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Abstract

Severe immune-related adverse events (irAEs) occur in up to 60% of patients with melanoma 

treated with immune checkpoint inhibitors (ICIs). However, it is unknown whether a common 

baseline immunological state precedes irAE development. Here we applied mass cytometry by 

time of flight, single-cell RNA sequencing, single-cell V(D)J sequencing, bulk RNA sequencing 

and bulk T cell receptor (TCR) sequencing to study peripheral blood samples from patients with 

melanoma treated with anti-PD-1 monotherapy or anti-PD-1 and anti-CTLA-4 combination ICIs. 

By analyzing 93 pre- and early on-ICI blood samples and 3 patient cohorts (n = 27, 26 and 18), 

we found that 2 pretreatment factors in circulation—activated CD4 memory T cell abundance 

and TCR diversity—are associated with severe irAE development regardless of organ system 

involvement. We also explored on-treatment changes in TCR clonality among patients receiving 

combination therapy and linked our findings to the severity and timing of irAE onset. These 

results demonstrate circulating T cell characteristics associated with ICI-induced toxicity, with 

implications for improved diagnostics and clinical management.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting Summary 

linked to this article.

Although ICIs have revolutionized cancer treatment, approximately 10–60% of ICI-treated 

patients with melanoma currently develop severe immune-related toxicities, with the rate 

of toxicity closely linked to the specific therapy administered1–9. Also known as irAEs, 

ICI-induced toxicities impact a range of organ systems, including the lungs, liver, heart, 

skin, pituitary gland and gastrointestinal tract4, and can be associated with substantial 

morbidity requiring urgent medical intervention. Such morbidities can lead to the suspension 

of anticancer treatment, and in the most severe cases, death1,4,10–14. The biological drivers 

of irAEs are poorly characterized and there is no method in standard clinical practice to 

identify which patients are at highest risk for developing them1,4.

Accordingly, several groups have investigated potential biomarkers of ICI-induced toxicity 

based on blood or tumor analysis15–29. However, these studies have generally been focused 
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on early on-treatment prediction or single organ systems15–23,27–29, with only modest 

performance for predicting irAEs in the pretreatment setting independent of the affected 

organ system24,25. Recently, a candidate pneumonitis-only irAE biomarker using tumor 

immunohistochemistry was reported; however, this biomarker was indirectly identified 

from The Cancer Genome Atlas, which lacks toxicity annotations, and was evaluated in a 

case-control setting without the inclusion of low-grade irAEs23. Another group identified 

a single-nucleotide polymorphism within the gene encoding microRNA-146a that was 

associated with severe irAE development30. Still, other groups have identified ICI response 

biomarkers without examining irAEs31–37.

Given the considerable heterogeneity of ICI-induced irAEs, including variation in their 

timing, severity and location, determining the factors that cause them has remained 

challenging. Pre-existing autoantibodies15, autoreactive tissue-resident T cells29 and T cells 

with specificity for viral antigens stemming from chronic viral infection14,27 have all 

been implicated in irAEs. Changes in the gut microbiome leading to increased colonic 

interleukin-1ß expression were also recently reported in ICI-induced colitis26. Given these 

observations, several groups have investigated parallels between irAEs and autoimmune 

disease29. Indeed, case reports have shown that ICIs can cause frank autoimmunity38–40, 

suggesting that irAEs could represent subclinical autoimmunity in a subset of patients. 

However, whether a common immunological state precedes distinct manifestations of ICI-

induced toxicity is unknown.

In this study, we set out to systematically evaluate immunological features in the peripheral 

blood associated with ICI-induced toxicity in patients with metastatic melanoma. Across 

distinct single-cell and bulk profiling modalities, we identified common T cell features 

linked to the development of severe irAEs within three months of treatment initiation. These 

features were independent of key clinical variables, including durable clinical response and 

treatment with anti-PD-1 monotherapy or anti-PD-1 and anti-CTLA-4 combination therapy. 

Leveraging these findings, we developed predictive models of irAE development and 

explored their utility for pretreatment and early on-treatment identification of ICI-induced 

toxicity.

Results

Clinical cohort characteristics.

To study candidate risk factors associated with severe (grade 3+) irAE development, we 

identified 78 patients with metastatic melanoma, 71 of whom were evaluable after exclusion 

criteria were applied (Fig. 1 and Supplementary Table 1). Among these patients, 33 were 

treated with anti-PD-1 monotherapy, 38 were treated with anti-PD-1 plus anti-CTLA-4 

combination therapy and 90% had no previous ICI history (Supplementary Table 1). All 

patients were monitored closely during and after ICI treatment for irAE development 

(median follow-up time of 14.9 months; median time to grade 3+ irAE of 1.5 months). Most 

patients experienced one or more irAEs, ranging from mild (grade 1) to life-threatening 

(grade 4) and affecting diverse organ systems, which were classified by board-certified 

clinicians according to standardized criteria (CTCAE v.5.0; Methods). We stratified the 71 
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patients into 3 nonoverlapping cohorts, a single-cell discovery cohort and a larger bulk 

cohort divided into training and validation sets (Fig. 1 and Supplementary Table 1).

Determinants of severe irAEs from pretreatment blood.

We started by performing high-dimensional single-cell profiling of pretreatment peripheral 

blood samples from 18 patients (single-cell discovery cohort, Figs. 1 and 2a; Supplementary 

Tables 2 and 3) of which 8 patients experienced severe irAEs after treatment initiation. 

By applying mass cytometry by time of flight (CyTOF) to profile 35 leukocyte markers in 

each sample (Supplementary Table 4), we analyzed 20 distinct subpopulations from nearly 

800,000 evaluable cells, encompassing 7 major mononuclear lineages (B cells, plasmablasts, 

CD4 and CD8 T cells, natural killer (NK) cells, natural killer T (NKT) cells, monocytes) 

(Fig. 2b,c, Supplementary Figs. 1 and 2a, Supplementary Table 5 and Methods). Next, we 

interrogated each subpopulation with respect to severe irAE outcomes (Fig. 2c). Of all 

subpopulations, only CD4 effector memory T (TEM) cells were significant after multiple 

hypothesis correction, with higher levels in pretreatment blood associated with severe irAE 

development (P = 0.0002; Q = 0.004; Fig. 2c,d, Supplementary Figs. 1b and 2b,c and 

Supplementary Table 3).

To corroborate this finding, we examined the same peripheral blood samples from 13 

patients using 5′ droplet-based 10x Chromium single-cell RNA sequencing (scRNA-seq) 

paired with single-cell V(D)J sequencing (scV(D)J-seq) of TCR and B cell receptor (BCR) 

clonotypes. After quality control (Extended Data Fig. 1a and Methods), the 5′ assay 

yielded 24,807 cells and 7 major lineages classified on the basis of canonical marker 

gene expression (Fig. 3a). Employing unsupervised clustering, we identified 32 distinct 

transcriptional states across the 7 cell types (Fig. 3a and Methods). We then calculated the 

association between cell state abundance and the development of severe irAEs. Remarkably, 

across these 32 cell states, we found that CD4 T cell state 5, which lacks expression 

of CCR7 and SELL (CD62L) and is consistent with CD4 TEM cells, was most strongly 

associated with severe irAE development (nominal P = 0.05, two-sided, unpaired Wilcoxon 

rank-sum test; Fig. 3b). This state was also most correlated with CD4 TEM levels measured 

by CyTOF (Fig. 3b). When considering the joint probability of this result via permutation 

testing, we calculated an empirical P value of 0.003 (Methods). Further analysis revealed 

that CD4 T cell state 3, which is closely related to state 5 by unsupervised hierarchical 

clustering (Extended Data Fig. 1b), also showed an expression profile consistent with CD4 

TEM (Fig. 3c and Extended Data Fig. 1c). When combined with state 5, the resulting cluster 

(CD4 T 5 + 3) was more significantly associated with severe irAE development and CD4 

TEM levels enumerated by CyTOF (Fig. 3b and Supplementary Table 3). In fact, across all 

82 possible pairwise combinations of cell states within each major cell type, CD4 T 5 + 

3 achieved both the highest Spearman correlation against CD4 TEM levels enumerated by 

CyTOF and the strongest association with severe irAE development (Extended Data Fig. 

1d,e and Methods).

Differential gene expression analysis against other CD4 T cell states revealed that CD4 

T 5 and 3 are enriched for markers of activated effector cells including HLA-DRA, 

MKI67, TNFRSF4 (OX40), CCL5 and IL32 and depleted in markers of TCM cells (SELL/

Lozano et al. Page 4

Nat Med. Author manuscript; available in PMC 2022 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CD62L) and naive T cells (CCR7, TCF7)41–43 (Fig. 3c and Extended Data Fig. 1c). Using 

Seurat Azimuth for reference-guided cell labeling44, we confirmed that CD4 TEM cells 

are most associated with severe irAE and most similar to the CD4 T 5 + 3 population 

identified by de novo analysis (Extended Data Fig. 2 and Methods). Moreover, when the 

CD4 T 5 + 3 population was subdivided into activated and resting subsets based on the 

expression of canonical activation markers (HLA-DX, MKI67), the activated subset showed 

the strongest association with severe irAE development (P = 0.002, two-sided, unpaired 

Wilcoxon rank-sum test; Fig. 3d, Extended Data Fig. 3a and Supplementary Table 6). 

We verified this finding using reference-guided annotation with Azimuth and with CyTOF 

(Extended Data Fig. 3a,b and Supplementary Table 6), suggesting that activated CD4 TEM 

cells preferentially underlie severe ICI toxicity.

Given this observation, we wondered whether pretreatment TCR diversity in activated 

CD4 TEM cells might also correlate with severe ICI toxicity. Indeed, single-cell TCR 

clonotype diversity (Shannon entropy45,46) of activated CD4 T 5 + 3 cells was elevated 

in patients who experienced severe irAEs (area under the receiver operating characteristic 

curve (AUC) = 0.90, P = 0.05; Fig. 3e and Methods). This suggests that TCR richness, 

defined as the number of unique clonotypes within a sample and a key component of 

diversity metrics including Shannon entropy45,46, eclipses the loss of diversity resulting 

from clonal expansion when activated CD4 TEM cells are quantified relative to total 

peripheral blood mononuclear cells (PBMCs) (Extended Data Fig. 4a,b). In other words, 

among total PBMCs, the TCR richness of activated CD4 TEM cells underlies an overall 

increase in pretreatment TCR diversity in patients destined to develop severe irAE. Notably, 

definitions of clonotype diversity that incorporate richness have substantial precedent in 

previous literature, including studies of circulating and tumor-infiltrating T cells35,37,47,48, 

providing a strong foundation for their application in this work.

While this association between TCR diversity and severe irAE development was diminished 

or absent in other T cell subpopulations, when combining all evaluable T cells, we observed 

a striking trend between bulk TCR diversity in pretreatment samples and severe irAE 

development (AUC = 0.80; Fig. 3e). Moreover, this association was primarily attributable 

to CD4 T cells with an effector memory profile (low CCR7 and SELL) (Fig. 3f and 

Extended Data Fig. 4c–f). In contrast, differences in peripheral blood BCR diversity linked 

to severe irAE development were less pronounced (Extended Data Fig. 4g). Collectively, 

these findings suggest that a more diverse TCR repertoire at baseline in CD4 TEM cells, 

broadly reflected in bulk peripheral blood, is associated with the development of severe ICI 

toxicity.

Extended analysis of T cell features associated with irAEs.

Having identified candidate pretreatment determinants of severe irAE development, we next 

set out to verify our findings in a larger independent group of patients. Based on sample 

size estimates (Methods), we applied bulk RNA sequencing (bulk RNA-seq) to pretreatment 

peripheral blood samples from 53 additional patients with metastatic melanoma spanning 

two cohorts (n = 26 and 27) treated with single-agent (anti-PD-1, n = 29) or combination-

agent (anti-PD-1 and anti-CTLA-4, n = 24) checkpoint blockade (Fig. 1 and Supplementary 
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Tables 1 and 7). To assess circulating immunological features in bulk transcriptomic profiles, 

we applied CIBERSORTx49, a machine learning approach for the enumeration of cell 

subsets from bulk tissue expression profiles49–52, and MiXCR, a computational approach 

for V(D)J clonotype assembly and quantitation from bulk RNA-seq data53 (Supplementary 

Tables 8 and 9). By direct comparison to cytometry assays, we confirmed the accuracy of 

CIBERSORTx for deconvolution of major blood lineages, including the specificity of an 

activated CD4 memory T cell (TM) signature for activated CD4 TEM cells using peripheral 

blood from 17 patients with melanoma (CyTOF) (Extended Data Fig. 5, Supplementary Fig. 

3 and Methods).

Remarkably, of 13 PBMC subsets evaluable by CIBERSORTx, only activated CD4 TM 

cell levels were associated with severe irAE development (Fig. 4a; P < 0.05 in each 

cohort, one-sided, unpaired Wilcoxon rank-sum test; Supplementary Table 9 and Methods). 

Moreover, higher TCR clonotype diversity in bulk peripheral blood also predicted severe 

irAE development, analogous to our findings in the single-cell discovery cohort (Fig. 

4b; P = 0.0004, two-sided, unpaired Wilcoxon rank-sum test; Supplementary Table 9). 

Baseline TCR diversity further correlated with irAE severity across ICI treatment types, 

whether assessed by Shannon entropy or the Gini–Simpson index45 (Extended Data Fig. 

6, Supplementary Table 9 and Methods), again reflecting its association with severe irAE 

development.

Given these results, we wondered whether a composite model integrating both features—

activated CD4 TM cell abundance and bulk TCR diversity—might outperform either feature 

alone (Fig. 4c and Methods). Indeed, using a logistic regression framework to train a 

bivariable model on bulk cohort 1, the resulting composite model yielded an AUC of 0.85 

in bulk cohort 1 (P = 0.02) and an AUC of 0.90 (P = 0.0004) in the held-out bulk cohort 2 

(Fig. 4d and Supplementary Table 10), outperforming either feature alone (Supplementary 

Table 11). Furthermore, when evaluating all 53 patients by leave-one-out cross-validation 

(LOOCV), the composite model exhibited strong classification performance, underscoring 

its robustness (AUC = 0.82, P = 0.0002; Extended Data Fig. 7a,b). It also outperformed 

pathways identified by gene set enrichment analysis (GSEA) and previously published 

candidate biomarkers15,23,24 assessed in bulk transcriptomic data (Extended Data Fig. 7c 

and Supplementary Table 12). Additionally, higher pretreatment composite model scores 

were not significantly associated with durable clinical benefit, emphasizing specificity for 

irAE biology (Supplementary Table 13).

We next asked if the composite model could predict severe irAEs independent of key 

patient parameters. Indeed, regardless of ICI therapy type, ICI response status, age, sex, 

melanoma subtype or affected organ system, both in held-out patients (bulk cohort 2) and 

across both bulk cohorts evaluated by LOOCV, the model remained predictive (Fig. 4d, 

Extended Data Fig. 7d and Supplementary Tables 10 and 14). Moreover, in patients treated 

with combination ICIs, the standard of care for high-performing patients with metastatic 

melanoma54, the composite model yielded an AUC of 1.0 in bulk cohort 2 (P = 0.04) and 

an AUC of 0.86 by LOOCV for predicting severe irAE development across all evaluable 

patients (P = 0.01) (Fig. 4d, left and Extended Data Fig. 7a). While PD-1 monotherapy was 

associated with a lower rate of irAE development3,6–9,55, the model showed generalizability 
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to severe irAE prediction in PD-1-treated patients (Fig. 4d, left and Extended Data Fig. 

7a). Moreover, when trained on patients treated with PD-1 monotherapy alone, the model 

generalized to combination ICIs (AUC = 0.88 for grade 3+irAEs), with the same also being 

true in reverse (AUC = 0.795 for PD-1) (Fig. 4d, right).

We next explored model performance as a function of irAE grade and organ system 

involvement. Although trained on a single categorical outcome (severe versus no severe 

irAEs), pretreatment composite model scores increased as a function of irAE severity 

(Fig. 4e and Extended Data Fig. 7e,f), the number of symptomatic (grade 2+) irAEs 

experienced per patient (Extended Data Fig. 7g and Supplementary Table 9) and the number 

of affected organ systems per patient (Extended Data Fig. 7h–j and Supplementary Table 

15). The model was also effective when trained to distinguish grade 2 from grade 0/1 irAEs 

(Extended Data Fig. 7e,f), albeit with reduced performance for patients treated with PD-1 

monotherapy (Supplementary Table 16).

To test whether the pretreatment composite model could predict time-to-severe irAE, we 

next assigned patients to high versus low groups by defining an optimal cut-point in bulk 

cohort 1 (Methods). In held-out bulk cohort 2, patients in the high group experienced severe 

irAEs within a median of 1.74 months after treatment initiation, whereas the vast majority 

of patients in the low group never experienced a severe irAE (P < 0.0001, hazard ratio (HR) 

= 11.6; Extended Data Fig. 8a). Similar results were seen for each therapy type separately, 

whether assessed in bulk cohort 2 (P < 0.025, HR = 8.3 and 14.8 for combination and PD-1, 

respectively; Extended Data Fig. 8b,c) or across cohorts by LOOCV (P = 0.0028 and HR = 

12.2 for combination therapy, Fig. 5a; P = 0.03 and HR = 9.0 for PD-1 therapy). The model 

also predicted time-to-severe irAE in multivariable models independently of therapy type, 

age, sex and other key parameters (Supplementary Table 17).

Peripheral TCR clonal expansion linked to severe irAEs.

Previous case reports of patients with melanoma experiencing deadly ICI-mediated 

toxicity have shown evidence of clonally expanded self- or virus-reactive T cells in the 

affected tissue, linking self- and pathogen-recognizing T cell clones to lethal toxicity10,14. 

Accordingly, we hypothesized that pretreatment TCR clonotypes in peripheral blood might 

show a greater propensity to expand in patients destined to develop severe irAE after 

ICI treatment initiation. To examine this, we applied immunoSEQ to profile bulk TCR-ß 

repertoires in paired pretreatment and early on-treatment PBMC samples collected from 15 

patients with metastatic melanoma treated with combination therapy (Methods). Using a 

TCR clonality index that is robust to variation in the number of clones captured (Pielou’s 

evenness45), we confirmed significant concordance between MiXCR (bulk RNA-seq) and 

immunoSEQ (DNA) in pretreatment samples from these 15 patients, underscoring the 

integrity of our composite model in bulk cohorts 1 and 2 (Extended Data Fig. 9a). We 

then assessed TCR clonal expansion (that is, clonal dominance) after treatment initiation, 

as measured by an increase in 1 – Pielou’s evenness. In support of our hypothesis, we 

observed both significantly increased TCR clonal expansion and persistence of baseline 

clones in patients who developed severe irAE compared to those who did not (Fig. 5b, 

Extended Data Fig. 9b,c and Supplementary Table 18). In severe irAE patients for whom 
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we performed scRNA-seq and single-cell TCR sequencing (scTCR-seq) (n = 3), we also 

observed preferential expansion of the activated CD4 TEM compartment among clones 

detected in both blood draws (Extended Data Fig. 9d–g and Methods). Moreover, persistent 

CD4 T cell clones were highly enriched for the CD4 T 5 + 3 population identified by 

scRNA-seq analysis (Fig. 5c and Extended Data Fig. 9e).

We additionally explored whether the degree of TCR clonal expansion early on-treatment 

correlated with the timing of severe irAE development. Indeed, whether assessed in tertiles 

by log-rank test or by rank via Cox proportional hazards regression, patients with a greater 

magnitude of TCR clonal expansion developed severe irAE sooner (P = 0.003, log-rank test; 

Fig. 5d and Supplementary Table 19). These results were significant independently of the 

time between blood draws and when restricting the analysis to on-treatment blood draws 

obtained within one month of cycle 1 ICI (Extended Data Fig. 9h and Supplementary Table 

19).

Circulating leukocytes in autoimmune disease.

Lastly, we asked whether the baseline peripheral blood profile of patients at risk 

for severe irAE development parallels clinical autoimmunity. To this end, we applied 

CIBERSORTx to examine 15 leukocyte subsets in bulk peripheral blood transcriptomes 

spanning 6 studies56–61 and 587 patients with either systemic lupus erythematosus (SLE) 

or inflammatory bowel disease (IBD) relative to 191 healthy controls (Supplementary 

Table 20). Using a meta-analytical framework to integrate P values across studies and 

pathologies (Extended Data Fig. 10 and Methods), we found that circulating activated CD4 

TM cells were most significantly associated with autoimmune disorders relative to healthy 

individuals (Fig. 6). These data suggest that severe irAEs might represent a subclinical 

or latent autoimmune state that is clinically unmasked on ICI administration, in line with 

recent case reports38–40 and multi-institutional data showing that patients with autoimmunity 

treated with immune checkpoint blockade have a propensity to experience flares in their 

autoimmune symptoms62–64.

Discussion

In this study, we identified two baseline features—activated CD4 TM cell abundance and a 

more clonally diverse TCR repertoire in the peripheral blood—as promising determinants 

of ICI-induced irAEs in patients with metastatic melanoma. Although previous studies have 

linked (1) activated T cells and clonally expanded TCRs in postmortem tissue to fatal 

irAEs (myocarditis, encephalitis)10,14 and (2) effector CD4 T cells to organ-specific irAEs 

(destructive thyroiditis, hepatitis)27,28, this work extends the scope of these findings to 

pretreatment T cell characteristics of irAE development in diverse organ systems. Integration 

of these features into a composite model predicted greater risk for severe irAEs and 

demonstrated sufficient granularity to distinguish different irAE grades and burdens.

We also identified a striking correlation between early T cell clonal expansion and the 

timing of severe irAE onset in patients treated with combination therapy. Future studies are 

needed to further characterize this finding and elucidate the relative contributions of CD4 

and CD8 T cells to irAE-associated clonal dynamics.
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Consistent with the possibility of a common immunological mechanism underlying both 

irAE development and autoimmunity, we additionally observed elevated levels of activated 

CD4 TM cells in patients with SLE or IBD. While it is reasonable to predict that patients 

with previous autoimmunity would be enriched for higher activated CD4 T cell levels and 

higher rates of severe irAE from ICI, none of the patients in our cohort had documented 

pre-existing autoimmunity. Moreover, such patients may develop compensatory immune 

regulatory mechanisms before starting ICI that change their baseline irAE risk. Nevertheless, 

it is important to study this connection in greater detail in future studies and determine 

whether circulating activated CD4 TM cells exhibit an increased propensity for recognizing 

self-antigens in patients at risk for severe ICI toxicity. Indeed, the risk of flare is greater 

in patients with autoimmune disease treated with combination immunotherapy, particularly 

those with gastrointestinal or rheumatological conditions63. More reliably identifying these 

at-risk patients during ICI decision-making could improve their outcomes.

This study has several limitations. First, it employed a retrospective design using banked 

clinical samples. Second, patients received either anti-PD-1 monotherapy or anti-PD-1 plus 

anti-CTLA-4 combination therapy, which are associated with different risk profiles for 

severe irAE development. Third, while most irAEs occur within the first three months of ICI 

treatment initiation, a subset can occur later65. Whether our findings generalize to late-onset 

irAEs will need to be investigated since the median time-to-severe irAE development in 

our cohorts was 6.4 weeks (consistent with clinical trial data65), with no irAEs occurring 

beyond 3 months (Supplementary Tables 3 and 9). Fourth, the timing of on-treatment 

peripheral blood collection during immunotherapy with respect to treatment initiation was 

not homogeneous. Finally, it is yet unclear whether our findings will generalize to ICI-

related irAE risk in other cancer types.

Future studies should address these limitations, along with greater application of single-cell 

profiling both before and early during immunotherapy. In addition, it will be important to 

confirm our findings in larger multi-institutional cohorts and assess whether the circulating 

immunological determinants of ICI-induced toxicity vary based on the organs most likely to 

be involved. If prospectively validated, these findings could facilitate treatment adaptation to 

improve the risk profile of immune checkpoint blockade, with implications for the prediction 

and potential prevention of ICI-mediated toxicities.

Methods

Study design and participants.

The samples analyzed in this study were collected with informed consent for research use 

and were approved by the Yale University School of Medicine and Washington University 

School of Medicine institutional review boards, in accordance with the Declaration of 

Helsinki (2013) as part of observational registry studies focusing on melanoma. Eligible 

patients were aged >18 years with metastatic melanoma treated with ICI treatment 

consisting of either anti-PD-1 blockade (nivolumab or pembrolizumab) or combination 

immune checkpoint blockade (anti-PD-1 (nivolumab) and anti-CTLA-4 (ipilimumab); Fig. 

1). Ninety percent of patients were naive to any previous immune checkpoint blockade at 

the time of pretreatment blood collection (Supplementary Table 1).All patients underwent 
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routine clinical assessment for irAEs and response by board-certified medical oncologists. 

Surveillance occurred before each cycle of ICI treatment (approximately every 3 weeks), 

and in several cases, more frequently (for example, by inpatient medical staff in patients 

admitted to the hospital for severe irAEs). It also continued, when applicable, after 

completion of the treatment course. All irAEs were classified according to the United States 

Health and Human Services Common Terminology Criteria for Adverse Events (CTCAE) 

v.5.0, with grade ≥2 and ≥3 considered symptomatic and severe, respectively. Within and 

across patient cohorts, irAEs spanned diverse organ systems including the gastrointestinal 

tract, skin, liver, pituitary, thyroid, adrenal, musculoskeletal, ocular, pancreatic and cardiac 

systems (Extended Data Fig. 7i and Supplementary Tables 1 and 15). Three patients 

experienced a systemic inflammatory syndrome related to ICI administration (YUGIM, 

YUHERN and YUTORY; Supplementary Table 1). All severe irAEs occurred within three 

months of ICI initiation, a landmark period during which no patients in this cohort died. 

Response was scored as durable clinical benefit, no durable benefit or not evaluable as 

defined previously66,67. We identified three cohorts of patients who met the aforementioned 

eligibility criteria and had pretreatment PBMC samples collected just before the first cycle 

of anti-PD-1 or combination ICI administration (median 0 d; range 0–2 months). PBMCs 

from each cohort (pretreatment for all patients and pre/on-treatment pairs for 15 patients) 

were analyzed as depicted in Fig. 1 and Supplementary Table 1.

Blood collection and processing.

Peripheral blood specimens were collected in K2EDTA Vacutainer tubes (Becton Dickinson) 

and processed within 1 h of phlebotomy. PBMC extraction was by either an ammonium 

chloride or Lymphoprep (STEMCELL Technologies) protocol. The Lymphoprep protocol 

was applied according to the manufacturer’s instructions. With the ammonium chloride 

protocol, 4–8 ml of blood was mixed with 20 ml of cold ammonium chloride lysing buffer 

(0.1 M of ammonium chloride, 0.01 M of Tris-HCl) and incubated for 5 min at room 

temperature. Cells were then centrifuged at 300g for 5 min and washed with 5 ml of cold 

PBS. PBMC samples were cryopreserved in 10% dimethyl sulfoxide/90% FBS. Cryovials 

were placed in Nalgene Mr. Frosty containers (Thermo Fisher Scientific) for 24 h, then 

stored in liquid nitrogen until cellular and RNA processing for expression analysis.

Mass cytometry.

Metal-conjugated antibodies were either purchased preconjugated from Fluidigm or 

purchased purified from BioLegend, Thermo Fisher Scientific or Cell Signaling Technology 

and subsequently conjugated to metals using Maxpar Antibody Labeling Kits (Fluidigm) 

according to the manufacturer’s instructions. All CyTOF antibodies are provided in 

Supplementary Table 4.

PBMCs from each of 28 patients were prepared for CyTOF as indicated in Supplementary 

Table 1. Cryopreserved cell suspensions were first thawed by holding cryovials in a 37 

°C water bath for 1–2 min without submerging the cap. Subsequently, 1–3 × 106 PBMCs 

in single-cell suspension were incubated with Human TruStain FcX (BioLegend) at room 

temperature for 10 min to block nonspecific antibody binding, followed by incubation with 

metal-conjugated antibodies against cell surface molecules (Supplementary Table 4) for 
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20 min on ice. Cells were also incubated with Cell-ID Cisplatin (Fluidigm) according to 

the manufacturer’s instructions to identify viable cells. After treatment with intracellular 

fixation and permeabilization buffers (Thermo Fisher Scientific), cells were incubated 

with metal-conjugated antibodies against intracellular proteins (Supplementary Table 4). 

Cells were then washed and stained with Cell-ID Intercalator-Ir (Fluidigm) diluted in PBS 

containing 1.6% paraformaldehyde (Electron Microscopy Sciences) and stored at 4 °C until 

acquisition. After a wash step, sample acquisition was then performed using the Helios 

System (Fluidigm) at an event rate of <400 s−1.

To reduce technical variation between samples, we used Ce beads in each sample and 

normalized the files together using Bead Normalizer v0.3 (https://github.com/nolanlab/bead-

normalization/wiki/Installing-the-Normalizer). To further minimize technical variability, we 

limited our sample processing and acquisition batches to four, used the same reagent lots 

across all samples and made no major adjustments to Helios calibration. We also noted 

that Astrolabe does not compare numerical intensities between samples; rather it analyzes 

each sample separately, with the assumption that a given subset is the same whether the 

underlying marker intensities are shifted or not. Thus, the platform has been reported to be 

resistant to batch effects68.

Mass cytometry data analysis.

CyTOF data were initially analyzed with Cytobank v8.0 and v8.1 (Beckman Coulter) using 

the FlowSOM algorithm for hierarchical cluster optimization and the viSNE algorithm 

(5,000 iterations, perplexity = 100) for visualization of high-dimensional data69,70. 

Subsequent cell subpopulation identification and data visualization were performed using 

the Astrolabe Cytometry Platform v3.6 and v4.0 (Astrolabe), which leverages the 

Ek’Balam algorithm71, a knowledge-based hierarchical annotation strategy coupled with 

unsupervised clustering, for automated labeling of cell subpopulations. In total, 20 cell 

subpopulations spanning major mononuclear lineages in peripheral blood were identified 

and quantified (Supplementary Table 5). For each patient sample, cell subpopulation levels 

were normalized to sum to 1, with unclassifiable cells based on protein marker expression 

excluded from the analysis. To corroborate Astrolabe, we used Cytobank to perform blinded 

manual gating of major cell populations including CD4 TEM cells (Supplementary Figs. 

1 and 2a,b). The total abundance of CD4 TEM cells, whether calculated as a fraction of 

total PBMCs or circulating T cells, but not as a fraction of CD4 T cells, was significantly 

associated with severe irAE development (Supplementary Fig. 2c).

Flow cytometry.

PBMCs collected from five healthy donors were analyzed by flow cytometry (Extended 

Data Fig. 5e, Supplementary Fig. 3 and Supplementary Table 1). Briefly, 2–5 million PBMC 

cells were treated with TruStain FcX Fc Receptor Blocking Solution (BioLegend) for 10 min 

at room temperature to block Fc receptors and then stained with fluorophore-tagged surface 

antibodies for 30 min at room temperature. The following antibodies were used to stain 

the cells: FITC-conjugated anti-human CD45 (clone 2D1; BioLegend); AF700-conjugated 

anti-human CD3 (clone OKT3; BioLegend); APC-conjugated anti-human CD4 (clone 

OKT4; BioLegend); PE/Cy7-conjugated anti-human CD8 (clone SK1; BioLegend); APC-
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Cy7-conjugated anti-human CD19 (clone HIB19; BioLegend); PerCp/Cy5.5-conjugated 

anti-human CD14 (clone HCD14; BioLegend); and BV605-conjugated anti-human CD56 

(clone 5.1H11; BioLegend). Cells were then washed twice with ice cold PBS-based buffer 

(1× PBS, 2% FBS, 1 mM of EDTA) and stained with 4′,6-diamidino-2-phenylindole (DAPI) 

(BioLegend) to evaluate cell viability. Antibody capture beads (BD Biosciences) were used 

to compensate each fluorophore in the experiment. Stained cells were analyzed by flow 

cytometry with operator assistance using a MoFlo Legacy instrument (Beckman Coulter) at 

the Siteman Flow Cytometry Core at the Washington University School of Medicine. After 

exclusion of DAPI-positive cells and putative doublets based on forward and side scatter 

analysis, major lymphocyte populations including B cells, CD4 T cells, CD8 T cells and 

NK cells were enumerated as a percentage of total lymphocytes using FlowJo v.10 (FlowJo 

LLC).

scRNA-seq and scV(D)J-seq library preparation and sequencing.

Single-cell suspensions from PBMC samples were obtained as described in above and 

prepared to a concentration of 700–1,200 viable cells μl−1 using a hemacytometer 

(Thermo Fisher Scientific) or Coulter Counter (Beckman Coulter Life Sciences) for cell 

counting, according to the manufacturers’ instructions. Single-cell suspensions subsequently 

underwent library preparation for scRNA-seq with paired scV(D) J-seq for TCR and BCR 

clonotypes using the 5′ transcriptome kit (10x Genomics) according to the manufacturer’s 

instructions. Complementary DNA libraries were sequenced on a NovaSeq instrument 

(Illumina) with 2 × 92 base pair (bp) paired-end reads targeting a mean of 20,000 reads 

per cell.

scRNA-seq analysis (discovery cohort).

Raw scRNA-seq reads were barcode-deduplicated and aligned to the hg38 reference 

genome using Cell Ranger v.3.1.0, yielding sparse digital count matrices, which were 

analyzed to identify cell types and cellular states using Seurat v.3.1.5 or v.3.2.1 (ref.72). 

Outlier cells were identified and removed based on the following criteria: (1) >25% 

mitochondrial content or (2) cells with less than 100 or greater than 1,500–3,000 expressed 

genes, depending on sample-level distributions. After normalization (NormalizeData) and 

variable feature identification (FindVariableFeatures with n = 2,000 features), we applied 

FindIntegrationAnchors (dims = 1:30) to identify anchors and IntegrateData (with default 

parameters) to perform batch correction. Once integrated, we applied principal component 

analysis (PCA) and uniform manifold approximation and projection (UMAP) using the 

2,000 most variable genes and the top 30 principal components. FindClusters was applied 

to identify cell types and cellular states with a resolution parameter set to 3, yielding 37 

clusters.

All identified clusters were assigned to major cell lineages based on the expression of 

canonical marker genes: CD3D/CD3Ehi = T cells; CD8A/CD8Bhi and NKG7/GNLYlo 

= CD8 T cells; non-CD8 T cells with high IL7R expression and low NKG7/GNLY = 

CD4 T cells; NKG7/GNLYhi and CD3D/CD3Elo = NK cells; CD14 or FCGR3Ahi = 

monocytes; FCER1Ahi = dendritic cells (DCs); MS4A1hi = B cells; HBBhi = red blood 

cells; PPBPhi = platelets. Cells with high expression of CD3D/E and GNLY/NKG7 that 
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were not annotated as CD8/CD4 T cells were included in a T or NKT cell group, denoted 

T/NKT. Clusters annotated as red blood cells or platelets were omitted from further analysis. 

To assess the effective doublet rate, we cross-referenced cellular barcodes with single-cell 

BCR (scBCR) and TCR (scTCR) clonotypes. By determining (1) the percentage of non-T 

cells anomalously mapped to TCR clonotypes (denoted m) and (2) the frequency (that 

is, recovery rate) of annotated T cells with a matching scTCR clonotype (denoted f), we 

calculated an effective double rate (m/f) of 2.2%. The effective doublet rate calculated for 

scBCR clonotypes mapping to non-B cells was the same (also 2.2%). Since the effective 

doublet rate was reasonably low, we eliminated all single cells with aberrant expression of 

TCR or BCR clonotypic sequences. We then repeated PCA, UMAP and FindClusters as 

described above, yielding 32 clusters. Two red blood cell clusters, marked by very high HBB 
expression, remained and were removed from the analysis, followed by one final round of 

PCA, UMAP and FindClusters, yielding a final set of 32 clusters (that is, states) and the 

low-dimensional embedding shown in Fig. 3a and Extended Data Fig. 1a.

All 32 states were assessed for their association with severe irAE development (x axis of 

Fig. 3b) and CD4 TEM abundance as measured by CyTOF (y axis of Fig. 3b). Among them, 

CD4 T cluster 5 was most strongly correlated with both variables (Fig. 3b). To determine the 

statistical significance of this result, we calculated the joint probability of (1) being ranked 

first by each measure and (2) achieving a P value and Spearman correlation coefficient at 

least as strong as CD4 T cluster 5. To calculate this probability empirically, we implemented 

a permutation scheme, where cell fractions associated with each scRNA-seq cluster were 

independently shuffled across all patient samples, then evaluated for (1) and (2) above. 

By repeating this process 10,000 times, we calculated an empirical P value of 0.003 for 

CD4 T cluster 5. We also performed a pairwise combinatorial analysis, restricting pairs of 

cell states to the same major cell type to maintain biological coherence (B cells, CD4 T 

cells, CD8 T cells, NK cells, monocytes) and compared each of 82 possible cell cluster 

combinations to CD4 TEM levels enumerated by CyTOF and severe irAE development 

(Extended Data Fig. 1d,e). CD4 T cell clusters 5 and 3 emerged as the top-ranking pair. 

Using the abovementioned statistical approach, we calculated an empirical P value of 0.002 

for this result. To identify the differentially expressed genes (DEGs) in Fig. 3c, we applied 

Seurat FindMarkers with default parameters to the CD4 T 5 + 3 population versus other 

CD4 T cell states.

To evaluate the relative utility of unsupervised clustering for delineating cellular 

determinants of irAE development, we leveraged a reference-guided annotation framework44 

within Seurat v.4.0.1 (Azimuth) to project our scRNA-seq dataset onto a PBMC atlas 

of 161,764 cells spanning 6 major lineages and 27 finer-grained subsets defined with 

scRNA-seq and codetection of over 220 protein markers44. First, we preprocessed the 

query dataset following the quality control steps described above, yielding 24,807 cells. 

We then normalized the query dataset by SCTransform, applied FindTransferAnchors to the 

query and reference datasets using a precomputed supervised PCA transformation with 50 

dimensions, then applied MapQuery to map the cell type labels and UMAP structure from 

the reference to the query dataset.
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Among the 27 cell states identified by Azimuth (Extended Data Fig. 2a), CD4 TEM 

was most strongly associated with severe irAE development and most correlated with 

CD4 TEM cells enumerated by CyTOF (Extended Data Fig. 2c). Among two other 

CD4 TEM-like subsets identified by Azimuth (CD4 CTL, CD4 proliferating), CD4 

proliferating showed the highest expression of HLA-DX and lowest expression of SELL 
(Extended Data Fig. 2d), which is consistent with an activated CD4 TEM phenotype. 

Additionally, when examining Azimuth-imputed protein expression from antibody-derived 

tag data, only CD4 TEM and CD4 proliferating states showed hallmarks of TEM cells 

(CD45ROhiCD45RAloCD27lo; Extended Data Fig. 2e). Indeed, a population combining 

CD4 TEM and CD4 proliferating was most associated with severe irAE development 

(Extended Data Fig. 2c). Hypergeometric testing was applied to assess overlap in cellular 

barcodes between the combined CD4 TEM + CD4 proliferating population (Azimuth) and 

states defined by de novo clustering. CD4 T 5 + 3 emerged as the top hit (Benjamini–

Hochberg-adjusted P = 2.5 × 10−7). Despite strong overlap between unsupervised and 

supervised approaches, CD4 T 5 + 3 was more associated with severe irAE development and 

CyTOF than populations labeled by reference-guided annotation (Extended Data Fig. 2f).

Bulk RNA-seq library preparation, sequencing and quantification.

Cryopreserved cell suspensions were thawed as described above. RNA was subsequently 

extracted using the RNeasy PowerLyzer Tissue & Cells Kit (QIAGEN) and quality was 

assessed with a 2100 Bioanalyzer System (Agilent Technologies). All samples were 

sufficiently high quality for TruSeq RNA Exome analysis (DV200 > 30%) and were prepared 

using the TruSeq RNA Exome Kit (Illumina) according to the manufacturer’s instructions. 

After hybrid capture, cDNA libraries were pooled and sequenced on a HiSeq 2500 

instrument (Illumina) using 2 × 150 bp paired-end reads with a target of 20–25 million reads 

per sample. Raw reads were quantified with Salmon v.0.12.0 using the GENCODE v.29 

reference transcriptome; the following command line arguments were used with otherwise 

default parameters: --seqBias--gcBias--posBias--validateMappings--rangeFactorizationBins 

4. Read counts were normalized to gene-level transcripts per million (TPM) using tximport 

v.1.10.1 (ref.73). Only samples with a mapping rate ≥60% and successful TCR assembly 

(see the V(D)J receptor profiling and clonotype analysis below) were included for further 

analysis, with the exception of 3 samples with mapping rates >40% (but < 60%) and 

successful TCR assembly, which were included. In total, 53 sequenced samples (88%) in 

bulk cohorts 1 and 2 satisfied these criteria (Fig. 1 and Supplementary Table 8).

Bulk RNA-seq deconvolution.

To determine leukocyte composition in bulk RNA-seq profiles of PBMCs, we 

applied CIBERSORTx v.1.0.41 (https://cibersortx.stanford.edu)49 with the LM22 signature 

matrix49,51 to the TPM matrix of each cohort (Fig. 1 and Supplementary Table 1). 

CIBERSORTx was separately applied with B-mode batch correction and no quantile 

normalization to each sequencing batch. LM22, which consists of highly optimized 

reference profiles for distinguishing 22 functionally defined human hematopoietic subsets51, 

has been widely validated against flow cytometry for accurate enumeration of leukocyte 

subsets in whole blood and PBMCs, whether profiled by RNA-seq or microarray49,51,66. 

CIBERSORTx and the performance of the LM22-activated CD4 TM cell profile14,49,74 
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were further corroborated in this work through gene expression analysis (CCR5, SELL, 

TCF7 and CD27; Extended Data Fig. 5a) and comparison between CIBERSORTx, mass 

cytometry, flow cytometry and scRNA-seq using PBMC samples from patients with 

melanoma (Extended Data Fig. 5b–f and Supplementary Table 1). All LM22 subsets except 

the granulocyte and macrophage subsets were evaluated in this work (n = 15; Fig. 4a), 

with their relative fractions renormalized to sum to 1 for each sample. While a total of 

15 subsets were evaluated, 2 were sparsely detected by CIBERSORTx (regulatory T (Treg) 

cells, gamma delta T cells) and could not be assessed by Wilcoxon rank-sum test in Fig. 4a.

V(D)J receptor profiling and clonotype analysis.

For the single-cell discovery cohort, raw scV(D)J-seq reads were mapped with Cell Ranger 

v.3.1.0 to reference refdata-cellranger-vdj-GRCh38-altsensembl-4.0.0 and the resulting 

clonotype assemblies were downloaded from the Loupe V(D)J browser v.3.0.0 (10x 

Genomics). Given that activated TM cells arise from clonal expansion75,76, the former are 

expected to have lower TCR diversity than their naive counterparts77, provided that (1) 

cells from both populations are equally sampled (that is, their counts are equivalent) or (2) 

variation in total T cell counts is normalized out (Extended Data Fig. 4a). However, by 

disregarding variation in total T cell frequency, such sampling ignores richness—the number 

of unique species (clonotypes) within a population and a key factor underlying immune 

repertoire diversity. As such, we primarily used Shannon entropy45,46 to characterize 

immune repertoire diversity in this work, an information theoretic metric that combines 

evenness and richness in a single measure (Extended Data Fig. 4a).

For each evaluable patient sample in the single-cell discovery cohort (Figs. 1 and 2a and 

Supplementary Tables 2 and 3), the TCR clonotype repertoire was randomly sampled 

(without replacement) to equalize the number of evaluable PBMC cells across patients 

while addressing technical variation in TCR recovery. To maximize the pool of TCR clones 

available for sampling, patients with <100 TCR clones were excluded (n = 4; YUTAUR, 

YUTORY, YUHERN and YUTHEA). We then calculated Shannon entropy (R package 

vegan v.2.5–6 (ref.78)) relative to total PBMCs for each T cell subset and averaged the 

resulting values across 100 iterations of this procedure for the remaining 9 patients (Fig. 

3e and Extended Data Fig. 4b,d–f). Shannon entropy was analyzed as described above for 

scBCR clonotypes across IGK, IGL and IGH chains in the same nine patients (Extended 

Data Fig. 4g).

For bulk cohorts 1 and 2, after adapter sequence trimming using Skewer v.0.2.2 (ref.79), 

TCR clonotypes were assembled and quantitated with MiXCR v.3.0.125 using the following 

command: mixcr align -p rna-seq -s hsa -O allowPartialAlignments=true data_R1.fastq.gz 

data_R2.fastq.gz alignments.vdjca (Supplementary Table 8). For each patient sample, TCR 

clonotype diversity was measured in aggregate for TCR-α and TCR-β chains using Shannon 

entropy (R package vegan v.2.5–6 (ref.78)) and compared between patients based on irAE 

severity (Fig. 4b,c, Extended Data Fig. 6a,c and Supplementary Table 9). We additionally 

applied the Gini–Simpson index45, which was calculated using the R package immunarch 

v.0.6.5 (https://doi.org/10.5281/zenodo.3367200), to evaluate bulk TCR diversity according 

to irAE severity (Extended Data Fig. 6b,d and Supplementary Table 9). Of note, TCR 
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richness is a key component for calculating both Shannon entropy and the Gini–Simpson 

index.

Analysis of T cell clonal dynamics from bulk PBMCs.

Bulk TCR-ß chain profiling was performed on paired pretreatment and early on-treatment 

PBMCs from 15 patients treated with combination ICIs (Supplementary Tables 1 and 

18). No patients had on-treatment peripheral blood collected after the onset of severe 

irAE. Genomic DNA was extracted using the DNeasy Blood & Tissue Kit (QIAGEN) 

and submitted for survey-resolution immunoSEQ (Adaptive Biotechnologies). Data from 

productive TCR-ß chain rearrangements were exported using the immunoSEQ Analyzer 

online tool and evaluated for TCR-ß repertoire richness and diversity using Pielou’s 

evenness45, with increased 1 – evenness associated with increased clonality. The Pielou’s 

evenness results from immunoSEQ profiling were compared with bulk RNA-seq (MiXCR), 

which revealed concordance (Extended Data Fig. 9a). We also verified that all pretreatment 

and on-treatment samples were properly paired by cross-comparison of TCR-ß CDR3 

sequences. Clonal expansion was inferred by analyzing the difference in clonality, defined 

as 1 – Pielou’s evenness in each sample, between paired on- and pretreatment time points 

(Fig. 5b and Extended Data Fig. 9b). More specifically, to calculate the change in clonality 

from baseline, pretreatment clonality was subtracted from on-treatment clonality in a paired 

fashion, thereby normalizing all pretreatment samples to zero (Fig. 5b, left). The data from 

Fig. 5b were also analyzed without normalizing on-treatment samples to paired pretreatment 

samples in Extended Data Fig. 9b.

To assess freedom from severe irAE, the degree of clonal expansion, denoted δ, was evenly 

divided into tertiles using the R package dplyr v.1.0.7 (Fig. 5d and Extended Data Fig. 9h). 

This yielded the following groups: no clonal expansion, δ < 0, n = 5; intermediate, 0 < δ < 

0.009, n = 5; and high clonal expansion, δ > 0.009, n = 5. We applied these thresholds to 

the full immunoSEQ cohort (n = 15; Fig. 5d) and to patients with blood samples obtained on 

ICI treatment day 1 and <1 month later (n = 7; Extended Data Fig. 9h). Additionally, when 

represented in rank space, the degree of clonal expansion was significantly associated with 

time-to-severe irAE development in Cox regression models and was independent of the time 

between blood draws, the number of productive TCR clones detected and the age and sex of 

each patient (Supplementary Table 19).

Analysis of persistent T cell clones.

Paired pretreatment peripheral blood scRNA-seq and scTCR-seq were performed for 

three patients (Fig. 5b) who experienced severe irAEs with variable levels of clonal 

expansion: YUALOE, YUNANCY and YUHONEY (Fig. 5c, Extended Data Fig. 9d–g and 

Supplementary Table 18). Of note, samples from these three patients were not previously 

profiled by scRNA-seq or scV(D)J-seq in the single-cell discovery cohort. Sequencing 

libraries were generated and processed for quality control identically to those described in 

the single-cell discovery cohort. Mapping was performed with Cell Ranger v.5.0.1.

To analyze persistent clones—which we defined as productive TCR-ß CDR3 nucleotide 

sequences shared between paired pretreatment and on-treatment blood samples—we 
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interrogated the immunoSEQ data for shared clonotypes with at least 2 templates in 1 blood 

draw (pretreatment or on-treatment) and at least 1 template in the other blood draw (60% of 

all shared clones, on average). This allowed us to preferentially focus on persistent clones 

that either expanded or contracted. The resulting sequences were cross-referenced with the 

TCR-ß CDR3 nucleotide sequences from the pretreatment scTCR-seq libraries, which were 

further cross-referenced with scRNA-seq data and filtered for cells annotated as T cells 

by Azimuth (applied as described above) (Extended Data Fig. 9d). In total, 1,504 single-

cell transcriptomes with paired immunoSEQ clonotype data were identified. Significant 

Spearman correlations between pretreatment single-cell and immunoSEQ TCR clonotype 

frequencies were observed for each patient (ρ > 0.59; P < 0.0002), underscoring the integrity 

of our data. Importantly, to maximize stringency and avoid classification artifacts, when 

annotating CD4 and CD8 T cell-derived clonotypes, we only considered TCR clonotypes 

with uniform expression of positive lineage markers (CD4 > 0 and CD8A/B = 0 for CD4 T 

cells; CD8A or CD8B > 0 and CD4 = 0 for CD8 T cells). In all, 69% of all cross-referenced 

clonotypes could be unambiguously labeled by this approach (Extended Data Fig. 9e). For 

the plot shown in Fig. 5c, we calculated the mean log2 fold change between CD4 T 5 and 3 

versus the remaining CD4 T cell clusters in the single-cell discovery cohort (Extended Data 

Fig. 1b) and then selected the top 20 genes for subsequent analysis. Enrichment of this gene 

set was determined using single-sample GSEA(R package escape v.1.0.1 (ref.80)), which we 

applied to T cells labeled by Azimuth or labeled as described above for persistent CD4/CD8 

T cells. For the analysis shown in Extended Data Fig. 9f,g, productive frequencies of 

persistent T cell clones measured by immunoSEQ were grouped into CD4 and CD8 T cells, 

with differences in productive frequencies displayed on a per-clonotype basis (Extended 

Data Fig. 9g) or in aggregate (Extended Data Fig. 9f) and compared to bulk clonal expansion 

from baseline (Fig. 5b).

Integrative models to predict irAE development.

Activated CD4 TM cell abundance and bulk TCR clonotype diversity were individually 

associated with severe irAE development (Fig. 4a,b and Supplementary Table 11). 

Accordingly, we explored integrative modeling as a means of improving performance. While 

several techniques were assessed, including nonlinear modeling with random forests, logistic 

regression (glm in R) achieved comparable performance and was selected owing to the 

relative simplicity and robustness of a generalized linear model. Before training, we tested 

each feature in bulk cohorts 1 and 2 for outliers using the ROUT test81 with a false discovery 

rate = 10%. Of 88 data points (2 features × 53 samples), 3 outliers were detected, all from 

activated CD4 TM cells in bulk cohort 1. Regardless of the training cohort, all detected 

outliers were invariably from among these three samples. Therefore, for each integrative 

model, we determined the maximum fraction maxF of activated CD4 TM cell levels from 

among all non-outlier samples in the training cohort. We then used maxF as a ceiling for all 

samples.

The composite model was trained to predict severe irAE (grade 3+) development in several 

ways, as summarized in Supplementary Table 10. These include: training on bulk cohort 

1 and testing on held-out bulk cohort 2 (Fig. 4d, left); training on one therapy type and 

testing on another (Fig. 4d, right); and training across bulk cohorts using LOOCV. For all 
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models assessed by LOOCV, the analysis was repeated n times, where n is the total number 

of patients. In each iteration, the model was trained on each patient except the ith patient and 

evaluated on the held-out ith patient. To mitigate overfitting when dividing patients into high 

and low groups by LOOCV, we applied Youden’s J statistic to determine the threshold that 

optimized sensitivity and specificity in each training cohort, then allocated the held-out ith 

patient on the basis of this threshold.

Composite model scores were assessed by receiver operating characteristic (ROC) analysis. 

Models trained to discriminate severe from non-severe irAEs were used to predict future 

development of severe irAE (Fig. 4d, Extended Data Fig. 7a and Supplementary Table 11), 

irAE grade (Fig. 4c,e and Extended Data Fig. 7b,e), the number of irAE-impacted organ 

systems (Extended Data Fig. 7h–j and Supplementary Table 15) and the time-to-severe irAE 

development (Fig. 5a, Extended Data Fig. 8 and Supplementary Table 17). They were also 

assessed in different patient subgroups (Fig. 4d, Extended Data Fig. 7d and Supplementary 

Table 14) and compared to pathways and previously published biomarkers evaluated in 

bulk RNA-seq (Extended Data Fig. 7c). Composite models were additionally validated at 

different irAE grade thresholds (Extended Data Fig. 7f and Supplementary Table 16) and 

tested separately by therapy type to predict irAE development (Figs. 4d and 5a, Extended 

Data Figs. 7a,d–f and 8b,c and Supplementary Table 16).

Assessment of circulating leukocyte composition in autoimmune disorders.

Peripheral blood gene expression datasets profiled by bulk RNA-seq or microarrays and 

spanning 239 patients with SLE, 348 patients with IBD and 191 paired healthy controls, 

were downloaded from the Gene Expression Omnibus56–61 (GEO) (Supplementary Table 

20). RNA-seq data from Hung et al.58 were downloaded as a preprocessed expression 

matrix and TPM-normalized before analysis. Affymetrix microarray datasets (n = 5) 

were downloaded as CEL files, MAS5-normalized (affy v.3.12 (ref.82) in R), mapped 

to Entrez gene identifiers using a custom chip definition file specific to each platform 

(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/) and converted to 

HUGO gene symbols. One dataset (Burczynski et al.56) did not have raw CEL files 

available; instead we obtained preprocessed expression data from GEO. In cases for which 

multiple probe sets mapped to the same gene symbol, we selected the probe set with 

highest mean log2 expression across samples for further analysis. In the Palmer et al.60 

dataset, some samples identified as controls were from subjects with Escherichia coli 
infection, celiac disease or progression to Crohn’s disease; these were excluded from the 

analysis. For replicate samples in the Carpintero et al.57 dataset, the most recent sample 

was selected. For the Peters et al.61 dataset, only pretreatment blood samples from patients 

with Crohn’s disease (week 0) were further analyzed. CIBERSORTx49 was applied with 

LM22 (refs.49,51) to the Hung et al.58 bulk RNA-seq dataset as described above, while 

microarray datasets were either run with (1) quantile normalization and B-mode batch 

correction (non-HG-U133 platforms) or (2) quantile normalization and no batch correction 

(HG-U133 platforms). Leukocyte subsets were limited to mononuclear subsets found in 

peripheral blood (granulocytes and macrophages were omitted) and were renormalized to 

sum to one for each sample.
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Within each dataset, a two-sided, unpaired Wilcoxon rank-sum test was applied to evaluate 

the levels of each leukocyte subset in peripheral blood between individuals with the disease 

and healthy controls from the same study (Extended Data Fig. 10 and Supplementary 

Table 20). The resulting P values were converted into two-sided z-scores while taking the 

directionality of the association into account. Within a given disease phenotype (SLE or 

IBD), z-scores were combined across datasets using Lipták’s method83 weighted by sample 

size (Extended Data Fig. 10). Lastly, SLE- and IBD-specific meta z-scores were combined 

via the Stouffer’s method84 (Extended Data Fig. 10), yielding a pan SLE/IBD meta z-score 

for each leukocyte subset (Fig. 6).

Candidate toxicity biomarkers from previous literature and pathway analysis.

We benchmarked the composite model against previously published irAE biomarkers15,23,24 

and enriched pathways for severe irAE prediction (Extended Data Fig. 7c). Each candidate 

biomarker was assessed separately in bulk cohorts 1 and 2 by determining the AUC by ROC 

analysis. The following pretreatment irAE biomarkers, which were measured by protein 

expression in previous literature, were assessed by RNA surrogates in the peripheral blood in 

this study: ADPGK and LCP1 (ref.23), which we evaluated individually and with bivariable 

linear regression (also done by Jing et al.23); CD74 and GNAL15 expression; and the 

CYTOX score24, which we evaluated as the geometric mean expression of genes encoding 

the same 11 cytokines (CSF3, CSF2, CX3CL1, FGF2, IFNA2, IL12A, IL1A, IL1B, 

IL1RA,IL2, IL13). Separately, we applied preranked GSEA v.4.1.0 via GSEAPreranked 

v.7.1.0 (ref.85) to identify the most irAE-enriched pathways in bulk cohorts 1 and 2 from the 

Molecular Signatures Database v7.4 hallmark pathway collection (Supplementary Table 12). 

As input, we defined transcriptome-wide gene lists for bulk cohorts 1 and 2 that were rank-

ordered by log2 fold change between patients who developed severe irAE and those who 

did not. Gene sets with q < 0.25 were considered statistically significant (Supplementary 

Table 12). The two most-enriched gene sets in patients with severe irAEs versus patients 

with no severe irAEs (MYC_TARGETS_V1; OXIDATIVE_ PHOSPHORYLATION) were 

compared to the composite model in bulk cohorts 1 and 2 (Extended Data Fig. 7c).

Statistics.

All statistical tests were two-sided unless stated otherwise. The Wilcoxon rank-sum test 

was used to assess statistical differences between two groups. When assessing >2 groups 

simultaneously, the nonparametric Kruskal–Wallis test was used. The Benjamini–Hochberg 

method was applied for multiple hypothesis testing unless stated otherwise. We implemented 

a permutation scheme to assess scRNA-seq cluster correlation with severe irAE development 

and CyTOF CD4 TEM abundance as described above. A Fisher’s exact test was applied to 

assess statistical differences between two categorical variables. ROC analysis was performed 

to assess classification accuracy, which was quantified by AUC. Statistical significance of 

the AUC was determined by a two-sided z-test. Youden’s J statistic was used to identify 

the optimal cut-point after ROC analysis. Linear concordance was determined by Pearson 

(r) or Spearman (ρ) correlation and a two-sided t-test was used to assess whether the result 

was significantly nonzero. Kaplan–Meier and Cox regression analyses were used to assess 

covariates with respect to time-to-severe irAE. Significance levels and HRs for Kaplan–

Meier analyses were determined using a two-sided log-rank test. The composite models 
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and related analyses in Fig. 5a, Extended Data Fig. 8 and Supplementary Table 17 include 

patients from bulk cohorts 1 and 2 (Fig. 1 and Supplementary Tables 7 and 9) with the 

exception of two patients (YUDIME and YUMEDIC) who did not develop severe irAEs 

but experienced early disease progression leading to therapy switch before three months had 

elapsed. These two patients were included in other analyses, since they each received 63 d 

(2.1 months) of immune checkpoint blockade, a time period within which 76% of all severe 

irAEs occurred in our patient population.

For Cox regressions, the results were analyzed based on the Wald statistic (z-score) and 

significance was assessed by the Wald test. The proportional hazards assumption was 

confirmed for each covariate included in a Cox regression before analysis by evaluating 

the Schoenfeld residuals. Lipták’s83 and Stouffer’s methods84 were used for integrative 

statistical analyses, as appropriate. Sample size calculations for bulk cohorts 1 and 2 were 

performed using pwr v.1.3–0 in R86. In the single-cell discovery cohort, the association 

between CD4 TEM cell abundance (CyTOF) and severe irAE development had an effect size 

of 1.99 (Fig. 2c,d). Bulk cohorts 1 and 2 were designed to satisfy this effect size requirement 

at α = 0.05 and 1- β = 0.8 while emphasizing specificity in bulk cohort 1 (number of patients 

without severe irAEs > number of patients with severe irAEs) and balance in bulk cohort 

2 (number of patients without severe irAEs ≈ number of patients with severe irAEs). All 

statistical analyses were performed using R v.3.5.1+ or Prism 8+ (GraphPad Software).
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Extended Data

Extended Data Fig. 1 |. Quality control and extended characterization of cell states identified by 
unsupervised clustering of scRNA-seq data.
a, UMAP representation of pretreatment peripheral blood leukocytes profiled by droplet-

based scRNA-seq (10x Genomics) from 13 patients with metastatic melanoma, colored 

by major cell lineages, severe irAE status, TCR expression by scV(D)J-seq, and BCR 

expression by scV(D)J-seq (related to Fig. 3a). b, Unsupervised hierarchical clustering 

(average linkage) of the mean log2 transcriptome per CD4 T cell cluster identified from 
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scRNA-seq data. c, Dot plot showing the average expression of key activation (HLA-DX, 

MKI67) and lineage markers (SELL, CCR7) in CD4 T cell clusters. d, Same as Fig. 3b 

but showing all pairwise combinations of scRNA-seq clusters within each of the major cell 

types analyzed (B cells, CD4 T cells, CD8 T cells, NK cells, monocytes). Across 82 possible 

pairwise combinations, CD4 T 5 + 3 achieved the highest Spearman correlation against 

CD4 TEM levels enumerated by CyTOF and the strongest association with severe irAE 

development. Cells annotated as ‘T/NKT’ were collapsed into CD8 T cells. e, Same as panel 

d but showing all pairwise combinations ranked by the mean of each feature following unit 

variance normalization (mean of 0 and standard deviation of 1). In this analysis, the −log10 

P-value for the association with severe irAE (two-sided, unpaired Wilcoxon rank sum test) 

was normalized to unit variance without considering the direction of the association.
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Extended Data Fig. 2 |. Analysis of scRNA-seq states identified by reference-guided annotation.
a, UMAP projections of scRNA-seq data generated in this work, embedded and labeled 

by Azimuth using a reference PBMC atlas of 162k cells profiled by scRNA-seq and 228 

antibodies (Methods). b, Confusion matrix showing the agreement between phenotypic 

labels determined by marker genes and unsupervised clustering (rows; related to Fig. 3a 

and Extended Data Fig. 1a) versus reference-guided annotation with Azimuth (columns). 

In total, 85% of single cells assigned to a major lineage group by Azimuth (B cells, CD4 

T, CD8 T, NK cells, monocytes) were assigned to the same identity by canonical marker 

gene assessment. Given the absence of NKT cells in the reference atlas used for Azimuth, 
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the T/NKT cluster defined by unsupervised analysis was relabeled as CD8 T cells. c, Same 

analysis as in Fig. 3b but shown for all 27 phenotypic states identified by Azimuth. Among 

these states, CD4 TEM was most associated with severe irAE and CyTOF-enumerated CD4 

TEM. A population combining CD4 TEM and CD4 Proliferating states was also strongly 

associated with severe irAE. The latter showed the highest expression of HLA-DX and 

lowest expression of SELL (panel d), consistent with an activated CD4 TEM phenotype. d, 

Dot plot depicting key activation and lineage markers among CD4 T cell states annotated 

by Azimuth. e, Violin plots showing protein expression levels imputed by Azimuth using 

antibody-derived tag (ADT) data, supporting the combination of CD4 TEM and CD4 

Proliferating states in panels c and f. f, Performance of top-ranking cell subsets identified 

by Azimuth and unsupervised clustering for prediction of severe irAEs. The combined CD4 

T 5 + 3 clusters (Fig. 3b) were more associated with severe irAE and CyTOF than the 

top-ranking reference-guided population (panel c). Statistical significance was calculated 

using a two-sided, unpaired Wilcoxon rank sum test. Data in all panels shown are from the 

13 samples profiled by scRNA-seq in Fig. 3.
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Extended Data Fig. 3 |. Analysis of activated, resting, and parental T cell subsets in relation to 
severe irAE development.
a, Association between severe irAE development and pretreatment levels of T cell states 

identified by unsupervised clustering (left) and memory-like T cell states identified by 

Azimuth (right) in 13 PBMC samples profiled by scRNA-seq (Figs. 1 and 3a). Activated 

cells were defined as those expressing HLA-DX or MKI67 (CPM > 0); resting cells were 

defined by the absence of HLA-DX and MKI67 expression (CPM = 0). b, Left: Association 

between severe irAE development and pretreatment levels of memory T cell subsets, total 

CD4 and CD8 T cells, and total T cells quantified by CyTOF, for all 18 patients analyzed 

in the single-cell discovery cohort (Figs. 1 and 2a). Activated phenotypes were defined as 
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CD38+ or HLA-DR+ or Ki67+. Resting phenotypes were defined as CD38−HLA-DR−Ki67−. 

Right: ROC plot showing the performance of activated and resting CD4 TEM subsets (left 

panel) for predicting severe irAE development. Cell fractions were assessed relative to total 

PBMC content. Statistical significance in a, b was determined by a two-sided, unpaired 

Wilcoxon rank sum test and nominal −log10 P-values are displayed. −log10 P-values were 

further multiplied by −1 for associations with no severe irAE. See also Supplementary Table 

6.
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Extended Data Fig. 4 |. Extended characterization of immune repertoire diversity from single-
cell V(D)J sequencing data.
a, Key TCR diversity measures and the impact of cell abundance, TCR richness, and distinct 

clonal repertoires on such measures. Hypothetical CD4 naïve and TEM cell subsets are 

shown as examples. Triangles depicting differences in magnitude are not drawn to scale. b, 

Mean Shannon entropy versus mean clonality (1 ‒ Pielou’s evenness) for each CD4 T cell 

state identified by unsupervised clustering of scRNA-seq data. CD4 T 5 + 3 (Fig. 3b,c), a 

TEM state enriched for activated cells, shows elevated clonality relative to other CD4 states, 

as expected for this phenotype77, while also showing higher diversity (Shannon entropy), 

indicating elevated richness. c, Distribution of EM-like CD4 T cell states (from Fig. 3f) 

with available scTCR clonotype data. d, Association between severe irAE development and 

TCR diversity (Shannon entropy) in pseudo-bulk T cells from pretreatment blood, shown 

for all T cell states identified by scRNA-seq (left) and after the removal of the EM-like 

states indicated in panel c (no severe irAE, n = 5 patients; severe irAE, n = 4 patients). 

e, Same as d but shown for EM-like states alone. f, Area under the curve (AUC) for the 

association between pretreatment peripheral TCR diversity (Shannon entropy) and severe 

irAE development, shown for all combinations of the constituent cell states in e, including 

the combined CD4 T 5 + 3 cluster after restricting to activated cells (CPM > 0 for HLA-DX 
or MKI67). Of note, no other combination of activated EM-like states achieved an AUC > 

0.85 in this analysis. g, BCR clonotype diversity (Shannon entropy), shown for each B cell 

state identified by unsupervised clustering (Fig. 3a). In b, d–f, only patients with at least 

100 TCR clones were analyzed (n = 9; Methods). The same patients were analyzed in g for 

consistency. In panels d, e, and g, center lines, bounds of the box, and whiskers indicate 

medians, 1st and 3rd quartiles, and minimum and maximum values, respectively.
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Extended Data Fig. 5 |. Validation of CiBERSORTx by single-cell analysis.
a, Expression of developmentally-regulated marker genes in major CD4 T cell subsets 

from the LM22 signature matrix (MAS5 normalized), showing that the LM22 reference 

signature for activated CD4 memory T cells has a TEM profile. b, CIBERSORTx versus 

mass cytometry for enumeration of activated CD4 memory T cells in the pretreatment 

peripheral blood of 17 metastatic melanoma patients (Supplementary Table 1). A linear 

regression line with 95% confidence band is shown. Concordance and significance were 

determined by Pearson r and a two-sided t test, respectively. While activated CD4 memory 

T cells quantitated by CyTOF were defined by CD38 expression in this plot, other 
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activated CD4 TEM subsets were also significantly correlated with CIBERSORTx (panel 

c). c, Cross correlation plot of lymphocyte subset frequencies determined by CyTOF 

and CIBERSORTx. Act., Activated. d, Correlation between activated CD4 memory T 

cell levels inferred by CIBERSORTx and 14 memory T cell states profiled by CyTOF, 

including CD38+ activated subsets manually gated within each population, in PBMCs 

from 17 metastatic melanoma patients (Supplementary Table 1). e, Scatter plot depicting 

the global correlation of lymphocyte subsets enumerated by CIBERSORTx and flow 

cytometry in peripheral blood samples from five healthy subjects profiled by bulk RNA-

seq (Supplementary Table 1). A linear regression line with 95% confidence band is 

shown. Concordance and significance were determined by Pearson r and a two-sided t 

test, respectively. As monocytes were variably underestimated by cytometry compared to 

complete blood counts, all results in b–e are expressed as a function of total lymphocytes. 

f, Distribution of activated CD4 memory T cell levels quantitated by CyTOF (CD38+, 

HLA-DR+ or Ki67+ CD4 TEM cells, n = 28 patients), scRNA-seq (HLA-DX+ or MKI67+ 

cells within CD4 T clusters 5 and 3, n = 13 patients), and CIBERSORTx (n = 60 patients) 

across all irAE-evaluable samples profiled by each modality in this work (Supplementary 

Table 1). Box center lines, bounds of the box, and whiskers indicate medians, 1st and 

3rd quartiles, and minimum and maximum values, respectively. Statistical significance was 

determined by a Kruskal-Wallis test. n.s., not significant (P > 0.05).

Extended Data Fig. 6 |. Extended analysis of TCR diversity from pretreatment peripheral blood 
expression profiles.
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a–d, Association between baseline bulk TCR diversity and the highest irAE grade observed 

for each patient in bulk cohorts 1 and 2 (Supplementary Tables 7 and 9), shown for two 

diversity measures (a and c, Shannon entropy; b and d, Gini-Simpson index) and stratified 

by therapy type. In a and b, patients treated with combination therapy are stratified by future 

irAE status: no severe irAE (n = 10) versus severe irAE (n = 14 patients) (left) and irAE 

grade (right): 0/1 (n = 3), 2 (n = 7), 3 (n = 12), and 4 (n = 2). In c and d, patients treated 

with PD1 monotherapy are stratified by future irAE status: no severe irAE (n = 26) versus 

severe irAE (n = 3 patients) (left) and irAE grade (right): 0/1 (n = 19), 2 (n = 7), 3 (n = 

2), and 4 (n = 1). Two-group comparisons were assessed by a two-sided, unpaired Wilcoxon 

rank sum test. n.s., not significant (P > 0.05). Linear regression was applied to evaluate the 

median value of each measure grouped by irAE grade (insets). The significance of linear 

concordance was determined by a two-sided t test. Grades 0 and 1 reflect no toxicity and 

asymptomatic toxicity, respectively, and were combined. In all panels, the box center lines, 

bounds of the box, and whiskers denote medians, 1st and 3rd quartiles, and minimum and 

maximum values within 1.5 × IQR (interquartile range) of the box limits, respectively.
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Extended Data Fig. 7 |. Composite model performance across patients, key patient subgroups, 
the number of symptomatic irAEs per patient, and organ system involvement.
a, Same as Fig. 4d, but applied to both bulk cohorts (n = 53 patients) using leave-one-out 

cross-validation (LOOCV) (Methods). b, Same as Fig. 4c, but shown for model scores 

determined by LOOCV. c, Performance of the composite model versus other candidate 

pretreatment factors for predicting severe irAE development (Methods). The composite 

model was trained in bulk cohort 1 (BC1) and validated in bulk cohort 2 (BC2) or vice 

versa, as indicated. d, Performance of the composite model trained on bulk cohort 1 for 

predicting severe irAEs in different patient subgroups from bulk cohort 2. DCB, durable 
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clinical benefit; NDB, no durable clinical benefit; GI, gastrointestinal. e, Composite model 

scores determined by LOOCV for all bulk cohort patients treated with combination therapy 

(n = 24), stratified by future irAE grade: 0/1 (n = 3), 2 (n = 7), 3 (n = 12), and 4 (n 
= 2). f, Model performance for predicting grade 2 +, 3 +, or 4 irAE development in 

combination therapy patients using the scores in e. g,h, Composite model scores determined 

by LOOCV in both bulk cohorts (n = 53 patients) versus the number of symptomatic 

irAEs (grade 2 +) per patient (g) and the number of organ system toxicities per patient 

(h). i, Distribution of irAEs across patients and organ systems (Supplementary Table 15). 

Patients from bulk cohorts 1 and 2 are organized by decreasing composite model scores 

determined via LOOCV (Methods). The line distinguishing high/low scores was optimized 

using LOOCV (Methods). j, Fraction of patients in both bulk cohorts that developed irAEs 

in at least 2 organ systems versus those that did not, stratified by the threshold in panel i 

(Methods). Significance was determined by a two-sided Fisher’s exact test. In e, g, and h, 

center lines, bounds of the box, and whiskers indicate medians, 1st and 3rd quartiles, and 

minimum and maximum values within 1.5 × IQR (interquartile range) of the box limits, 

respectively. Statistical significance in e, g, and h was determined by a Kruskal-Wallis test.
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Extended Data Fig. 8 |. Composite model performance for predicting time to severe irAE in 
validation bulk cohort 2.
a–c, Kaplan-Meier analysis for freedom from severe irAE in bulk cohort 2 for patients 

treated with combination or PD1 immune checkpoint blockade (a), combination therapy (b), 

or PD1 monotherapy (c), stratified by the composite model score (Methods). Statistical 

significance was calculated by a two-sided log-rank test. In all panels, training was 

performed in bulk cohort 1 and the cut-point predicting severe irAE was optimized for 

bulk cohort 1 using Youden’s J statistic (Supplementary Table 10; Methods). Notably, the 

analyses in a–c were landmarked between treatment initiation and three months following 

treatment initiation, with all severe irAEs occurring within this period. The Kaplan-Meier 

plots are shown out to four months given the extended follow-up of patients that did not 

develop any severe irAE (Supplementary Table 9).
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Extended Data Fig. 9 |. Peripheral blood TCR-β profiling with immunoSEQ®.
a, Evenness (Pielou’s index) of TCR repertoires assembled by MiXCR (bulk RNA-

seq) and immunoSEQ® (genomic DNA) from paired pretreatment PBMC samples (n = 

15 combination therapy patients) (Supplementary Tables 1 and 18). Concordance and 

significance were determined by Spearman ρ and a two-sided t test, respectively. b, 

Similar to Fig. 5b but showing clonality for each pre- and on-treatment PBMC sample 

(Supplementary Table 18). Statistical significance was determined by a two-sided, paired 

Wilcoxon rank sum test. ns, not significant (P > 0.05). c, Fraction of pretreatment 

peripheral blood TCR clonotypes detected on-treatment in 15 combination therapy patients 
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(Supplementary Table 18), stratified by no severe (n = 6) and severe (n = 9) irAE status. 

Clonotypes with matching productive CDR3 β-chain nucleotide sequences were considered 

identical. Center lines, bounds of the box, and whiskers indicate medians, 1st and 3rd 

quartiles, and minimum and maximum values, respectively. Significance was determined 

by a two-sided, unpaired Wilcoxon rank sum test. d–g, Clonal dynamics in circulating 

T cells following combination therapy initiation. d, Persistent T cell clones identified by 

immunoSEQ® were cross-referenced with scTCR-seq and scRNA-seq data of pretreatment 

PBMCs from the same three patients (YUALOE, YUNANCY, YUHONEY), all of whom 

received combination therapy and developed severe ICI-induced toxicity (Supplementary 

Table 18; Methods). e, Log2 expression of key lineage and activation markers across major 

T cell states annotated by Azimuth along with persistent clones classified into CD4 and 

CD8 T cells (Methods). f, Aggregate change from baseline in the productive frequencies of 

persistent clonotypes, stratified by lineage (n = 2 cell types) and patient (n = 3). The sum of 

the difference in productive frequencies (on-treatment % – pretreatment %) was calculated 

from immunoSEQ® data. Bars denote mean + /− SD. g, Top: Change in bulk TCR clonality 

from baseline (Fig. 5b). Bottom: Same as f but showing the underlying clonotypes, where 

circle size is proportional to pretreatment clone frequency (immunoSEQ®). h, Same as Fig. 

5d but restricted to blood draws taken cycle 1 day 1 of combination therapy and <1 month 

later (n = 7 patients; Supplementary Table 18).
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Extended Data Fig. 10 |. Schema of large-scale assessment of peripheral blood leukocytes in 
autoimmune disorders versus healthy controls.
Schema describing the workflow and statistical meta-analysis for evaluating the enrichment 

of individual circulating leukocyte subsets in autoimmune disorders relative to healthy 

controls (Fig. 6; Methods). In brief, CIBERSORTx was applied to enumerate 15 leukocyte 

subsets in bulk RNA-seq or microarray profiles of peripheral blood samples from patients 

with either systemic lupus erythematosus57–59 (SLE; n = 239) or inflammatory bowel 

disease56,60,61 (IBD; n = 348) compared to healthy controls (Supplementary Table 20). For 

each dataset and cell subset, a two-sided, unpaired Wilcoxon rank sum test was applied to 

Lozano et al. Page 36

Nat Med. Author manuscript; available in PMC 2022 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assess the difference in relative abundance between healthy and disease phenotypes. Results 

were subsequently combined across studies by meta-z statistics (Methods).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Study schema.
Overview of patients included in this study, summary of their irAE status, exclusion criteria 

and downstream analyses that were performed. Among 78 total eligible patients, 71 were 

evaluable for irAE analysis after exclusion criteria were applied. Further details are provided 

in the Methods and Supplementary Tables 1–3, 7–9 and 18. Created using icons from 

BioRender.com.
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Fig. 2 |. Analysis of pretreatment peripheral blood for cellular determinants of severe irAEs 
using mass cytometry.
a, Characteristics of the single-cell discovery cohort (Fig. 1), including the highest irAE 

grade experienced and durable clinical response status after the start of immunotherapy 

(related to Supplementary Tables 2 and 3). b, viSNE projection of peripheral blood cells 

analyzed by CyTOF. t-SNE, t-distributed stochastic neighbor embedding. c, Left: Heatmap 

showing the relative abundance of 20 cell states identified by CyTOF in 18 patients 

(Supplementary Table 5), grouped by future irAE status. Right: Association of cell state 

abundance with severe irAE development. Statistical significance was determined by a 
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two-sided, unpaired Wilcoxon rank-sum test and expressed as directional −log10 P values. 

For associations with no severe irAE, −log10 P values were multiplied by −1. Q values were 

determined by the Benjamini–Hochberg method. d, Frequencies of CD4 TEM cells (CyTOF) 

in the pretreatment peripheral blood of patients stratified by future irAE status (no severe 

irAE, n = 10 patients; severe irAE, n = 8 patients). The box center lines, box bounds and 

whiskers denote the medians, first and third quartiles and minimum and maximum values, 

respectively. Statistical significance was determined by a two-sided, unpaired Wilcoxon 

rank-sum test.
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Fig. 3 |. Analysis of pretreatment peripheral blood for cellular determinants of severe irAEs 
using single-cell RNA and V(D)J sequencing.
a, UMAP of peripheral blood cells profiled by scRNA-seq from 13 patients coanalyzed by 

CyTOF (Fig. 2a and Supplementary Tables 1–3), colored by cell type, patient and state (n 
= 32). T/NKT, NK-like T cells. b, Cell state abundances (scRNA-seq) versus future irAE 

status and CD4 TEM cell frequencies (CyTOF). The former was quantified by a two-sided, 

unpaired Wilcoxon rank-sum test and expressed as −log10 P values. For associations with no 

severe irAE, −log10 P values were multiplied by −1. CD4 T cell states 5 and 3 are indicated 

together as CD4 T 5 + 3. c, Heatmap of DEGs (Padj < 0.05) between CD4 T cell states 5 and 
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3 and other CD4 T cell states. Within each state, the columns represent the mean expression 

from individual patients converted to z-scores. d, Left: Frequencies of candidate activated 

and resting subsets of CD4 T 5 + 3 cell states in 13 patients stratified by no severe (n = 

7) and severe (n = 6) irAE status. Activation markers with counts per million (CPM) > 0 

were considered expressed. Significance was determined by a two-sided, unpaired Wilcoxon 

rank-sum test. Right: Receiver operating characteristic curve plot showing the performance 

of the CD4 T 5 + 3 subsets (from the left panel) for predicting severe irAE development. 

NS, not significant. e, Pretreatment TCR clonotype diversity within each T cell state, total 

T cells, CD8 T cells, CD4 T cells and activated versus resting CD4 T 5 + 3 cells (defined 

as in d), grouped by future irAE status. TCR diversity was calculated for all patients with 

at least 100 TCR clones (n = 9; Methods). States are ordered by the AUC between TCR 

diversity and severe irAE status. f, Mean expression of key lineage and activation genes in 

CD4 T cell states. States within the box are consistent with TEM and TEM-like phenotypes. 

The box center lines, box bounds and whiskers indicate the medians, first and third quartiles 

and minimum and maximum values, respectively.
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Fig. 4 |. Integrative modeling for early irAE detection from bulk peripheral blood.
a, Association between pretreatment peripheral blood leukocyte composition 

(CIBERSORTx) and severe irAE development in bulk cohort 1 (n = 26 patients) and bulk 

cohort 2 (n = 27 patients) (Fig. 1 and Supplementary Tables 7 and 9). Significance was 

determined by a two-sided, unpaired Wilcoxon rank-sum test and expressed as −log10 P 
values. For associations with no severe irAE, −log10 P values were multiplied by −1. b, 

TCR clonotype diversity (Shannon entropy) in both bulk cohorts (n = 53 patients), stratified 

by future irAE status (no severe irAE, n = 36; severe irAE, n = 17). The box center 

lines, box bounds and whiskers denote the medians, first and third quartiles and minimum 

and maximum values, respectively. Significance was determined by a two-sided, unpaired 

Wilcoxon rank-sum test. c, Development of a composite model for the prediction of severe 

irAEs, integrating activated CD4 TM cell abundance and TCR clonotype diversity from 

pretreatment peripheral blood transcriptomes (Methods), with model scores trained on bulk 

cohort 1 and shown across both cohorts (Supplementary Table 9). The cut-point for high/low 

scores was optimized using Youden’s J statistic on bulk cohort 1 (Methods). d, Left: 

ROC plot showing composite model performance in bulk cohort 2 (held-out validation), 

whether applied to all patients (both therapies, n = 27), combination therapy patients (n = 

11) or PD-1 monotherapy patients (n = 16). Right: ROC plot showing composite model 

performance in bulk cohorts 1 and 2, whether trained on PD-1 patients (n = 29) and tested 

on combination therapy patients (n = 24) or vice versa. The AUC is shown for each ROC 
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curve. e, Composite model scores for all bulk cohort patients (n = 53) after model training 

for severe irAE development with LOOCV (Extended Data Fig. 7a and Supplementary Table 

9), grouped by the highest irAE grade per patient. The box center lines, box bounds and 

whiskers indicate the medians, first and third quartiles and minimum and maximum values 

within 1.5× the interquartile range of the box limits, respectively. Statistical significance was 

determined by a Kruskal–Wallis test.
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Fig. 5 |. Correlates of severe irAE onset in patients treated with combined CTLA-4 and PD-1 
blockade.
a, Pretreatment prediction of time-to-severe irAE onset in patients treated with combination 

therapy. The cut-point was optimized using composite model scores trained with LOOCV 

(Methods). Only patients from bulk cohorts 1 and 2 who did not experience early 

progression were analyzed (n = 23; Methods). b, TCR clonal dynamics in relation to severe 

irAE development in patients treated with combination therapy (Supplementary Table 18). 

Left: Change in TCR clonality from baseline after initiation of combination therapy as 

measured by 1 – Pielou’s evenness, with future irAE status indicated by color. Right: Same 
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as the left but showing change in clonality according to future irAE status. Significance 

was determined by a two-sided, unpaired Wilcoxon rank-sum test. c, Enrichment of a CD4 

T 5 + 3 gene signature in CD4 T cells from pretreatment PBMC samples obtained from 

3 patients analyzed in b, all of whom developed severe irAEs and showed TCR clonal 

expansion after ICI initiation (Extended Data Fig. 9d). The box center lines, box bounds 

and whiskers indicate the medians, first and third quartiles and minimum and maximum 

values, respectively. The points denote cells profiled by scRNA-seq and annotated either 

by Azimuth (CD4 naive, n = 245 cells; CD4 TCM, n = 320 cells) or by their clonal 

persistence from baseline to early on-treatment time points (persistent CD4, n = 190 cells). 

The most persistent CD4 clonotypes in this analysis showed evidence of clonal expansion 

(Extended Data Fig. 9f,g). Significance was determined relative to persistent cells by a 

two-sided, unpaired Wilcoxon rank-sum test. ssGSEA, single-sample GSEA. d, Differences 

in freedom from severe irAE stratified by the degree of TCR clonal expansion after initiating 

combination therapy, as measured by the change in 1 – Pielou’s evenness. Patients were 

grouped into the following tertiles as detailed in Methods: no clonal expansion (n = 5), 

intermediate (n = 5) and high clonal expansion (n = 5). Statistical significance in a,d was 

assessed by a two-sided log-rank test.
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Fig. 6 |. Large-scale assessment of circulating leukocytes in autoimmune diseases.
Enrichment of circulating leukocyte levels in two autoimmune disorders relative to healthy 

controls. Leukocyte composition was determined by CIBERSORTx. Significance was 

determined by a two-sided, unpaired Wilcoxon rank-sum test and integrative meta z-score. 

Details of the analytical workflow and underlying datasets are provided in Extended Data 

Fig. 10 and Supplementary Table 20, respectively.
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