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GAC remains a common and lethal disease with a poor prog-
nosis1. Often diagnosed at an advanced stage, GAC is fre-
quently resistant to therapy2. A common site of metastases 

is the peritoneal cavity (peritoneal carcinomatosis; PC) and there 
is a high unmet need for improved therapeutic interventions in 
patients with advanced GAC3,4. Patients with PC are highly symp-
tomatic and can have an overall survival of <6 months. Only a 
small fraction of patients benefits, often only transiently, from 
immune checkpoint blockade5,6 or HER2-directed therapies7. 
Molecular understanding of advanced GAC is limited. Four geno-
types defined by The Cancer Genome Atlas (TCGA) were based on 
analysis of primary GACs8. The two clinically favorable subtypes, 
Epstein–Barr virus-positive and microsatellite instable GACs, 
are rare in advanced cases9. In the clinic, empiricism prevails as 
patients are not routinely stratified and rational therapeutics are 
exceedingly limited.

It is well recognized that GAC is endowed with extensive inter-
tumoral heterogeneity and ITH8,9. ITH is fundamental for tumor 
cell survival as it confers therapy resistance and is a major obstacle 

to improving patient outcomes. However, the origins of ITH are 
poorly understood. Deeper understanding of the cellular/molecular 
basis of ITH could influence how GACs are treated. Single-cell tran-
scriptome sequencing (scRNA-seq) is a robust and unbiased tool to 
assess cellular and transcriptomic ITH10.

Here, we performed scRNA-seq of PC cells from ten long-term 
and ten short-term survivors with PC, inferred tumor cell lineages 
and transcriptomic states at single-cell resolution by mapping 
the scRNA-seq data to the Human Cell Landscape (HCL) data-
base11, constructed a single-cell map of malignant PC cells, com-
prehensively characterized ITH of PC tumor cells via integrative 
approaches and identified significant correlates with patient survival.  
This study demonstrated that the diversity in tumor cell lineage/
state compositions is a key contributor to ITH. A 12-gene funda-
mental signature was discovered, which although derived from PC 
cells, retained its prognostic significance when applied to indepen-
dent, localized and advanced large-scale GAC cohorts. These results 
provide an avenue for patient stratification and target discovery for 
future therapeutic exploitation.
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Intratumoral heterogeneity (ITH) is a fundamental property of cancer; however, the origins of ITH remain poorly understood. 
We performed single-cell transcriptome profiling of peritoneal carcinomatosis (PC) from 15 patients with gastric adenocar-
cinoma (GAC), constructed a map of 45,048 PC cells, profiled the transcriptome states of tumor cell populations, incisively 
explored ITH of malignant PC cells and identified significant correlates with patient survival. The links between tumor cell lin-
eage/state compositions and ITH were illustrated at transcriptomic, genotypic, molecular and phenotypic levels. We uncovered 
the diversity in tumor cell lineage/state compositions in PC specimens and defined it as a key contributor to ITH. Single-cell 
analysis of ITH classified PC specimens into two subtypes that were prognostically independent of clinical variables, and a 
12-gene prognostic signature was derived and validated in multiple large-scale GAC cohorts. The prognostic signature appears 
fundamental to GAC carcinogenesis and progression and could be practical for patient stratification.
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Results
A single-cell transcriptome map of PC. scRNA-seq was performed 
on cryopreserved PC cells collected from 20 patients with GAC at 
advanced stages, including ten long-term and ten short-term survi-
vors (Fig. 1a). The clinical and histopathological characteristics and 
radiology images are summarized in the Supplementary Information 
(Supplementary Table 1 and Supplementary Fig. 1). All primary 
tumors were of diffuse type and no microsatellite instability (MSI) 
was observed (see the Methods). Following quality filtering, 45,048 
cells were retained for the subsequent analyses. The batch effects 
were minimal as statistically assessed by k-BET12 (Supplementary 
Fig. 2). We captured five main nonmalignant cell types: B cells, 
CD4 T cells, CD8 T cells, myeloid cells and fibroblasts, each defined 
by canonical marker genes (Fig. 1a, Extended Data Fig. 1 and 
Supplementary Table 2). A multistep approach was then applied 
to distinguish malignant PC cells and to define cell transcriptome 
states (see the Methods). The immune cells from different patients 
clustered together by cell type, whereas PC malignant cells clustered 
distinctly by patient (Extended Data Fig. 1a). It is evident from 
Extended Data Fig. 2 that tumor cell clusters from short-term sur-
vivors were relatively closer on both the uniform manifold approxi-
mation and projection (UMAP) plot and the cluster dendrogram. 
Consistently, the Bhattacharyya pairwise distance between clusters 
of long-term and short-term survivors was significantly larger than 
that of the background distributions, indicating distinct transcrip-
tomic profiles associated with survival. In this study, we focused on 
PC tumor cells (n = 31,131). Five patients with too few tumor cells 
(<50) were excluded from subsequent analyses (Supplementary 
Tables 3 and 4). To profile the transcriptome landscape of PC tumor 
cells, unsupervised cell-clustering analysis was carried out and the 
results were illustrated using both t-distributed stochastic neigh-
bor embedding (t-SNE) and UMAP13, which uncovered 14 unique 
cell clusters, with differentially expressed genes (DEGs) specifically 
marking each cell cluster (Fig. 1b and Supplementary Fig. 3). Seven 
of 14 clusters were defined by complete patient specificity, and for 
the remaining seven clusters, each one was dominated mainly by 
cells from an individual patient (Supplementary Fig. 4). The distri-
bution of each patient’s tumor cells across clusters was quantified 
using chi-squared tests (Supplementary Table 5), demonstrating a 
high degree of interpatient heterogeneity in PC tumor cells.

The inferred tumor cell lineages. To map each individual tumor 
cell, to determine its transcriptome state and the potential cells 
of origin of PC, we used HCL11, a valuable and well-annotated 

scRNA-seq resource for human biology, as a reference. Using a 
prelabeled public scRNA-seq dataset14, we first tested the reli-
ability of HCL and also evaluated the performance of our 
approach in cell lineage inference and obtained satisfactory 
results (Supplementary Fig. 5). We then analyzed PC cells using 
the same approach (see the Methods). Intriguingly, although all 
cases in this study were clinically diagnosed as PC from GAC, 
our transcriptome-based analysis revealed a high degree of cel-
lular heterogeneity in inferred tumor cell lineages (Fig. 1c 
and Supplementary Table 3). Only ~70% of mapped PC tumor 
cells were defined as cells of stomach origin, including pit cells 
(47%), mucosal cells (22%) and chief cells (0.5%). However, the 
expression profiles of a subset of PC tumor cells (26%) transcrip-
tomically resembled cells of other gastrointestinal (GI) organs, 
particularly the intestine (21%). It is unlikely that these cells 
represent cell doublets (Supplementary Fig. 6). DEG analysis 
revealed lineage-specific gene expression features across major 
cell lineages including colorectal-like, duodenal-like and gas-
tric cells, and between colorectal enterocytes and goblet cells  
(Fig. 1d,e), which is supported by compelling evidence from the 
literature and public databases such as the Human Protein Atlas 
(https://www.proteinatlas.org; Supplementary Figs. 7 and 8).

We showed that the difference in transcriptomic features was 
unlikely due to dropouts or technical noise of the scRNA-seq 
data, as we observed a good correlation in cell lineage assignment 
between mapping with the raw and imputed data (Supplementary 
Fig. 9). In addition, we redid HCL mapping after regressing out 
cell-cycle-related genes and our analysis demonstrated that the cell 
lineage assignment was not confounded by differences in cell-cycle 
states (Extended Data Fig. 3). For the two cases (IP-158 and IP-010) 
with mixed gastric and colonic epithelial cells including colonic 
goblet cells, we were able to retrieve the histology images of their 
corresponding primary GACs and confirmed that tumors arose 
in the setting of gastric intestinal metaplasia, which is character-
ized by the presence of well-formed goblet cells in gastric mucosa  
(Fig. 1f). This finding is intriguing given the associated analyses 
showing mixed cellular populations of both gastric and colonic lin-
eages. For case IP-070, our analysis suggested that none of the PC 
tumor cells was of GI origin; instead, the cells transcriptomically 
resembled breast luminal epithelial cells (Fig. 1c and Supplementary 
Fig. 10). After re-reviewing the patient’s clinical records, we  
noted that this case was of breast cancer that metastasized to the 
stomach and formed PC. This vignette on the other hand reflected 
the accuracy of our cell lineage analysis.

Fig. 1 | A single-cell transcriptome map of PC and the inferred tumor cell lineages. This study included ten short-term survivors and ten long-term 
survivors. a, Left, the Kaplan–Meier curve demonstrates a dramatic difference (P = 3 × 10−06 by log-rank test) in the survival time since PC diagnosis 
between the two groups of patients with GAC; middle, a schema of sample collection for scrNA-seq; right, t-SNE plot showing unbiased clustering 
analysis of 45,048 single cells that passed quality control in this study. Each dot of the t-SNE plot represents a single cell. Cells are color coded for their 
associated cell types. b, The t-SNE and UMAP plots of the 31,131 PC tumor cells (14 cell clusters) that were selected for subsequent analyses. Cells are 
color coded by their corresponding patient origins. c, The tumor cell lineage compositions inferred by mapping scrNA-seq data to the HCL database. The 
middle panel shows the HCL-defined cell lineages/types (rows) by patient (columns). The size of the circle represents, for each specific cell lineage/type, 
the fraction of tumor cells (among the total quality-control-passed tumor cells) in each individual PC. The circles are color coded by defined cell lineages/
types, the same as in the annotation track on the left. The histogram on the top shows, for each individual sample, the number of tumor cells accumulated 
on listed cell lineages/types (plus other unclassified or rare cell types). The histogram on the right shows, for each specific tumor cell lineage/type, the 
fraction of tumor cells (among the total quality-control-passed tumor cells) in this cohort. The bottom annotation tracks show (from top to bottom): the 
corresponding patient IDs, the survival groups to which the patients belong, the presence of intestinal metaplasia in their corresponding primary tumors, 
fractions of intestinal cells among the total quality-control-passed tumor cells in each individual PC and the PC subtypes. Classification of the PC subtypes 
was based on tumor cell lineage compositions (gastric-dominant if fraction of intestinal cells <20% and GI-mixed if fraction of intestinal cells ≥20%). 
d, Bubble plot showing expression of lineage-specific marker genes across different cell lineages/types. e, Violin plots of representative lineage-specific 
marker genes. f, A representative histology image for IP-010 demonstrating well-formed goblet cells in gastric mucosa (indicated by blue arrow heads). 
g, UMAP plot showing unsupervised clustering of 26,401 PC tumor cells from 14 samples that underwent HCL mapping and cell lineage inference as in c. 
Cells are colored by their inferred cell lineages/types. Dashed circles highlight samples that formed two or more tumor cell clusters (as labeled in the left 
panel of Extended Data Fig. 4). h, t-SNE and UMAP plots of PC tumor cells generated from patient-level subclustering analysis, showing that gastric cells 
(pink, purple) were clustered distinctly from the colorectal-like cells (dark blue).
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The diversity in tumor cell lineage compositions links to ITH at 
transcriptomic, genotypic and molecular levels. To further study 
transcriptomic ITH and examine its relationship with tumor cell  

lineage compositions, we performed unsupervised clustering  
analysis of PC tumor cells using Seurat15 and Monocle16 and col-
ored cells on the global UMAP plots by their inferred cell lineages  
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(Fig. 1g,h). As expected, we observed that gastric cells were clustered 
distinctly from the colorectal-like cells, and this was more evident on the 
UMAP plots generated from subclustering analysis by patient (Fig. 1h,  
Extended Data Fig. 4 and Supplementary Table 6). The cluster that 
was highly enriched with colorectal-like cells was separated from 
the rest of the clusters that were mainly composed of cells of stom-
ach origin. For case IP-009, the stomach pit cells clustered distinctly 
from stomach mucosal cells (Fig. 1h). We also performed unsuper-
vised clustering analysis of tumor cells using single-cell consensus 
clustering (SC3)17 at both cohort and patient levels. In line with 
the results of Seurat and Monocle, the independent SC3 approach 
grouped cells into clusters that exhibited significant differences 
in the compositions of different cell lineages (Extended Data  
Fig. 5). For example, tumor cells of IP-067 were grouped into four 
clusters by SC3. Cells within the cluster C1 were mainly of the 
stomach origin (96.5%), and only 3.5% of cells were colorectal-like, 
whereas the cluster C4 was mainly composed of cells of the intestine 
origin, with 71.4% cells being colorectal-like (two-sided propor-
tion test, C4 versus C1, P < 2.2 × 10−16). Further examining DEGs 
between the two clusters showed that cells within C4 expressed the 
highest levels of marker genes of intestine origin such as DMBT1, 
FCGBP, PIGR and WFDC2 (Fig. 1e), whereas cells within C1 had 
the highest expression of marker genes of the stomach origin such 
as PSCA and TFF1. Together, our results demonstrate that the diver-
sity in tumor cell lineage compositions is likely a contributor to the 
transcriptomic ITH.

In addition, we used the Bhattacharyya distance metric to 
measure the similarity of gene expression distributions between 
inferred cell lineages. The Bhattacharyya pairwise distances 
between colorectal-like cells and stomach pit (or mucosal) cells 
were significantly larger than the distances between pairs of cells 
of the same lineages (Extended Data Fig. 6), indicating that the 
colorectal-like cells were transcriptomically distinct from cells of 
the stomach origin. We next quantified the extent to which lineage 
diversity explains variations within tumors. On average, lineage dif-
ference explains 21%, 20% and 7% of variations, respectively, in the 
top three PCs (principal components) of a tumor (Supplementary  
Fig. 11), and, overall, we observed larger distances between lineages 
across than within patients (Supplementary Fig. 12). Moreover, we 
sought to identify unsupervised factors that can explain the vari-
ances across tumors and performed SC3 unsupervised clustering of 
tumor cells from all patients, but detected no significant associa-
tion between the clinical, histopathological or molecular variables 
and the SC3-defined cell clusters. We further performed pathway 
enrichment analyses to examine whether differences in certain 
molecular processes can partially explain the interpatient variances. 
The cells of several cases tended to cluster together and demon-
strated elevated activity of the metabolic and oncogenic pathways 
(Supplementary Figs. 13 and 14), indicating that tumor-intrinsic 
signaling pathways may have contributed to the observed interpa-
tient transcriptomic heterogeneity.

We next investigated the genotypic ITH of PC tumor cells 
and examined its association with inferred tumor cell lineages. 
Large-scale copy number variations (CNVs) were inferred from 
scRNA-seq as previously described10,18,19, followed by phyloge-
netic reconstruction analysis (see the Methods). In a subset of 
patients (n = 6) whose genomic DNAs were available, the inferred 
large-scale CNVs showed an overall good correlation with the 
CNVs called from bulk whole-exome sequencing (WES) data, as 
exemplified in Supplementary Figs. 15 and 16. We performed unsu-
pervised clustering of inferred CNVs at both levels, by cell lineage 
and by patient, and observed greater intertumoral heterogeneity 
than ITH in the inferred large-scale CNV profiles (Supplementary 
Figs. 17 and 18). This observation was also consistent with the large 
F statistic and significant P values from one-way analysis of vari-
ance (ANOVA) of the expression profiles (the mean F statistic for 
the top ten principal components was 7,728.4, P < 2.2 × 10−16), and 
the larger Bhattacharyya pairwise distances between lineages across 
than within patients (Supplementary Fig. 12).

Some PC specimens exhibited a high level of ITH. A representa-
tive example was the case IP-067 (Fig. 2a). Phylogenetic reconstruc-
tion analysis of the inferred CNVs identified five subpopulations 
(B1–5) with distinct CNV profiles. The pattern of CNV subclonal 
structure aligned well with the inferred tumor cell lineages: the 
largest subpopulation, B5, that demonstrated colorectal-like tran-
scriptomic profiles showed distinguished CNVs profiles at mul-
tiple chromosomes from the subpopulation B2 that was purely 
composed of cells of stomach lineage. Consistently, B5 cells were 
enriched in the Monocle cell cluster C1, whereas B2 cells were 
mainly in the cluster C3, a cluster that was clearly separated from 
C1 on the Monocle UMAP plot (Fig. 2a, top right). Cells from clus-
ters B1, B3 and B4 showing shared CNV profiles with that of B2 or 
B5 were mainly enriched in the Monocle cell cluster C2 that links 
clusters C1 and C3. To further understand the ITH in this case, we 
performed somatic variant analysis focusing on the 3′ untranslated 
region (UTR) using scRNA-seq data (see Methods and Extended 
Data Fig. 7). Mutation overlapping analysis revealed ITH at the 
genomic level: 36% of somatic mutations identified in cells of C1 
was not detected in cells of C2 or C3; overall, only 26% of muta-
tions were shared among all three clusters (Fig. 2a, bottom right). 
However, for case IP-009 (Fig. 2b), although the Monocle cell clus-
ter C1 that was mainly composed of stomach pit cells was separated 
from the cluster C2 that was mainly composed of stomach mucosal 
cells, we observed slight differences in their CNV profiles among 
the three subpopulations defined by phylogenetic reconstruction 
analysis. Somatic variant analysis showed that ~60% of mutations 
were shared between the two Monocle cell clusters (Fig. 2b, bottom 
right), suggesting a relatively more similar genomic background.

We next examined ITH in the tumor cell proliferative property 
and its relationship with the inferred tumor cell lineages. We compu-
tationally assigned a cell-cycle state to each individual cell based on 
its expression profile of cell-cycle-related signature genes20 (see the 

Fig. 2 | The diversity in tumor cell lineage compositions links to iTH at transcriptomic, genotypic and molecular levels. a, A representative sample, 
IP–067. Left, phylogenetic reconstruction analysis of inferred CNVs. B1–5 labels of five tumor cell subpopulations with distinct CNV profiles. Middle, 
heatmap showing the inferred larger-scale CNVs by chromosome; the annotation track on the left of the heatmap indicates the inferred cell lineages, and 
the annotation track on the right indicates Monocle-defined cell clusters. right, top, Monocle-defined cell clusters. For each Monocle-defined cell cluster, 
its tumor-cell-lineage composition is shown in the small pie chart next to it; right, bottom, the Venn diagram showing shared and unique somatic variants 
across Monocle-defined cell clusters. Somatic variants were called from scrNA-seq data, and only variants located at the 3ʹ UTr were counted. b, Another 
representative sample, IP–009. B1–3 labels of three tumor cell subpopulations with distinct CNV profiles. The annotations for the remainder of b are in 
the same format as those of a. c, Comparison of tumor cell proliferative property across the inferred tumor cell lineages. Box, median ± interquartile range. 
Whiskers, the minimum and maximum values. P values were calculated by a two-sided Wilcoxon rank-sum test with Benjamini–Hochberg correction.  
d, Proportion of cycling (cells in G2M or S phase) and non-cycling cells across the inferred cell lineages. e, The violin plots for representative cell-cycle-related 
genes that are differentially expressed across tumor cell lineages/types (P < 2.2 × 10−16). P values were calculated by one-way Kruskal–Wallis rank-sum test. 
P < 2.2 × 10−16 represents a P value approaching 0. Number of cells for c and e: colon goblet cells, n = 2,658; colon enterocyte cells, n = 1,042; rectum epithelial 
cells, n = 1,578; duodenum epithelial cells, n = 366; stomach pit cells, n = 12,341; stomach mucosal cells, n = 5,937. FC, fold change.
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Methods and Supplementary Table 7) and compared the tumor cell 
proliferative property across the inferred cell lineages (Fig. 2c–e and 
Supplementary Fig. 19). Our analysis showed that the proliferative  

property of stomach pit cells was the highest among all cell lin-
eages, indicated by high G2M and S scores (Fig. 2c) and fraction 
of cycling cells (Fig. 2d). On average, about 72% of stomach pit 
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Fig. 3 | 17q copy number gain is prevalent in cells of stomach origin and significantly associated with inferior survival. a, The landscape of inferred 
large-scale CNVs for all of the tumor cells. The annotation tracks on the left indicate (from left to right) the corresponding sample IDs (the same colors as 
in Fig. 1b), survival groups, PC subtypes and the inferred cell lineages/types. Chromosome numbers are labeled on the top. The yellow rectangle highlights 
the 17q copy number gain that was nearly exclusively found in cells from the short-term survivors. b, The heatmap displays scaled expression values of 
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signaling pathways. c, The representative violin plots of eight genes selected from b. d,e, 17q copy number gain was associated with worse patient survival 
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cells were cycling, and the fraction was much higher than that of 
stomach mucosa cells (27%) or intestinal-like cells: colon goblet 
cells (58%), colon enterocytes (34%), rectum (15%) and duodenum 
(18%). These results are in line with previous observations show-
ing that the cellular turnover of stomach pit cells is faster than that 
of the mucus-secreting cells of the stomach21,22, and with numer-
ous reports showing that intestinal surface epithelium, including 
goblet cells, undergoes turnover rapidly23,24. Consistently, some 
key cell-cycle regulatory genes were differentially expressed across 
tumor cell lineages (Fig. 2e).

17q copy number gain is nearly exclusive to cells of stomach ori-
gin and is associated with worse survival. We analyzed the inferred 
CNVs from all cases together and discovered 17q copy number gain 
as a unique event that was prevalent in tumor cells of stomach ori-
gin and only present in tumor cells from the short-term survivors  
(Fig. 3a). By integrating genotypic and transcriptomic profiles, we 
identified a list of genes upregulated on 17q in tumor cells from 
cases with evident 17q gain (versus cases without) and associated 
with patient survival (Fig. 3b,c and Supplementary Table 8). Some 
of these upregulated genes involved in key signaling pathways (for 
example, PI3K/AKT/mTOR, mTORC1, MYC) are also poten-
tial therapeutic targets (for example, HN1, GRB2, PSMB3), with a 
number of compounds being screened as active25. However, as the 
CNV profiles were inferred from scRNA-seq data the analysis was 
limited due to the low resolution. We performed validation analysis 
in two independent GAC cohorts: the TCGA primary GAC cohort 
(n = 411; Fig. 3d) and a cohort of metastatic GAC (n = 45; Fig. 3e). 
The data from both validation cohorts showed that patients with 
17q gain in their tumors had significantly worse survival.

Cell signaling heterogeneity correlates with tumor cell lineages/
states. To examine the molecular consequences of transcriptomic 
and genotypic alterations described above and to better under-
stand the biological programs associated with patient survival, we 
performed pathway enrichment analysis of >900 curated gene sets 
(see the Methods). Among them, 80 pathways were differentially 
expressed across the inferred tumor cell lineages (Fig. 4a), and, of 
these, 37 were also strongly associated with patient survival (Fig. 4b 
and Supplementary Fig. 20). These pathways were categorized into 
five major classes based on their biological functions: oncogenic 
signaling, cell cycle, DNA repair, metabolism and immune signal-
ing. Pathway interaction analysis revealed that these biological pro-
cesses are functionally connected (Fig. 4c).

Pathways that were significantly enriched in tumor cells of 
stomach origin and associated with shorter survival included cell 
cycle, DNA repair, PI3K/AKT/mTOR, mTORC1, Wnt, NF-κB and 
metabolic reprogramming, which are predominantly oncogenic. 
The pathways that were enriched in colorectal-like tumor cells and 
associated with longer survival included defensins, IL-7 signaling, 

complement cascade, IL6/JAK/STAT3 signaling and interferon 
alpha/gamma, which are all immune related (Fig. 4a,b). These 
results indicated that different biological processes might have been 
implicated in tumor cells with different lineages or transcriptome  
states, contributing to their distinct molecular consequences and 
patient survival.

To assess whether the cellular composition of the tumor 
immune microenvironment differed between tumors with 
gastric-dominant features and those with GI-mixed features, we 
performed immune deconvolution analysis of the bulk expression 
data using public datasets (see the Methods). Our results in Fig. 4d 
and Supplementary Fig. 21 show that the abundance scores of B 
cells increased significantly in tumors with GI-mixed features (ver-
sus those with gastric-dominant features), and this observation was 
replicated in three independent cohorts. In addition, the fractions 
of M1-like macrophages (pro-inflammatory) were higher, and 
M2-like macrophages (anti-inflammatory) were lower, in tumors 
with GI-mixed features. There was also a significant difference in 
the abundance scores of cancer-associated fibroblasts, which were 
lower in tumors with GI-mixed features. Together, our analysis 
suggests that tumors with GI-mixed features are immunologically 
more active.

Single-cell analysis of tumor cell lineage compositions classified 
PC cases into two subtypes with significant survival difference. 
Based on tumor cell lineage compositions, we classified PC samples 
into two main subtypes: gastric-dominant (mainly gastric cell lin-
eages) and GI-mixed (with mixed gastric and colorectal-like cells) 
(Fig. 1c), and performed correlation analysis with the clinical/histo-
pathological variables and patient survival (Extended Data Fig. 8 and 
Supplementary Fig. 22). No significant difference was observed in 
the histopathological features between these two subtypes. Notably, 
17q gain was highly enriched in the gastric-dominant group in the 
GAC-PC (PC specimens from patients with metastatic GAC) valida-
tion cohort (Supplementary Fig. 23); the cell-of-origin-based clas-
sification of PC showed a strong correlation with patient survival 
(Fig. 1c): all six cases with a GI-mixed phenotype were long-term 
survivors, whereas six of eight cases with a gastric-dominant phe-
notype were short-term survivors (Fisher’s exact test, P = 0.0097, 
log-rank P = 0.05; Fig. 5a). Currently, a validated and practical 
molecular signature for PC is lacking. These results suggest that 
the transcriptomic features of PC tumor cells could prognosticate 
patient survival.

Generation and validation of a 12-gene prognostic signature. We 
next sought to generate a gene expression signature that could be 
practical. We performed single-cell DEG analysis on PC tumor cells 
between the gastric-dominant and GI-mixed subtypes, followed 
by filtering the DEGs list to identify the most significant DEGs, 
screening each of the DEGs based on their statistical correlation 

Fig. 4 | Molecular pathway-based dissection of the transcriptomic iTH and correlation with tumor cell lineage and patient survival. a, The transcriptomic 
ITH of curated gene sets, including cancer hallmark gene sets (n = 50) and gene sets from KEGG (n = 186) and reactome (n = 674) pathway databases. 
Each column represents a single cell. Only the pathways (rows) that were differentially expressed across different tumor cell lineages are shown. The 
pathway names are labeled on the right and color coded by their biological functions. b, representative violin plots of six pathways selected from a and 
Supplementary Fig. 20 that showed significant correlation with patient survival. Number of cells: stomach mucosal cells, n = 5,937; stomach pit cells, 
n = 12,341; pancreas ductal cells, n = 1,037; gallbladder mucosal cells, n = 285; duodenal epithelial cells, n = 366; colorectal epithelial cells, n = 5,278; 
long-term survivors, n = 18,428; short-term survivors, n = 6,816. Box, median ± interquartile range. Whiskers, 1.5 × interquartile range. P values across 
different tumor cell lineages were calculated by one-way Kruskal–Wallis rank-sum test. P values between two patient groups were calculated by a 
two-sided Wilcoxon rank-sum test. P < 2.2 × 10−16 represents a P value approaching 0. GSVA, gene set variation analysis. c, The interaction networks of 
differentially expressed pathways displayed in a. The curated gene sets were colored by their biological functions. The weight of a line corresponds to its 
Jaccard index (a similarity metric) between each pathway pair connected by the line. d, Violin plots showing the differences in immune cell composition 
between the gastric-dominant and GI-mixed groups across multiple validation cohorts. The MCP-counter scores for a specific tumor cell lineage or the 
CIBErSOrT cell fractions, or normalized gene expression levels, are shown on the y axis. The black, bold, horizontal line with a dot indicates the median 
value of each group. P values were calculated by a two-sided Wilcoxon rank-sum test. mDC, myeloid dendritic cells.
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with patient survival and testing gene combination using a forward 
selection method (Fig. 5b and see the Methods). After a multistep 
process, a 12-gene signature was derived (Fig. 5c).

We then validated this signature in an independent GAC-PC 
cohort (n = 45). For each tumor sample, a signature score was com-
puted using bulk RNA-sequencing (RNA-seq) data, and based on 
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which the sample was categorized into either the gastric-dominant or 
the GI-mixed group for subsequent analysis (Supplementary Fig. 24  
and see the Methods). The signature demonstrated an excellent 
power to prognosticate patient survival, and consistently, patients 
whose PCs were in the gastric-dominant group survived signifi-
cantly shorter (7.8 versus 24.5 months) than those whose PCs were 
in the GI-mixed group (Fig. 5d, left). Multivariate Cox regression 
analysis showed that this signature was a strong prognosticator of 
short survival, with a hazard ratio of 12.7 (95% confidence interval, 
3.2–51.0, P = 3.3 × 10−4; Fig. 5d, right), and it was independent of 
clinical/histopathological variables (Supplementary Fig. 22).

We also evaluated its prognostic significance in four other 
large-scale localized GAC cohorts19,26–28, totaling 1,336 patients. 
Notably, although this signature was derived from an advanced 
GAC cohort, it retained its prognostic significance in all four val-
idation cohorts of localized GACs (Fig. 5e–h and Extended Data 
Fig. 8a). Intriguingly, this signature was independent of other 
molecular and clinical subtypes (Extended Data Fig. 8b). The mul-
tivariate Cox proportional-hazards model analysis revealed that its 
prognostic value was preserved after accounting for the previously 
defined molecular subtypes, including MSI and EMT (epithelial–
mesenchymal transition) signatures by Cristescu et al.28; metabolic, 
proliferative and invasive signatures by Ooi et al.27; and other clini-
cal and histopathological variables including age, sex and histol-
ogy types (Extended Data Figs. 9 and 10). In addition, it correlated 
strongly with the risk of local recurrence/distant metastasis among 
the TCGA8 and Cristescu cohorts28, where both the expression and 
outcome data were available (Fig. 5e, Extended Data Fig. 8c and 
Supplementary Fig. 25). These results further highlighted the value 
of this prognostic signature and its robustness in prognosticating 
patient survival.

Discussion
The progress against GAC has lagged behind other GI tumor types. 
Therapy resistance and the lack of rational therapeutic targets rep-
resent the major obstacles in improving survival of patients with 
advanced GAC29. It is widely appreciated that ITH is a fundamental 
property of cancer contributing to therapeutic failure, development 
of distant metastases30 and hindrance to biomarker/target discover-
ies31. Studies of localized and advanced GACs identified multiple 
molecular subtypes and revealed a high degree of ITH, which is 
associated with poor clinical outcomes9,32,33. Therefore, deeper dis-
section of ITH is critical for understanding the mechanisms driving 
poor prognosis of GAC and for overcoming therapeutic resistance. 
In this study, we dissected, at single-cell resolution, the cellular 
and transcriptomic ITH of PC tumor cells using the cutting-edge 
scRNA-seq technology, in combination with integrative computa-
tional analyses.

A key finding of this study is that the diversity in tumor cell lin-
eage/state compositions appears to mirror and may even dictate the 
inherent ITH of PC tumor cells at multiple levels. The origins of 
ITH have been a subject of discussion, with multiple models being 
proposed34,35. The peritoneal cavity is a unique microenvironment 
where tumor cells can be in suspension in the peritoneal fluid as 
opposed to being localized in solid tumor tissues, and thus the PC 
cells we have sequenced may be a better representation of ITH. We 
observed that more than one transcriptomically distinct tumor cell 
subpopulation co-existed in most of the PC cases analyzed and 
could be distinguished by the inferred cell lineage characteristics. 
We discovered that 6 of 14 (43%) cases in our discovery cohort had 
a considerable fraction (~26%) of PC tumor cells that transcrip-
tomically resembled cells of nonstomach GI lineages, particular the 
intestine. Notably, ITH defined by single-cell lineage/state compo-
sitions is perpetuated at transcriptomic, genotypic, cell-cycle state, 
molecular signaling and phenotypic levels and strongly associated 
with patient survival. Tumor cell transcriptomic profiles and prolif-
erative property also significantly differed across the inferred tumor 
cell lineages/states, as did the molecular signaling, suggesting that 
treatment strategies could potentially be tailored to these molecular 
features. It appears that the contributors to ITH are likely diverse 
and more complicated than original thought, and varied biologi-
cal programs (for example, genomic/epigenomic) might have been 
engaged early in tumorigenesis. It is important to note that the dif-
ferent tumor cell lineages were inferred by mapping scRNA-seq 
data to HCL and thus may only reflect changes at transcriptome 
level, instead of developmental lineages. Although we are unable to 
discern the precise cells of origin of each PC, we believe that the 
insights shared by this report will stimulate further studies in the 
field focusing on tumor cell of origin and lineage diversity/plasticity 
analyses of both gastric and other cancer types, to better elucidate 
the regulatory mechanisms, possible effects on tumor progression 
and therapy responses.

It is noteworthy that we discovered 17q gain as a nearly exclu-
sive event associated with PC cells of gastric lineage. The 17q region 
harbors multiple potential therapeutic targets and, interestingly, all 
patients whose tumors had 17q gain in our discovery cohort were 
short-term survivors, and the association of 17q gain and inferior 
survival was validated in both the localized and advanced GAC 
cohorts. Our discovery of the intimate link between tumor cell lin-
eage compositions and genomic ITH at single-cell resolution could 
be generalized to other cancer types and broaden our understand-
ing of cancer biology in general.

High genomic ITH in most cancers is associated with worse sur-
vival. We observed an opposite phenomenon in this study: patients 
with the GI-mixed molecular features in their PC tumor cells  
survived significantly longer than those with the gastric-dominant 

Fig. 5 | identification and validation of the 12-gene prognostic signature. a, Survival analysis of the discovery GAC-PC cohort. Left, histogram showing 
relative proportions of long- and short-term survivors between the gastric-dominant and GI-mixed groups. P value was calculated by the two-tailed 
Fisher’s exact test. right, Kaplan–Meier plots showing the survival time (in months) since PC diagnosis and survival time since ascites collection, 
respectively, between patients in gastric-dominant and GI-mixed groups. P values were calculated by two-sided log-rank tests. b, A schema that illustrates 
the bioinformatics flow for generation of the 12-gene signature (see details in the Methods). c, Differential expression of the 12 signature genes between 
the gastric-dominant and GI-mixed groups. d, Survival analysis of a second independent cohort of GAC-PC patients (n = 45). Left, the Kaplan–Meier 
curves showing significant differences in patient survival from PC diagnosis between the two PC subtypes (the colors are the same as in panels a–c). right, 
multivariate Cox proportional regression outcomes, with the 12-gene signature included. For each variable, the reference level is the first one. The block 
in the center of the error bars represents the weighted mean. Whiskers of error bars represent the 95% confidence intervals. Patients whose PC belongs 
to the gastric-dominant subtype as defined by the 12-gene signature are significantly associated (P = 3.31 × 10−4) with worse survival in this multivariate 
model. CI, confidence interval. e–h, Survival analysis of the 12-gene signature across three additional large-scale validation cohorts of localized GACs. For 
each cohort, the source of the dataset, the sample size, the log-rank P value and the median survival time (in months) are labeled on the Kaplan–Meier 
plot. e, The localized GAC cohort from Cristescu and colleagues28. The alluvial plots (right) show the relationships between PC subtypes (left strip) and 
the presence of local recurrence and/or distant metastases (right strip). The yellow band highlights the significant enrichment of local recurrence and/or 
distant metastases events in patients whose PCs belong to the gastric-dominant subtype. The P values for the alluvial plots were calculated by a two-sided 
Fisher’s exact test. f, The GAC cohort from Cheong and colleagues. g, The GAC cohort from Ooi and colleagues27. h, The GAC cohort from TCGA.
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features. We remain uncertain of the detailed mechanisms. A possi-
ble explanation is that the intestinal-like cells in the GI-mixed tumors 
could be acquired from a process called intestinal metaplasia, which 
is the main precancerous lesion of the stomach. Intestinal metapla-
sia is characterized by the presence of differentiated epithelium that 
resembles the small intestine (partial or complete transformation 

of gastric gland epithelial cells into the intestinal type) on the basis 
of ultrastructural morphology, mucin patterns and enzyme histo-
chemistry36. Consistent with this, two patients (IP-010 and IP-158) 
in this study had intestinal metaplasia confirmed in their primary 
tumors (diffuse type), although intestinal metaplasia is thought to 
be mainly associated with GAC of the intestinal type. In line with 
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this, it is generally recognized that patients with intestinal-type 
GAC have better prognoses than those with a poorly differenti-
ated or diffuse type histology37–39. In addition, immune deconvolu-
tion analysis using public datasets suggested that the better clinical 
outcomes of GI-mixed tumors could be partially associated with a 
more engaged and effective immune response against the tumor, 
including higher levels of B cells (which are known to be associated  
with a protective immunity and better clinical outcomes)40–42 and 
M1 polarization43,44, lower levels of fibroblasts45–47 and M2-like 
macrophages, and elevated cytolytic activity. Nevertheless, further 
investigations are needed to elucidate the underlying mechanisms.

Most intriguingly, based on tumor cell lineage/state composi-
tions, PC cases were classified into two cellular subtypes that were 
prognostic independent of histopathological features. Further 
analyses led us to discover a 12-gene signature that appears to be 
fundamental to GAC carcinogenesis/propagation as it was not only 
highly prognostic in GAC-PC validation cohort but performed just 
as robustly in several large-scale localized GAC cohorts. Currently, 
to our knowledge there is no such signature in clinical use, and thus 
it has a high potential to stratify patients for more effective therapies 
as they become available.
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Methods
Patient cohort, clinical characteristics and sample collection. A total of 20 
patients with GAC with malignant ascites (PC) were included in this study. Based 
on the Lauren classification, all of the primary GACs were of diffuse type. The 
primary GAC diagnosis was confirmed through an endoscopic biopsy. Pathology 
results were verified independently by two experienced GI pathologists. In 
addition, computed tomography images of all patients were re-reviewed by an 
experienced imaging physician. Our reviews of pathology and radiology results 
confirmed that all cases except IP-070 (breast cancer metastatic to stomach 
determined by pathology and profiling) represented primary gastric cancer. None 
of the patients had a history or documented diagnosis of primary colon cancer, 
or imaging findings of colon cancer. The detailed clinical and histopathological 
characteristics are described in Supplementary Table 1, and representative 
computed tomography images are shown in Supplementary Fig. 1. GACs were 
staged according to the American Joint Committee on Cancer Staging Manual (8th 
edition)48,49. PC was confirmed by cytologic examination. This cohort included ten 
long-term survivors and ten short-term survivors. The long-term survivors were 
patients who survived more than 1 yr after the diagnosis of PC and the short-term 
survivors were patients who died within 6 months after the diagnosis of PC. Of the 
20 patients, 16 had signet-ring cell carcinoma. Her2 staining was performed and 
all tumors were Her2 negative. PC specimens were collected at The University of 
Texas MD Anderson Cancer Center (Houston, USA) under an Institutional Review 
Board-approved protocol (no. LAB01-543) after obtaining written, informed 
consent from each participant. Patients with diagnosed GAC-PC with ascites were 
approached when they required a therapeutic paracentesis. No other selection 
criteria were applied. This project was in accordance with the policy advanced 
by the Helsinki Declaration of 1964 and later versions. PC specimens were spun 
down for 20 min at 2,000g and pelleted cells (PC cells) were isolated, cryopreserved 
at −80 °C and used for scRNA-seq. All samples were processed using the same 
protocol and by the same research assistant.

MSI testing. The MSI test was not routinely done in clinic for gastric cancer when 
these patients were enrolled. For this study, only three patients were assessed for 
MSI test and reported as ‘microsatellite (MS) stable’. In six patients (all expired) 
there were no residual tissues for additional testing. For the remaining 13 patients, 
WES was performed on the same ascites samples or the ascites samples collected 
at a similar timepoint as the sample used for scRNA-seq, and was thus used for 
an unbiased genomic analysis of microsatellites. WES data were processed and 
mapped to human reference genome as previously described9. MSIsensor50, a 
validated algorithm for deriving MSI status from genomic sequencing data, was 
applied to the aligned BAM files for detection of somatic microsatellite changes. 
The MSIsensor score was below the suggested threshold (score > 10 for matched 
tumor–normal pair, score > 20 for tumor-only sample)50 and all 13 patients were 
designated as MS stable.

scRNA-seq library preparation and sequencing. Chromium single-cell 
sequencing technology from 10x Genomics was used to perform single-cell 
separation, complementary DNA amplification and library construction following 
the manufacturer’s guidelines. Briefly, the cellular suspensions were loaded on a 
10x Chromium Single Cell Controller to generate single-cell gel bead-in-emulsions. 
The scRNA-seq libraries were constructed using the Chromium Single Cell 
3ʹ Library & Gel Bead Kit v.2 (PN-120237, 10x Genomics). The HS dsDNA 
Qubit Kit was used to determine the concentrations of both the cDNA and the 
libraries. The HS DNA Bioanalyzer was used for quality-tracking purposes and 
size determination for cDNA and lower-concentrated libraries. Sample libraries 
were normalized to 7.5 nM and equal volumes were added of each library for 
pooling. The concentration of the library pool was determined using the Library 
Quantification qPCR Kit (KAPA Biosystems) before sequencing. The barcoded 
library at the concentration of 275 pM was sequenced on the NovaSeq6000 
(Illumina) S2 flow cell (100 cycle kit) using a 26 × 91 run format with 8 bp index 
(read 1). To minimize batch effects, the libraries were constructed using the same 
versions of reagent kits and following the same protocols, and the libraries were 
sequenced on the same NovaSeq6000 flow cell and analyzed together.

scRNA-seq data processing and analysis. Raw sequencing data processing, 
quality check, data filtering, doublets removal, batch-effect evaluation and data 
normalization. The raw scRNA-seq data were preprocessed (demultiplex 
cellular barcodes, read alignment and generation of gene count matrix) using 
the Cell Ranger Single Cell Software Suite provided by 10x Genomics. Detailed 
quality-control metrics were generated and evaluated. Genes detected in fewer 
than three cells and cells with low-complexity libraries (in which detected 
transcripts were aligned to less than 200 genes) were filtered out and excluded 
from subsequent analysis. Low-quality cells where >15% of transcripts derived 
from the mitochondria were considered apoptotic and also excluded. Following 
the initial clustering, we removed likely cell doublets from all clusters. Doublets 
were identified by the following methods: (1) Library complexity: cells are outliers 
in terms of library complexity. Cells in the top 1% of the distribution of genes 
detected per cell were removed. (2) Cluster distribution: doublets or multiplets 
likely form distinct clusters with hybrid expression features and exhibit an 

aberrantly high gene count. (3) Cluster marker gene expression: cells of a cluster 
express markers from distinct lineages (for example, cells in the T cell cluster 
showed expression of epithelial cell markers; cells in the B cell cluster showed 
expression of myeloid cell markers). We carefully reviewed canonical marker 
gene expression on UMAP plots and repeated the steps above a couple of times to 
ensure that we had filtered out most of the barcodes associated with cell doublets.

Following removal of the poor-quality cells and doublets, a total of 45,048 cells 
were retained for downstream analyses. Library size normalization was performed 
in Seurat15 on the filtered gene–cell matrix to obtain the normalized UMI (unique 
molecular identifier) count data as previously described51. Statistical assessment 
of possible batch effects was performed using the R package k-BET (a robust and 
sensitive k-nearest neighbor batch-effect test)12. k-BET was run on major immune 
cell types including B, myeloid, CD4 and CD8 T cells separately with default 
parameters. A control dataset with known significant batch effects was included 
to assist with data interpretation. We chose the k input value from 1% to 100% of 
the sample size. In each run, the number of tested neighborhoods was 10% of the 
sample size. The mean and maximal rejection rates were then calculated based on 
a total of 100 repeated k-BET runs. A low rejection rate indicates homogeneous 
mixing of samples from different batches. k-BET results suggested minimal batch 
effects in this dataset (Supplementary Fig. 2).

Unsupervised cell clustering, dimensionality reduction and cluster relationship 
analysis. Seurat15 was applied to the normalized gene–cell matrix to identify highly 
variable genes for unsupervised cell clustering. To identify highly variable genes, 
the MeanVarPlot method in the Seurat15 package was used to establish the mean–
variance relationship of the normalized counts of each gene across cells. We then 
chose genes whose log-mean was between 0.0125 and 3 and whose dispersion was 
above 0.5, resulting in 3,018 highly variable genes. The elbow plot was generated 
with the PCElbowPlot function of Seurat15, and based on which the numbers of 
significant principal components (PCs) were determined. Different resolution 
parameters for unsupervised clustering were then examined to determine the 
optimal number of clusters. For this study, the first ten principal components 
and the highly variable genes identified by Seurat15 were used for unsupervised 
clustering with a resolution set to 0.6, yielding a total of 20 cell clusters (Extended 
Data Fig. 1a). For visualization, the dimensionality was further reduced using 
either the t-SNE or UMAP13 methods with Seurat functions RunTSNE and 
RunUMAP, respectively. The principal components used to calculate the 
embedding were the same as those used for clustering.

In addition, Monocle 3 alpha (http://cole-trapnell-lab.github.io/
monocle-release/monocle3/)16 was applied as an independent tool for unsupervised 
clustering analysis (function cluster_cells) focusing on tumor cells, and UMAP 
was used by default with the Monocle functions reduce_dimension and plot_cells 
for dimensionality reduction and visualization of the Monocle clustering results. 
Monocle 3 alpha was also used to construct the single-cell trajectories. The function 
learn_graph was run with default parameters. Moreover, we applied an additional 
unsupervised clustering approach, the single-cell consensus clustering (SC3) 
analysis17, on tumor cells from all patients and on tumor cells from each individual 
PC specimen. SC3 was run with default parameters and independent of cell lineage 
annotation. Furthermore, to study the hierarchical relationships among tumor cell 
clusters, we performed unsupervised cluster analysis. The dendrogram was drawn 
using Pearson correlation coefficient (PCC) with average principal component 
analysis (PCA) space (Seurat function RunPCA) for each tumor cell cluster with 
the R package denextend52.

Sample distribution analysis. To quantify the distribution of each patient’s tumor 
cells across Seurat-defined cell clusters, we used the ratio of the observed to 
expected cell numbers in clusters to measure the enrichment of cells within a 
sample (tumor) across different cell clusters as previously described53. Given a 
contingency table of samples by clusters, we first applied the chi-squared tests to 
evaluate whether the distribution of cells of a sample across clusters significantly 
deviates from random expectations. We then calculated the Ro/e for each 
combination of samples and clusters as follows:

Ro=e ¼
observed
expected

where Ro/e is the ratio of the observed cell number to the expected cell number of 
a given combination of cluster and sample. The expected cell numbers for each 
combination of clusters and samples were obtained from the chi-squared test. 
Different from the χ2 values, which are defined as observed�expectedð Þ2

expected

I

 and could only 
indicate the divergence of observations from random expectations, Ro/e could 
indicate whether cells of a certain sample are enriched in a specific cluster. For 
example, if Ro/e > 1, it suggests that cells of the sample are more frequently observed 
than random expectations in a specific cluster; that is, enriched. If Ro/e < 1, it 
suggests that cells of a given sample are observed with less frequency than random 
expectations in a specific cluster.

Determination of major cell types and cell states. To define the major cell type of 
each single cell, DEGs were identified for each cell cluster using the FindAllMarkers 
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analysis in the Seurat15 package and the top 20 most significant DEGs were 
carefully reviewed. In parallel, feature plots were generated for the top 20 DEGs 
and a suggested set of canonical immune and stromal cell markers (Supplementary 
Table 2), a similar approach as previously described54,55, followed by a manual 
review process. Enrichment of these markers (for example, EPCAM for epithelial 
cells, PTPRC for immune cells, CD3D/E for T cells, CD8A/B for CD8 T cells, IL7R/
CD4/CD40LG for CD4 T cells, CD19/MS4A1/CD79A for B cells, COL1A1/COL1A2 
for fibroblasts, and so on) in certain clusters was considered a strong indication 
of the clusters representing the corresponding cell types (Extended Data Fig. 1). 
The two approaches were combined to infer major cell types for each cell cluster 
according to the enrichment of marker genes and top-ranked DEGs in each cell 
cluster, as previously described55.

Inference of large-scale CNVs, phylogenetic tree construction and correlation analysis. 
The tool inferCNV (https://github.com/broadinstitute/inferCNV) was applied to 
infer the large-scale CNVs from scRNA-seq data, and monocytes from this dataset 
were used as a control for CNV analysis. Initial CNVs were estimated by sorting 
the analyzed genes by their chromosomal locations and applying a moving average 
to the relative expression values, with a sliding window of 100 genes within each 
chromosome, as previously described10,19. In a subset of cases (n = 6) whose WES 
data were available, the true CNVs called from WES were used as the positive 
control to assess the performance of the inferCNV analysis. Finally, malignant cells 
were distinguished from normal cells based on the information integrated from 
multiple sources, including cluster distribution of the cells, marker gene expression, 
inferred large-scale CNVs and aneuploidy status.

To construct a phylogenetic tree from the CNV calls in each tumor cell of a 
specific sample, the relative CNVs were calculated using the inferCNV outputs and 
the average CNV values were computed for nonoverlapping genomic bins, each 
consisting of 30 genes. For each cell within a bin, we calculated an integer copy 
number by multiplying relative CNV value by 2 (diploid) and rounding the results 
off to the closest integers. The R package phangorn was then used to construct 
the phylogenetic maximal parsimony tree. The integer copy number profiles were 
re-segmented by the collection of breakpoints detected in each cell, so that each 
column in the data matrix corresponds to the longest interval uninterrupted by 
any variations across the cell population. The breakpoints in individual cells were 
determined by the R package copynumber56 under default parameters.

Correlation analysis of the CNVs inferred from scRNA-seq data and that identified 
using bulk WES. Copy number analysis using scRNA-seq data is limited due to the 
low resolution; therefore, only the arm-level events were included. The arm-level 
copy number ratio was calculated as the weighted average of copy number ratio 
of genes (scRNA-seq data, inferCNV output) or segments (WES data, the copy 
number segments) as follows:

CN ¼
P

CNi ´ LiP
Li

where CNi means the copy number ratio of the ith gene or segment. Li means the 
length of the ith gene or segmentation.

The Pearson correlation and Spearman correlation analyses were then 
conducted on the resultant arm-level copy number ratio.

Cell-of-origin inference. Origins of tumor cells were inferred by mapping our 
scRNA-seq data to the well-annotated single-cell database of HCL (http://bis.zju.
edu.cn/HCL)11 using the R package scHCL (https://github.com/ggjlab/scHCL). 
First, gene expression normalization was performed using the following formula:

E ¼ Count
sum Countð Þ ´ 10

5

where E denotes the normalized gene expression value; ‘Count’ denotes the raw 
UMI counts; and ‘sum (Count)’ is the sum of all raw UMI counts in one cell. 
The PCC between the normalized expression profile of each query cell and the 
expression profile of each annotated cell type from the HCL reference dataset 
was calculated using the scHCL software package. The PCC was estimated using 
6,075 signature genes provided by scHCL11. Cell lineage/type was subsequently 
assigned for each query cell based on the following criteria: PCC > 0.3; and the 
best-matched stomach-derived cell lineage/type or the best-matched cell lineage/
type if there was no stomach-derived cell lineage among the top five hits. Cells that 
did not have a good correlation coefficient (PCC < 0.3) with any cell lineage/type 
in the HCL database were classified as ‘other’. To examine the similarity between 
colorectal-like cells and cell doublets, we applied a doublet simulation approach. 
Therein, a random sampling of cells (excluding intestinal-like cells) was taken to 
generate 500 simulated doublets and these cells were used for the UMAP clustering 
along with colorectal-like cells.

Quantifying the similarity of gene expression distributions of cell lineages and 
clusters within and across patients. The Bhattacharyya distance metric (a distance 
metric that is effective at comparing pairwise probability distributions) was used 
to measure the similarity of gene expression distributions for all pairs of cell 

clusters between the long- and short-term survivors. We embedded cell clusters in 
two-dimensional space with PCA using the highly variable genes and retained the 
top 50 principal components for subsequent analysis. We randomly sampled 500 
cells from each tumor cell cluster of short-term survivors and long-term survivors, 
repeated 100 times and computed the Bhattacharyya pairwise distance between 
clusters as follows (a similar approach as described previously57,58):

DB ¼ 1
8

μ1 � μ2ð ÞTΣ�1 μ1 � μ2ð Þ þ 1
2
ln

detΣffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detΣ1detΣ2

p
 

where μ1 and μ2 are the mean vectors of each distribution, and Σ ¼ Σ1 þ Σ2ð Þ=2
I

.
For comparison, we also generated background distributions of clusters 

of short-term survivors (Short) by randomly sampling 100 pairs of cells and 
computing the Bhattacharyya distance between each pair of cells. In addition, 
we also generated the Bhattacharyya distance between cells randomly sampled 
independent of survival status (Random). We only evaluated clusters that had 
500 or more cells. Similarly, we computed the Bhattacharyya pairwise distance 
between different cell lineages (inferred by HCL) within and across patients. For 
the patient-level analysis, we randomly sampled 100 cells from each inferred cell 
lineage (for example, stomach pit cells, stomach mucosal cells, colorectal-like 
cells; Fig. 1h) and repeated 100 times, and computed the Bhattacharyya pairwise 
distance between different lineages as described above. For comparison, we 
also generated background distributions of each lineage by randomly sampling 
100 cells twice of the same lineage and computing the Bhattacharyya distance 
between each pair of cells, and also generated the Bhattacharyya distance between 
cells randomly sampled independent of lineage annotation (Random). We only 
evaluated the major lineages (for example, stomach pit cells, stomach mucosal cells, 
colorectal-like cells) that had 500 or more cells.

scRNA-seq imputation. Markov affinity-based graph imputation of cells 
(MAGIC)59 is a commonly used algorithm for denoising scRNA-seq data. It learns 
the manifold data and imputes likely gene expression in each cell by sharing 
information across similar cells. Here, we followed the concept of MAGIC and 
simplified the imputation process as follows: (1) Computation of affinity matrix via 
the FindNeighbors function from Seurat. This step constructs a k-nearest neighbor 
graph based on the Euclidean distance in PCA space and refines the edge weights 
between any two cells based on the shared overlap in their local neighborhoods 
(Jaccard similarity). It takes default k and the same number of principal 
components as used for unsupervised clustering. (2) Symmetrization of the affinity 
matrix using an additive approach. (3) Row-stochastic Markov-normalization 
of symmetric affinity matrix (so each row sums to 1) into Markov matrix, 
representing the probability distribution of transitioning from each cell to every 
other cell. (4) Imputation expression matrix by multiplying the Markov matrix by 
the original expression matrix.

Quantifying the contribution of cell lineage diversity to transcriptomic variation 
within tumors. Given that detection rate is a major source of cell-to-cell variation 
for scRNA-seq datasets60, we applied MAGIC59 to impute likely gene expression to 
reduce this unwanted source of variation. After MAGIC (t = 3), the top 15 principal 
components can explain 81% ~ 93% of the total variance in each patient. To quantify 
the extent to which lineage diversity explains transcriptomic variation within a 
tumor, we then performed one-way ANOVA tests on each of the top 15 principal 
components in each tumor, using a similar approach as previously described58. 
The one-way ANOVA tests were conducted using the aov function in the R stats 
package. ANOVA partitions the total variation into within-lineages variation and 
between-lineages variation. The percentages of variation that can be explained by 
lineage diversity in each PCA space were then calculated for each tumor.

Comparison of between- and within-patient variations. To compare the magnitudes 
of between- and within-patient variations in the transcriptomic profiles, we 
performed the one-way ANOVA tests on the top 15 principal components for 
tumor cells from patients that had 1,000 or more cells. The one-way ANOVA 
tests were conducted using the oneway.test() function in the R stats package. 
ANOVA partitions the total variation into between- and within-patient variation. 
In addition, we also performed the one-way ANOVA tests in the CNV profiles 
for each inferred lineage (for example, stomach pit cells, stomach mucosal cells, 
colorectal-like cells). The F statistic is the ratio of between-patient variation to 
within-patient variation, with F statistic >1 indicating that the between-patient 
variation is greater than the within-patient variation.

Inferring cell-cycle stage, hierarchical clustering, DEGs and pathway enrichment 
analysis. The cell-cycle stage was computationally assigned for each individual cell 
by the function CellCycleScoring that is implemented in Seurat15. Cell-cycle stage 
was inferred based on the expression profile of the cell-cycle-related signature 
genes, as previously described20. Hierarchical clustering was performed at multiple 
levels (all tumor cells together, by cell lineage and by patient) using the Ward 
minimum variance method. DEGs were identified for each cluster using the 
FindMarkers function in Seurat R package15 and DEG list was filtered with the 
following criteria: the gene should be expressed in 20% or more cells in the more 
abundant group; expression fold change > 1.5; and false discovery rate (FDR) Q 
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value < 0.05. The heat map was then generated using the pheatmap function in 
pheatmap R package for filtered DEGs. For pathway analysis, the curated gene sets 
(including Hallmark, KEGG and Reactome gene sets, n = 910) were downloaded 
from the Molecular Signature Database (MSigDB, http://software.broadinstitute.
org/gsea/msigdb/index.jsp), single-sample GSVA (ssGSVA) was applied to the 
scRNA-seq data and pathway scores were calculated for each cell using the gsva 
function in the GSVA software package61. Pathway enrichment analysis was done 
with the limma R software package. Significantly enriched signaling pathways were 
identified with an FDR Q value < 0.01.

To profile the interactions between biological pathways, the differentially 
expressed pathways were assembled into a network where nodes represent 
pathways and edges represent their interactions (if they have common genes). The 
weight of an interaction corresponds to its Jaccard index between each pathway 
pair. The Jaccard index is a measure of set (here it refers to pathway) similarity, 
and defines two sets (pathway A and pathway B) as the ratio of the size of their 
intersection over the size of their union (see the equation below):

J A;Bð Þ ¼ A\Bj j
A ∪ Bj j

For each pathway, its entity membership was represented as the set  
Pi = {e1, e2,…en }. The Jaccard index was computed between a pair of pathways  
A and B as J(A, B). Cytoscape62 was then used to visualize the network.

Generation of the 12-gene prognostic signature. To generate a gene expression 
signature that is clinically applicable, we performed multistep analysis (Fig. 5a).  
First, we compared the gene expression profiles of tumor cells between the 
gastric-dominant and GI-mixed groups and identified DEGs. The DEG list was 
then filtered based on the following criteria to select the most significant DEGs. 
Only the genes with an expression fold change >1.5 or <−1.5 and an FDR < 0.01 
and highly expressed (normalized UMI count > 1, expressed in at least 50% of cells 
from one of the two groups) were selected and taken into subsequent analysis. We 
next screened each of the DEGs based on their statistical correlation with patient 
survival using a univariate Cox proportional-hazards regression model, and only 
the DEGs that showed consistency with patient survival were selected (for example, 
DEGs highly expressed in the gastric-dominant group with a hazard ratio > 1 
or DEGs highly expressed in the GI-mixed group with a hazard ratio < 1). We 
identified 149 significant DEGs in total (that met the above criteria). After that, 
the Harrell concordance index (C-index)63 was applied to quantify the predictive 
accuracy of the prognosis-related DEGs. C-index was calculated using a univariate 
Cox proportional-hazards regression model and the R package survcomp. A 
C-index value of 0.5 indicates no predictive ability, whereas a value of 1 represents 
perfect predictive ability, similar to that previously described64,65. Finally, we 
performed a forward selection process to search for a set of DEGs that can achieve 
the largest C-index value based on the following procedures. We chose the gene 
that had a C-index > 0.7 and expression fold change >2.5 or <−2.5 as a seed (refers 
TM4SF1). The rest of the DEGs (n = 148) were then added to the signature, one at a 
time. Each time, we screened all of the rest of the genes one by one, then evaluated 
the C-index of the potential signature after adding a specific gene, and finally 
picked the gene that reached the highest C-index to the signature. We repeated this 
process until the C-index had reached a plateau and did not increase any more. For 
each DEG added to the signature, we labeled each sample based on the expression 
level of the corresponding gene using the following equation:

For gene g; Lg;j ¼
1 ´ I gð Þ;Vg;j≤median Vg

� �

�1 ´ I gð Þ;Vg;j>median Vg
� �

�

where I(g) = 1 if gene g is highly expressed in samples of the gastric-dominant 
group; otherwise, I(g) = −1.

L, g, j and V denote label, gene, jth sample and gene expression, respectively.
We then summed the scores for each sample and quantified the predictive 

performance of each derived signature based on its corresponding C-index value. 
Among all of the signatures derived from the seed, a 12-gene signature showed the 
highest C-index and was chosen for subsequent validation analyses. As we started 
from a relatively small number of carefully filtered DEGs (n = 149), no further 
statistic was applied to limit the size of the gene set.

Validation of the 12-gene prognostic signature. The signature was then subject to 
validation with both internally generated and publicly available datasets. Briefly, 
the signature score was calculated for each sample using a similar approach as that 
used by Kang et al.66. The workflow is illustrated in Supplementary Fig. 15. First, a 
sample–gene expression matrix (for 12 signature genes) was extracted from each 
normalized bulk RNA-seq or expression microarray dataset. Second, for each 
sample, a score of 1 or −1 was assigned for each of the 12 signature genes based 
on its relative expression (> or ≤ median value) and whether the signature gene 
was associated with gastric-dominant or GI-mixed features. Briefly, if the gene 
was among one of the seven genes that are associated with the gastric-dominant 
feature and its expression in a sample was less than or equal to the median value, 
we assigned a score of 1 for this gene for this specific sample, and we assigned a 
score of −1 if its expression was greater than the median value. If the gene was 

among one of the five genes that are associated with the GI-mixed feature and its 
expression in a sample was greater than the median value, we assigned a score of 1 
for this gene for this specific sample, and we assigned a score of −1 if its expression 
was less than or equal to the median value (Supplementary Fig. 15). After that, 
the scores of each sample were summed, which constituted the signature score. 
Finally, the samples were categorized into gastric-dominant or GI-mixed groups 
based on their corresponding signature scores: ≤median or >median, respectively. 
For the bulk RNA-seq datasets, the signature scores were calculated using the 
log-transformed FPKM (fragments per kilobase of transcript per million mapped 
reads) values. For the bulk expression microarray datasets, the signature scores 
were calculated using the normalized gene expression values.

Immune cell deconvolution. CIBERSORT67 was applied to the normalized bulk 
RNA-seq and microarray gene expression datasets with the LM22 gene signature 
to estimate the relative fractions of 22 immune cell types. In addition, the R 
package MCP-counter68 was applied to infer the abundance of eight immune cell 
subpopulations including T cells, CD8 T cells, cytotoxic lymphocytes, NK cells, B 
lineage cells, monocytic lineage cells, myeloid dendritic cells and neutrophils, as 
well as endothelial cells and fibroblasts.

Single-cell somatic variant analysis. For each sample, the reads were extracted from 
the original BAM file using the cell-specific barcodes and were aggregated to 
generate a sub-BAM file for each Monocle-defined cell cluster. Mutect2 (v.4.1.0.0)69 
was then applied to the sub-BAM files to identify somatic point variants. The 
Mutect2 outputs were run through our pipeline for filtering and annotation. 
Briefly, only Mutect2 calls located at the 3ʹ UTR and marked as ‘PASS’ were selected 
and taken into the next step. Variants with total read coverage < 30, variant read 
coverage < 6 or variant allelic fraction < 0.1 were removed. After that, common 
variants reported by the Phase-3 1000 Genomes Project or ExAC (the Exome 
Aggregation Consortium) with minor allele frequency greater than 0.5% were 
further removed. Additionally, we included a virtual normal panel of 33 germline 
samples from GAP-PC patients to help remove artifacts related to sequencing and 
mapping errors as well as common single nucleotide polymorphisms. The events that 
overlapped with variants called from this virtual normal panel were further excluded. 
Finally, the remaining somatic variants were carefully reviewed on the Integrative 
Genomics Viewer and variants with noisy background were further discarded. For 
variant-overlapping analysis at cluster level, we first made a unique list of variants by 
aggregating all quality-control-passed variants from the Monocle-defined tumor cell 
clusters of a sample. Then we queried their corresponding sub-BAM files for each 
unique variant site by chromosome and coordinates and the numbers of reference 
and variant alleles were counted, which were subsequently used to identify shared 
and unique variants among tumor cell clusters.

Public datasets. In addition to the scRNA-seq dataset generated internally for 
the discovery GAC-PC cohort, we included the bulk transcriptome sequencing 
(RNA-seq) data generated on an independent GAC-PC cohort from our recent 
study9 to validate the 12-gene prognostic signature. Moreover, we downloaded 
the normalized bulk RNA-seq data generated by TCGA on primary stomach 
adenocarcinoma (STAD) from the NCI Cancer Genomic Data Commons 
(NCI-GDC: https://gdc.cancer.gov). The RNA-seq data were processed and 
normalized by the NCI-GDC bioinformatics team using their transcriptome 
analysis pipeline. The clinical annotation of the TCGA STAD cohort was 
downloaded from a recent PanCanAtlas study70. The TCGA STAD cohort (n = 411) 
included both intestinal (n = 176) and diffuse type (n = 69) tumors.

Furthermore, we downloaded three other large-scale primary GAC 
datasets (GSE62254 (ref. 28), GSE15459 (refs. 27,71), GSE84437 (ref. 72)) from 
the Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/
geo/) to further evaluate the prognostic power of the 12-gene signature. The 
raw gene expression values from microarray experiments were preprocessed 
(background-corrected and log2-transformed) and quantile-normalized using 
the robust multi-array average algorithm73. For each sample, the expression 
measurements of all probes corresponding to the same gene ID were averaged to 
obtain a single measurement. For datasets GSE62254 and GSE15459, the clinical, 
histopathological and survival data as well as molecular signatures defined by each 
study27,28,71 were downloaded and used for the multivariate Cox regression analysis. 
These primary GAC datasets included both intestinal and diffuse types of GACs. 
The dataset GSE62254 (n = 300) included 134 diffuse types, 146 intestinal types 
and 20 mixed types of GACs. The dataset GSE15459 (n = 192) included 75 diffuse 
types, 99 intestinal types and 18 mixed types of GACs.

Additionally, to test the reliability of the HCL resource as a reference dataset 
and to evaluate the performance of our approach in cell lineage inference, we 
downloaded from the Data Portal of Human Cell Atlas (SCP259, https://data.
humancellatlas.org) the scRNA-seq dataset generated on normal human colon 
tissues using a SMART-Seq2 protocol by a recent study14. The same approach as 
outlined in the section ‘Cell-of-origin inference’ was applied to the SCP259 dataset 
for cell lineage inference.

Statistical analysis. In addition to the bioinformatics approaches described above 
for scRNA-seq data analysis, all other statistical analyses were performed using 
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statistical software R v.3.5.2. Analysis of differences on a continuous variable 
(for example, gene expression, pathway score) across two groups (a categorical 
independent variable, such as gastric-dominant versus GI-mixed) was performed 
by the nonparametric Mann–Whitney U test. The nonparametric Kruskal–Wallis 
test was applied to assess the significant difference on a continuous variable by a 
categorical independent variable with multiple groups (for example, across different 
tumor cell lineages/types). For survival analyses, including overall survival (OS), 
progression-free interval, disease-free survival (DFS), disease-specific survival 
(DSS), disease-free interval (DFI) and survival time from peritoneal metastasis, we 
used the log-rank test to calculate P values between groups, and the Kaplan–Meier 
method to plot survival curves. For the TCGA dataset, the clinical annotation 
and the times calculated for OS, DFS, DSS and DFI were downloaded from the 
PanCanAtlas study70. For other large-scale primary GAC datasets downloaded 
from GEO, the OS times were downloaded from their corresponding published 
studies27,28,71,72. The hazard ratios were calculated using the multivariate Cox 
proportional-hazards model. All statistical significance testing in this study was 
two-sided. To control for multiple hypothesis testing, we applied the Benjamini–
Hochberg method to correct P values and the FDR Q values were calculated. 
Results were considered statistically significant at P value or FDR Q value of <0.05.

Statistics and reproducibility. Supplementary Fig. 2b was generated from n = 100 
repeated k-BET runs. A random sampling of cells (n = 100 times) was performed 
to generate the simulated doublets in Supplementary Fig. 6b, to calculate the 
Bhattacharyya pairwise distance between tumor cell clusters from samples of 
long- and short-term survivors in Extended Data Fig. 2c and to calculate the 
Bhattacharyya distance between and within inferred cell lineages in Extended Data 
Fig. 6. The statistical methods used for each analysis are described within the figure 
legends. The key findings of this study were validated by analyzing large-scale 
public datasets as described above in the section ‘Public datasets’. For the histology 
image shown in Fig. 1f: because of the nature of clinical care in this disease, 
only one diagnostic biopsy specimen per patient was available. Obviously, this is 
representative of the tumor and sufficient for making clinical decisions, but is also 
used here for analysis that parallels how we practice in the clinic. Keeping with 
the theme of our report on ITH, it is likely that metaplasia has been overgrown 
by tumor cells; however, the phenotypic appearance of metaplasia and the classic 
appearance of goblet cells are highly reliable patterns and true representations of 
the presence of a premalignant element in a particular GAC. Lack of metaplasia in 
the primary specimen, however, does not exclude its previous existence (sampling 
errors or abolition by eventual GAC).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All single-cell RNA-sequencing data generated by this study have been be 
deposited in the European Genome-Phenome Archive (EGA, https://ega-archive.
org/). The data can be accessed under the accession number EGAS00001004443. 
Bulk mRNA-seq expression data (normalized) generated by The Cancer Genome 
Atlas (TCGA) on primary stomach adenocarcinoma were downloaded from NCI 
Cancer Genomic Data Commons (NCI-GDC: https://gdc.cancer.gov). Three 
large-scale primary GAC datasets (GSE62254 (ref. 28) and GSE15459 (refs. 27,71), 
GSE84437 (ref. 72)) were downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | A single cell transcriptome map of PC. a, t-SNE (t-distributed stochastic neighbor embedding) plots showing unbiased clustering 
analysis of 45,048 single cells that passed quality control in this study. Each dot represents a single cell. Cells are color coded for (left to right): the 
associated cell types, cell clusters, the corresponding patient origins, and survival status. b, t-SNE as in a, showing expression of canonical marker genes 
used for cell types assignment.
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Extended Data Fig. 2 | Relationships between tumor cell clusters and correlation with patient survival. a, the UMAP (uniform manifold approximation 
and projection) plot of PC tumor cells, showing the global data structure. Tumor cell clusters from short-term survivors appeared closer to each other on 
the UMAP plot than to cell clusters from long-term survivors. b, the dendrogram showing relationships between tumor cell clusters. c, the Bhattacharyya 
pairwise distance between tumor cell clusters from samples of long and short-term survivors. Overall, the pairwise distance between clusters of long and 
short survivors was significantly larger than that within the clusters of Short or random, indicating distinct transcriptomic profiles associated with survival. 
Each dot represents one sampling, in totally 100 times. Box, median ± interquartile range. Whiskers, the minimum and maximum values. P values were 
calculated by a two-sided Wilcoxon rank sum test with Benjamini-Hochberg correction. P < 2.2e-16 represents a P value approaching 0.
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Extended Data Fig. 3 | Cell lineage assignment was not confounded by differences in cell cycle states. The histograms showing tumor cell lineage 
compositions before (top) and after (bottom) regressing out cell cycle-related genes, respectively.
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Extended Data Fig. 4 | unsupervised clustering analysis revealed inter-patient and intra-tumoral transcriptome heterogeneity in PC tumor cells. The 
UMAP plots showing unsupervised clustering analysis of tumor cells (using Seurat) from 14 samples underwent HCL mapping and cell lineage inference 
as in Fig. 1g. Cells are colored by their corresponding cluster IDs (left) and sample origins (right). Dashed circles highlight samples that formed two or 
more tumor cell clusters (related to Fig. 1g).
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Extended Data Fig. 5 | SC3 unsupervised clustering analysis of PC tumor cells by patient. SC3 results of 3 representative patients are shown. Each column 
represents a cell. The lineage annotation is shown in the top annotation track. The fractions of intestinal cells (IP-067, IP-073) or stomach pit cells (IP-009) 
in each SC3 defined cell clusters are labelled at the top. Some of the representative marker genes of intestine and stomach origins are labelled on the right. 
Two-sided proportion tests were performed between C1 and C4 (IP-067), C1 and C3 (IP-073), and C1 and C2 (IP-009), and all are significant (P < 2.2e-16).
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Extended Data Fig. 6 | The Bhattacharyya distance between and within inferred cell lineages. The Bhattacharyya pairwise distance between different 
tumor cell lineages was computed as previously described (see Methods). Only the major lineages that had 500 or more cells were included in the 
analysis. The Bhattacharyya distance between cells of the same lineage and the Bhattacharyya distance between cells randomly sampled independent of 
lineage annotation (random) was also computed to provide background distributions for statistical comparison. Each dot represents one sampling, in total 
100 times. Box, median ± interquartile range. Whiskers, the minimum and maximum values. P values were calculated by a two-sided Wilcoxon rank-sum 
test with Benjamini-Hochberg correction. P < 2.2e-16 represents a P value approaching 0.
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Extended Data Fig. 7 | Representative examples of somatic variants identified on 3’uTR using scRNA-seq data. Integrative Genomics Viewer (IGV) 
was used for visualization of the QC-passed somatic variants. The Bam files of Monocle defined cell clusters C1, C2, C3 of sample IP-067 were loaded 
to IGV and snapshots of 3’UTr mutations are shown for representative events: somatic mutations shared by PC tumor cells from all three clusters (top); 
mutations shared by only two of the three clusters (bottom left and middle), and mutations that were unique to one of the three clusters (bottom right) 
are shown. For each representative mutation across Monocle cell clusters, the gene name, chromosome, start position, base change, total read coverage, 
and tumor variant allele fraction (TAF) are shown. Total_dp: total read depth.
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Extended Data Fig. 8 | Prognostic significance of 12-gene signature in TCGA primary gastric cancer cohort and correlation with molecular subtypes 
and clinical variables. a, Disease-specific survival (DSS, left) and progression-free interval (PFI, right) of patients whose PCs were in the GI-mixed and 
gastric- dominant groups defined by expression of the 12-gene signature. The analyses were performed with the Kaplan–Meier estimates and two-sided 
log-rank tests. Twenty-five out of 411 patients whose DSS information were not available were excluded from survival analysis. b, the alluvial plots display 
relationships between the PC subtypes defined by the 12-gene signature (left strip) and the molecular subtypes defined by TCGA multi-omic analysis 
(left), tumor stages (middle), histology types (right), and presence of local recurrence and/or distant metastasis (c). N.S., not statistically significant.  
P value for alluvial plots were calculated by a two-sided Fisher’s Exact test.
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Extended Data Fig. 9 | Validation of the 12-gene signature in a large-scale localized GAC cohort from Cristescu R, et al. a, The multivariate Cox 
proportional hazard model analysis. The 12-gene signature, clinical and histopathological variables as well as the molecular signatures defined by the 
original study were included. For each variable, the reference level is the first one. Block in center of error bars represent the weighted mean. Whiskers 
of error bars represent the 95% confidence interval. b, (left) Alluvial plot shows the relationships between the PC subtypes (left strip) and the molecular 
signatures (right strip). The two-sided Fisher’s Exact test was used to calculate the P values and asterisks indicate significant enrichment events. 
(right) The 12-gene signature scores were calculated and compared across the four molecular groups defined by the original the study. Box, median ± 
interquartile range. Whiskers, 1.5X interquartile range. P value was calculated by one-way Kruskal-Wallis rank-sum test.
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Extended Data Fig. 10 | Validation of the 12-gene signature in a large-scale localized GAC cohort from Ooi CH, et al. a, The multivariate Cox proportional 
hazard model analysis. The 12-gene signature, clinical and histopathological variables as well as the molecular signatures defined by the original study 
were included. For each variable, the reference level is the first one. Block in center of error bars represent the weighted mean. Whiskers of error bars 
represent the 95% confidence interval. b, (left) Alluvial plot shows the relationships between the PC subtypes (left strip) and the molecular signatures 
(right strip). The two-sided Fisher’s Exact test was used to calculate the P values and asterisks indicate significant enrichment events. (right) The 12-gene 
signature scores were calculated and compared across the four molecular groups defined by the original the study. Box, median ± interquartile range. 
Whiskers, 1.5X interquartile range. P value was calculated by one-way Kruskal-Wallis rank-sum test.
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