USA) and maintained un-

der specific pathogen-free conditions. The University of California, San Francisco Institutional Animal Care and Use Committee

(IACUC) reviewed and approved all animal experiments. MDA-MB-231Br cells were kindly donated by Dr. Patricia S. Steeg (National

Cancer Institute, Maryland). We expanded a single clonal MDA-MB-231BR cells expressing luciferase and the mCherry marker

(Addgene, Plasmid #29783), cells were harvested, washed and re-suspended in sterile phosphate buffered saline (PBS).

0,25x106/100ml cells were injected into the left ventricle of the heart of each mouse under anesthesia. To stablish a syngeneic

brain metastasis model, 0,1x106/100ml cells of parental breast cancer 4T1 cells expressing luciferase and mCherry (Addgene,
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Plasmid #29783), were intracardiac inoculated in female BALB/c mice, after reaching endpoint, 4T1Br cells were isolated from brain

lesions by mCherry expression, grown in culture (4T1Br P1), and again inoculated in mice. This procedure was repeated 3 times. To

monitor the growth of brain metastases, mice were intraperitoneally injected with D-luciferin (100 mg/kg), and then imaged and

analyzed using the IVIS Spectrum imaging system (Caliper Life Sciences) twice a week after the injection. Following these protocols,

mice reached human endpoint (20% body weight, seizures or paralysis) 4-5 weeks for MDA-MB-231BR and 12 days for 4T1Br

models. At endpoint, mice were euthanized and perfused with 40ml of saline buffer via left ventricle to eliminate blood and circulating

tumor cells. To mimic the treatment used with human BrM biopsies, fresh brains were dissected and maintained in cold RPMI-1610

medium (Invitrogen), cut into approximately 0.5 mm3 pieces and stored by freezing in 90% FBS and 10% dimethylsulfoxide (DMSO)

in liquid nitrogen, the period since euthanasia and cryopreservation ranged from 10 to 15 minutes.

METHOD DETAILS

Sample collection and single cell RNAseq library preparations
Fresh tumor samples were maintained in cold RPMI-1610 medium (Invitrogen) after surgery, cut into approximately 0.5 mm3 pieces

and stored by freezing in 90%FBS and 10%dimethylsulfoxide (DMSO) in liquid nitrogen, the period of time since surgical resection to

cryopreservation ranged from 30 to 60 minutes. Briefly, the day of single cell RNAseq processing, tissues were washed in cold RPMI

to eliminate the remanent DMSO, mechanically chopped with scalpels, placed in culture medium (RPMI with 2% FBS, 5 mg ml�1 in-

sulin (UCSF Cell Culture Facility), 50 ng ml�1 gentamycin (UCSF Cell Culture Facility) containing 0.2 mg ml�1 collagenase-1 (Sigma)

and supplemented with 2 U ml�1 DNase for 45 mins. After washing with cold PBS, samples were dissociated into single cells by a

gentle treatment with trypsin at 0.0025% (dilution in PBS of original stock) supplemented with 2 U ml�1 DNase for 2 min. After disso-

ciation, residual erythrocytes were lysed with red blood cell lysis buffer for 1 min at room temperature. All samples were filtered

through a 70 mmcell strainer. Prior to scRNAseq processing, the dead cells were removed using dead cell removal kit (Miltenyi). Sam-

ples were washed twice and resuspended in PBS with 0.05% BSA at a concentration of 1,000 cells per ul. Single-cell libraries were

generated via the Chromium Controller and the Single Cell Reagent Kit 3’ v2 (10x Genomics, Pleasanton, CA) according to the man-

ufacturer’s instructions. For each patient, 25,000 cells or the total number of cells from smaller biopsies, were loaded for encapsu-

lation aiming to capture �10,000 cells. After sequencing, Cell Ranger count (Version 3.0.2) was used to map the FASTQ files to the

human genome GRCh38. We achieved a median of 6,798 cells per tumor, with a mean of 79,609 read counts and a median of 2,865

genes per cell. Per sample we detected a median 23,525 total genes. All sequencing metrics are deposited with the corresponding

scRNAseq dataset in Gene Expression Omibus (see section Data and code availability).

Single cell sorting of metastatic cells from experimental models and library preparation
On the day of scRNAseq processing, mouse brain tissues were washed in cold RPMI to eliminate the remanent DMSO, mechanically

chopped with scalpels, placed in culture medium (RPMI with 2% FBS, 5 mg ml�1 insulin (UCSF Cell Culture Facility), 50 ng ml�1 gen-

tamycin (UCSF Cell Culture Facility) containing 0.2 mg ml�1 collagenase-1 (Sigma) and supplemented with 2 U ml�1 DNase for

45 mins. After washing with cold PBS, samples were dissociated into single cells by a gentle treatment with trypsin at 0.0025% (dilu-

tion in PBS of original stock) supplemented with 2 U ml�1 DNase for 2 min. Afterward, the homogenate was filtered through a 70 mm

cell strainer and washed in cold PBS for 5 mins at 300 g. Myelin was removed by gradient centrifugation with 20% / 80% Percoll

(Sigma-Aldrich) in PBS (1,200 x g for 30 minutes at 4C; without brakes during deceleration). The middle transparent layer (containing

mononuclear cells including tumor cells) was collected and washed in cold PBS for 5 mins at 300g and processed for fluorescence-

activated cell sorting (FACS) staining. Briefly, for mouse lineage (Lin) antigens, mCD45 (FITC, eBioscience), mTer119 (FITC,

eBioscience), mCD31 (FITC, eBioscience) were used. To detect human cells, hCD298 (PE, Biolegend) was used. The antibody stain-

ing for FACS was performed in DMEM/2% FBS. After 30 min on ice, stained cells were washed of excess unbound antibodies and

resuspended in DMEM/2% FBS. Viable (Ghost Dye negative) MDA-MB-231Br (hCD298+, mCherry+, mCD45-, mTer119-, mCD31-)

cells were sorted by FACS into RPMI with 2%FBS. Similarly, Viable (Ghost Dye negative) 4T1Br cells (mCherry+, mCD45-, mTer119-,

mCD31-) were sorted by FACS into RPMI with 2% FBS. After sorting, cells were washed twice and resuspended in PBS with 0.05%

BSA at a concentration of 1,000 cells per ul. Single-cell libraries were generated via the Chromium Controller and the Single Cell Re-

agent Kit 3’ v2 (10x Genomics, Pleasanton, CA) according to themanufacturer’s instructions. For each replicate, we aimed to capture

�5,000 cells. After sequencing, Cell Ranger count (Version 6.1.1) was used to map the FASTQ files to the human GRCh38 or mouse

mm10 genomes. All sequencing metrics, mapped counts and raw FASTQ data from experimental models are deposited in Gene

Expression Omnibus (see section Data and code availability).

Mass cytometry staining
Cell preparation and viability staining

Single-cell suspensions (see above) were washed with PBS + 5mMEDTA and re-suspended 1:1 with PBS + 5mMEDTA and 100mM

cisplatin (Enzo Life Sciences) for 60s before quenching 1:1 with PB + 5mM EDTA + 0.5% BSA to determine viability as previously

described (cite PMID 22577098). Cells were centrifuged at 500g for 5 min at 4 �C and re-suspended in PBS/EDTA/BSA at a density

between 1 3 106 and 10 3 106 cells per ml. Suspensions were fixed for 10 min at room temperature using 1.6% paraformaldehyde

(PFA) and washed twice with cell-staining media (CSM, PBS with 0.5% BSA and 0.02% NaN3).
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Mass-tag cellular barcoding

Mass-tag cellular barcoding was performed as previously described (Zunder et al., 2015). Briefly, cells from each sample were bar-

coded with distinct combinations of stable Pd isotopes in 0.02% saponin in PBS. Cells were washed once with cell-staining media

(PBS with 0.5% BSA and 0.02% NaN3) and once with 13 PBS and pooled into a single fluorescence-activated cell sorting (FACS)

tube (BD Biosciences). After data collection, each condition was deconvoluted using a single-cell debarcoding algorithm (Zunder

et al., 2015).

RNAscope
RNA in situ hybridizations were performed according to the manufacturer’s instructions, using the RNAscope Multiplex Fluorescent

kit (Advanced Cell Diagnostics) for paraffin fixed tissue. Following probes with suitable combinations were used (indicated with gene

target name for mouse and respective channel, all Advanced Cell Diagnostics): hs-CTHRC1, hs-RGS5 and hs-CLDN5. All sections

were mounted with Prolong Diamond Antifade Mountant (Thermo Fisher Scientific).

Histology, immunohistochemistry, and immunofluorescence
Human BrM tissue were fixed overnight in 4%paraformaldehyde (PFA) and processed for paraffin embedding tissue sections of 5um

were used. Following deparaffinization and rehydration, antigen retrieval was performed by submerging the slides in Antigen

Unmasking Solution, Tris-based (Vector Laboratories).

For immunohistochemistry (IHC), endogenous peroxidase activities were inactivated in 3% H2O2 for 5 min at room temperature.

Tissue sections were blocked with 1% BSA, 2% goat serum in PBS- 0.2% Triton X-100 for 1 h at room temperature and incubated

with primary antibodies for 1 h in blocking buffer. After washes with PBS, biotinylated secondary antibodies were applied for 1 h,

followed by treatment with avidin/biotinylated enzyme complex and substrate/chromogen incubation (Vector laboratories). Slides

were counterstained with hematoxylin. For immunofluorescence, tissue sections were stained with primary antibodies overnight.

After washes with PBS, fluorescently labelled secondary antibodies were used. Nuclei were counterstained with DAPI. Mouse immu-

nofluorescence for mCherry and CD45 were performed in frozen brain sections (20 mm) as described before (González et al., 2013).

Images were obtained using Keyence BZ-X800microscope at 20x resolution. Primary antibodies used and dilution ratios are: KRT19

(1:500), MELAN-A (1:200), PECAM1 (1:500), PEG10 (1:200), CD63 (1:250), S100A6 (1:200), anti-hCD45 (1:300), anti-mCD45 (1:200),

anti-mCherry (1:100) and anti-Ki67 (1:50).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data pre-processing with Seurat package
The Seurat pipeline was applied to each sample and for combined analyses (Butler et al., 2018). Genes that were expressed in less

than 5 cells and cells that expressing less than 500, or more than 9,000 genes (outliers), or with a percentage of mitochondrial genes

higher than 10% were excluded from further analyses. To accurately separate tumor cells and stromal cells in each sample, we

merged datasets from different biopsies, this strategy outperforms single sample clustering and efficiently separates stromal cells

in samples with higher tumor purities and low stromal fractions (e.g., Melan-2, Breast-3, Lung-1 and Ovarian-1) and also improve

the identification of rare cell types (e.g., astrocytes). Following identification with known marker genes, we extracted all stromal cells

for each patient.

To reveal the shared sources of biological variation (conserved sub-structures) betweenBrM-associated stromal cells, we used the

integration tool for scRNAseq data sets provided by Seurat package. The top 2,000 highly variable genes of each sample were de-

tected by variance stabilizing transformation method in FindVariableFeatures. Anchors across the 14 datasets were then identified

and the datasets were integrated using the default parameters. Before clustering, the number of counts and percentage of mitochon-

drial genes were regressed out using a negative binomial model (function vars.to.regress). We did not regress cell cycle genes

because we did not observe cell cycle genes driving clusters in the stroma. Principal component analysis (PCA) was performed

with PCA function and dataset dimensionality kept for downstream analysis was determined heurustically with Elbowplot and Score-

JackStraw functions. A UMAP dimensional reduction was performed on the scaled matrix using the first 18 PCA components to

obtain a two-dimensional representation. For clustering, we used the function FindClusters that implements SNN (shared nearest

neighbor) modularity optimization-based clustering algorithm on the first 18 PCA components with resolution 0.5 - 1.5. A resolution

of 1.3 was chosen for the analysis, in our hands themost informative resolution but the result was generally robust to hyperparameter

choices.

For clustering of individual samples, a UMAP dimensional reduction was performed on the scaled matrix using the first 10 PCA

components and a FindClusters function was set at resolution of 0.5. For clustering of all combined MTCs, normalized counts of an-

notated MTCs of all samples were merged, centered, and scaled, dataset dimensionality for downstream analysis was determined

heurustically with Elbowplot and ScoreJackStraw functions, finally the UMAP dimensional reduction was performed using the first 20

PCA components.
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Identification of cluster-specific genes in stromal cells and marker-based classification
To identify marker genes, the FindAllMarkers function was used with likelihood-ratio test for single cell gene expression. For each

cluster, only genes that were expressed in more than 25% of cells with at least 0.25-fold difference were considered (Top 30 genes

per cluster can be found in Table S2). To characterize clusters, we used marker genes and curated gene signatures (Table S2).

CNV analysis
CNV was estimated using R package CONICSmat (Müller et al., 2018). Count matrix was normalized by taking log2(CPM/10+1) and

genes expressed in very few cells (< 5) were excluded from the analysis. A normalization factor for calculated for each cell by taking

the mean expression of the cell. The average expression in each cell was centered using the previously calculated normalization fac-

tor. Then, the z-score of the centered gene expression across all cells was calculated. To quantitatively determine the CNV of cells,

we fitted a Gaussian mixture model based on the mean z-scores of 44 chromosome arms (sex chromosomes were not included).

Each cell was assigned a posterior probability of belonging to one of the copy number group of each chromosome arm.

To infer subclones in each tumor, we first identified candidate chromosome arms that showed a clear bimodal expression pattern

in the cancer cell populations. Chromosome arms were chosen if more than 1000 cells or 20% of the cancer cells belonged to the

minor copy number group (posterior probability > 0.95). Then we assigned a genotype of each candidate chromosome arm for each

cancer cell using the posterior probabilities. Cancer cells were grouped into clones based on genotypes and clones with more than

1000 cells or 20% of the cancer cells were identified.

For visualization purpose, a sliding window approachwas used as previously described (Patel et al., 2014). Briefly, a window of 121

genes within each chromosome was applied to calculate the mean expression of genes sorted by genomic coordinates. Genes with

average expression larger than 0.4 were included in the analysis. To limit the influence of any particular gene on the moving average,

we limited the relative expression values to [-1, 1] by replacing all values above/below this threshold (x>1/x<(-1)) to 1 /-1. The plot-

ChromosomeHeatmap function was used in heatmap visualization.

Definition of single-cell gene signature scores
Given a set of genes (Gj), for each cell i, a score SCj(i) reflecting the level of expression of Gj in cell I was calculated similar to previously

described (Tirosh et al., 2016a) (Seurat AddModuleScore function) (Butler et al., 2018). Briefly, a control gene set is defined by first

binning all analyzed genes into 24 bins of aggregate expression levels and then, for each gene in Gj, randomly selecting 100 genes

from the same expression bin. The expression score is defined as the average expression levels of Gj subtracted by the aggregated

expression of control gene set: SCj(i)=average[ER(Gj,i)] – average[ER(Gjcont,i)].

Diffusion component analysis
We used diffusion map (Coifman et al., 2005), a nonlinear dimensionality reduction approach, to identify the major components of

variation across tumor cells. The count matrix of each tumor was first normalized using global scaling log normalization followed

by PCA on the highly variable genes selected by mean variability plot method in FindVariableFeatures. We then computed the diffu-

sion components in each tumor using the first 10 principal components as input of the DiffusionMap function of R package destiny

2.14.0 (Angerer et al., 2016). Uninformative components representing isolated clusters with very few cells were not included in the

visualization. To identify genes associated with each diffusion component, we calculated the Pearson correlation coefficient between

diffusion components and the scaled expression of each gene and retained the top 50 positively/negatively correlated genes. Bio-

logical processes and pathways were annotated based on Metascape annotation (Zhou et al., 2019) of the top correlated genes and

manual inspection.

Identification of recurrent expression programs in human brain metastases with Non-Negative Matrix
Factorization (NMF)
For tumor cells in each sample, Non-Negative Matrix Factorization (Matlab nnmf function, with number of factors set to 10) was

applied to the scaled and centered expression data (Seurat ScaleData function), after converting all negative values to zero. For

each of the resulting 10 factors, 50 genes with the highest NMF scores were defined as a signature. In order to identify recurrent

expression programs across human brainmetastasis, we aggregated 150 signatures from 15 samples and did hierarchical clustering

using 1 minus Jaccard index as the distance metric. This revealed the 8 meta-programs described in this study. For each meta-pro-

gram, we calculated the expression score using genes in the meta-program and ranked all the genes by their correlation with the

expression score. Each meta-program was then redefined using the top 30 correlated genes.

To infer the co-occurrence of programs, Pearson correlation coefficients were calculated between the single-cell gene signature

scores of NMF programs.

Principal component analysis
We performed principal components analysis (PCA) on the normalized count data (Seurat NormalizeData function) of all cancer cells.

To identify common features across samples and minimize the impact of intertumoral variability, we scaled and centered the data

within each sample as previously described (Venteicher et al., 2017). PCA was then performed on the top 2000 highly variable

genes selected by Seurat’s variance stabilizing transformation method in FindVariableFeatures. Biological processes and pathways
e5 Cell 185, 729–745.e1–e7, February 17, 2022



ll
Resource
associated with each PC were annotated based on Metascape annotation (Zhou et al., 2019) of genes with top weights and manual

inspection. Alternatively, to study the level of interpatient heterogeneity of MTCs, we first merged the cancer cells from all samples,

then we scaled and centered the combined normalized counts data, PCA was performed on the top 2000 highly variable genes

selected by Seurat’s variance stabilizing transformation method in FindVariableFeatures. Variance explained was calculated for

the first 50 PCs using R as follow: variance explained equals to square of standard deviations (SD2) divided by sum of SD2. Standard

deviations for all 50 PCs were collected from the Seurat object. Similarly, for individual samples, variance was calculated using the

top 50 PCs.

NMF program interrogation on primary tumors
scRNAseq data of primary tumors (Kim et al., 2020; Neftel et al., 2019; Tirosh et al., 2016a; Wu et al., 2021) were downloaded from

Single Cell Portal (https://singlecell.broadinstitute.org/single_cell) or Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/

geo/). Raw counts of annotated cancer cells were normalized and scaled as described in ‘‘Data Preprocessing with Seurat Package’’.

The expression of the top 30 genes of each NMF metaprogram described in this study was then visualized in heatmaps using R.

Cell cycle analysis
Cell cycle phases of cancer cells were inferred based on G1/S and G2/M expression signature using Seurat’s CellCycleScoring func-

tion. The Cycling Score was defined as the mean of G1/S and G2/M score. To identify transcriptome difference between cycling and

non-cycling cancer cells shared by brain metastasis samples, we utilized a ‘‘leave-one-out’’ approach. Excluding one sample at a

time, we performed differential expression analysis 15 times on cycling and non-cycling cells in the remaining samples (Seurat Find-

Markers function). Genes expressed in at least 50% of the cycling and non-cycling cells were included in the analysis. We took the

intersection of significant genes (LFC > 0.25, Bonferroni corrected p-val < 0.1) of the 15 tests as the final list of shared differentially

expressed genes between cycling and non-cycling cells. This approach minimized the impact of specific samples with very large or

small number of cycling cells.

For the list of shared highly expressed genes in cycling cells, we removed genes annotated as R-HSA-1640170 Cell Cycle genes by

Metascape (Zhou et al., 2019).

Correlation analysis in MET500 cohort
We downloaded the log2(fpkm) RNAseq data of MET500 from UCSC Xena (Goldman et al., 2020). We calculated the MimmScore, an

aggregate measure of immune infiltration, of all samples in MET500 as described in the original publication (Robinson et al., 2017).

Briefly, inverse normal transformation was applied to the 141 immune signature genes (Yoshihara et al., 2013). The MimmScore was

calculated by summing the normalized expression of these genes. Pearson correlation coefficients were calculated between the in-

verse normal transformed expression of the mentioned signatures and the MimmScore.

We used the CIBERSORTx tool (Newman et al., 2019), an updated version of the CIBERSORT tool used by the original publication,

to estimate the relative proportions of 22 types of infiltrating immune cells in MET500 samples. CIBERSORTx uses a set of reference

gene expression values representing each cell type (signature matrix). We used LM22 downloaded from CIBERSORTX, a 547 gene

expression matrix distinguishing 22 human hematopoietic cell phenotypes, as the signature matrix. B-mode batch correction was

applied to minimize the platform difference. We ran CIBERSORTx using the default setting with 1000 permutations. Only samples

with high immune composition estimation confidence (empirical p-val <0.05) were included in the correlation between the expression

of mentioned signatures.

Single cell RNAseq analysis of experimental brain metastasis
The Seurat pipeline was applied to each experimental metastasis sample (Butler et al., 2018). Genes that were expressed in less than

5 cells and cells that expressing less than 500, ormore than 9,000 genes (outliers), or with a percentage ofmitochondrial genes higher

than 10%were excluded from further analyses. For themodel 4T1Br (syngeneic BrMmodel), the count matrix of cells that passed the

quality control was then normalized using global scaling log normalization followed by PCA on the variable genes selected by mean

variability plot method in FindVariableFeatures. UMAP dimensionality reduction (Becht et al., 2018) was used to visualize cells in the

2D space with the first 10 PCs as input, this step allows the identification and exclusion of contaminating residual immune or non-

immune stromal cells before proceed with NMF pipeline.

As previously described in human data analysis, for both experimental models, Non-Negative Matrix Factorization (Matlab nnmf

function, with number of factors set to 10) was applied to scaled and centered expression data (Seurat ScaleData function), after

converting all negative values to zero. For each of the resulting 10 factors, 50 genes with the highest NMF scores were defined as

a mouse program, followed by functional annotation evaluated by Metascape (Zhou et al., 2019), gene lists with no significant bio-

logical processes were excluded.

RNA velocity analysis
We used scVelo 0.2.2 (Bergen et al., 2020) to subpopulation kinetics in myeloid cells with the default setting. ScVelo is a more robust

and scalable inference of the original RNA velocity (LaManno et al., 2018). Briefly, we used the loom files prepared by the Cell Ranger,

filtered lowly expressed genes with less than 30 counts, and kept top 2000 highly variable genes for downstream analysis. RNA
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velocities were inferred and projected as field onto the pre-computed diffusion map embedding for visualization. This pipeline was

implemented in Python 3.6.9.

Mass cytometry analyses
Cell staining and preparation

Cells were resuspended in cell-staining media (CSM, PBS with 0.5% BSA and 0.02% NaN3), and human Fc block (Biolegend) was

added for 5 min at room temperature on a shaker to block Fc receptors. Surface marker antibodies were then added, and cells were

stained in a final colume of 400 ul of CSM for 30min at room temperature on a shaker. After staining, cells werewashed two timeswith

cell-staining media and then permeabilized with transcription factor permeabilization solution (eBioscience, Thermo Fisher). Cells

were then stained with intracellular antibodies in a final volume of 400 ul of transcription factor permeabilization solution for

30 min at room temperature on a shaker. Cells were washed once in transcription factor permeabilization solution and once in

CSM and then stained with 1 ml of 1:4,000 191/193Ir DNA intercalator (Fluidigm) diluted in PBS with 1.6% PFA overnight. Cells

were then washed once with cell-staining media and then two times with double-deionized (dd) water. Care was taken to assure

that buffers preceding analysis were not contaminated with metals in the mass range above 100 Da. Mass cytometry samples

were diluted in dd water containing bead standards (see below) to approximately 106 cells per ml and then analyzed on a CyTOF

2 mass cytometer (Fluidigm) equilibrated with dd water.

Mass cytometry bead standard data normalization

Data normalization was performed as previously described (Finck et al., 2013). Briefly, just before analysis, the stained and interca-

lated cell pellet was resuspended in freshly prepared dd water containing the bead standard (Fluidigm). The mixture of beads and

cells was filtered through filter cap FACS tubes (BD Biosciences) before analysis. All mass cytometry files were normalized together

using the mass cytometry data normalization algorithm (same citation as above), which uses the intensity values of a sliding window

of these bead standards to correct for instrument fluctuations over time and between samples.

Mass cytometry gating strategy and analysis

After normalization and de-barcoding of files, singlets were gated by Event Length and DNA. Live cells were identified as cisplatin-

negative cells. All positive and negative populations and antibody-staining concentrations were determined by titration on positive

and negative control cell populations. Gating was performed using CellEngine software, and downstream analyses performed in R.

Clustering

Manually gated CD4 and CD8 T cells were downloaded as FCS files from CellEngine. The R package Premessa (https://github.com/

ParkerICI/premessa/) was used to harmonize panels between experiments and flowCore (Hahne et al., 2009) was used to import FCS

files into R. The FlowSOM clustering algorithm (Van Gassen et al., 2015), available through the CATALYST R/Bioconductor package

(Chevrier et al., 2018), was used to generate clusters based on CD4 and CD8 T cell specific markers. Plots were produced with the R

packages CATALYST and ggplot2.
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Figure S1. Molecular survey of the human brain metastatic niche, related to Figure 1

(A) Single sample clustering visualized in UMAP plots for all samples included in the study. Cells are colored by Seurat clusters (STAR Methods).

(B) IHC staining showing the expression of KRT19 (carcinoma cells) or Melan-A (melanoma cells) in BrMs (Scale bars, 60 mm).

(C) IHC staining showing the expression of GFAP in selected BrMs (Scale bars, 100 mm). In carcinoma and melanoma BrMs, astrocytes represented 1.04% and

1.1% of the total stromal fraction, respectively, confirmed by immunostaining (Figure S1C) and in line with other studies (Priego et al., 2018).

(D) Separated visualization of melanoma and carcinoma BrM-associated non-malignant cells. Cells are colored by sample.

(E) Quantification and comparisons of non-malignant cell type composition in melanomas and carcinoma BrMs.

(F) UMAP projection of BrM-associated stromal cells including immune and non-immune fractions, ambiguous clusters that were excluded from further analyses

are shown.

(G) Visualization of 6,325 cells from a case of parenchymal rhabdomyosarcoma BrM using UMAP embedding. See also Figure 1.
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Figure S2. Cell types that integrate the blood-tumor interface in human BrMs, related to Figure 2

(A) Spatial validation of RGS5+ cells using multiplex ISH (RNAscope). One representative staining in sample Melan-2 is shown. Same patterns were observed in

lung, breast, and ovarian BrMs. Scale bar, 75 mm.

(B) Immunohistochemical staining of the endothelial marker PECAM1 (CD31) in 6 BrM samples is shown. Scale bars, 50 mm.

(C) Heatmap of mural vascular cells and mesenchymal progenitor clusters, each containing a unique set of signature genes, with red arrows pointing to selected

markers. Information of the distribution across samples is colored for each cell.

(D) Spatial validation of CTHRC1+ cells using multiplex ISH (RNAscope). One representative staining in sample Breast-2 is shown. Scale bar, 75 mm.

(E) Violin plots show key differentially expressed markers that differentiate between mural vascular cells (RGS5+) and mesenchymal progenitor markers

(CTHRC1+ and ISLR+).

(F) UMAP projection of 3,292 endothelial cells colored by clusters. The arteriovenous axis is shown.

(G) Bar charts show the confirmation that markersGJA5 and ACKR1 are expressed in arterial and venous endothelial cells, respectively, using themolecular atlas

of brain vasculature (Vanlandewijck et al., 2018).

(H) Heatmap reporting the expression of top 10 marker genes in endothelial clusters.

(I and J) Heatmaps reporting the average expression of curated gene signatures in each endothelial cell cluster in all and individual samples. (see also Figure 2).
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Figure S3. Details of immune annotations and immune states, related to Figure 3

(A) Frequencies of the indicated immune clusters in BrM samples separated by cancer type.

(B) Heatmap reporting the average expression of curated gene signatures used for T cell annotation (Table S2) and selected markers in each T cell cluster.

(C) Heatmap of immune clusters described in this study, each containing a unique set of signature genes. Selected top differentially expressedmarkers on T cells

are highlighted. Information of the distribution across samples is colored for each cell.

(legend continued on next page)
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(D) UMAP projections of scaled expression of selected immune markers.

(E) Heatmap reporting the average expression of the top 50 positively correlated genes with diffusion component 1 in each T cell cluster.

(F) Biological processes and pathways associated with the top 50 differentially expressed genes between the two macrophage clusters; processes were an-

notated based on Metascape (Zhou et al., 2019). See also Figure 3 and Table S2.
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Figure S4. Mass cytometry analysis of BrM-associated CD4+ T cells, related to Figure 4

(A) CD4+ T cell population clustered by FlowSOM and visualized by UMAP (see STAR Methods).

(B) Functional and phenotypic median expression profiles for each CD4+ T cell clusters.

(C) CD4+ T cell cluster proportions by patients. See also Figure 4 and Table S3.
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(legend on next page)
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Figure S5. Characterization of transcriptional and genetic diversity of metastatic cells, related to Figure 5

(A) Visualization of metastatic tumor cells (MTCs) using UMAP embedding. Cells are colored by sample (STAR Methods).

(B) Percentage of variance explained for the top 25 PCA components (STAR Methods).

(C) 3D projections represent the top 3 diffusion components for malignant cells from samples Breast-1, Lung-1, and Melan-2. The trajectories were functionally

annotated using the top 50 positively/negatively correlated genes. Bottom panels show the normalized expression of selected markers projected in 3D diffusion

map plots.

(D) Percentage of variance explained for the top 2 PCA components for the MTCs of samples analyzed in Figures 5A and S5C.

(E) Heatmap showing the inferred CNV profiles in metastatic cells and their comparison with non-malignant cells. This analysis shows that MTCs are pre-

dominantly clonal and that metaprograms observed cannot be explained by genetic diversity. We identified subclones in samples Melan-3, Lung-1, and

Colorectal.

(F) Sub-clonal populations in samples Melan-3 (gain in chromosome 8), Lung-1 (grain in chromosome 2), and Colorectal (loss in chromosome 10), revealed by

inferred CNV profiles. Black arrows point to affected chromosomes. See also Figure 5.
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(legend on next page)
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Figure S6. Characterization of metastatic cell archetypes, related to Figure 5

(A and B) Scatter plots comparing the median score value on MTCs for metaprograms P8 or P2, and the composition of immune cell clusters in each sample.

(C) Heatmaps showing the expression of the top 30 genes of each MTCmetaprogram on primary tumors, using publicly available single-cell datasets (see STAR

Methods). See also Figure 5.
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Figure S7. Case study: Interrogation of the MDA-MB-231Br and 4T1 Br models in recapitulating in vivo the functional transcriptional pro-

grams observed in patients, related to Figure 5

(A) Heatmap showing the normalized expression of mouse NMF programs identified by analyzing 3,194 MDA-MB-231Br cells at endpoint (4 weeks) (STAR

Methods).

(B) Annotation and selected top genes for each NMF program identified in the MDA-MB-231Br model.

(C) Schematic illustration of the murine syngeneic 4T1Br brain metastasis model and scRNA-seq analysis approach (STAR Methods).

(legend continued on next page)
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(D) Heatmap showing the normalized expression of mouse NMF programs identified by analyzing 1,472 4T1Br cells at endpoint (12 days).

(E) Annotation and selected top genes for each NMF program identified in the 4T1Br model.

(F) Immunofluorescent staining in floating mouse brain sections of the marker mCherry expressed by metastatic tumor cells and CD45. Nuclei were counter-

stained with DAPI. Scale bars, 100 mm. See also Figure 5 and Table S4.
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