
Resource
A pan-cancer single-cell panorama of human natural
killer cells
Graphical abstract
Highlights
d Human NK cells exhibit tumor-type-specific subgroup

heterogeneity

d RGS1 expression is a reliable marker of tissue-infiltrating

NK cells

d Transcriptomic features of tumor-associated NK cells

indicate impaired cytotoxicity

d LAMP3+ DCs appear to regulate NK cell functions in tumors

based on spatial analyses
Tang et al., 2023, Cell 186, 4235–4251
September 14, 2023 ª 2023 The Author(s). Published by Elsevier
https://doi.org/10.1016/j.cell.2023.07.034
Authors

Fei Tang, Jinhu Li, Lu Qi, ..., Hui Peng,

Dongfang Wang, Zemin Zhang

Correspondence
zhuln@pku.edu.cn (L.Z.),
huipeng@ustc.edu.cn (H.P.),
wangdf19@pku.edu.cn (D.W.),
zemin@pku.edu.cn (Z.Z.)

In brief

Integrative single-cell RNA sequencing

analyses on natural killer (NK) cells from

over 700 patients across 24 tumor types

depict shared and tumor-type-specific

NK cell features and highlight the

potential of specific myeloid cell

subpopulations in regulating NK cell anti-

tumor function.
Inc.
ll

mailto:zhuln@pku.edu.cn
mailto:huipeng@ustc.edu.cn
mailto:wangdf19@pku.edu.cn
mailto:zemin@pku.edu.cn
https://doi.org/10.1016/j.cell.2023.07.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2023.07.034&domain=pdf


OPEN ACCESS

ll
Resource

A pan-cancer single-cell panorama
of human natural killer cells
Fei Tang,1,7 Jinhu Li,1,7 Lu Qi,1,2 Dongfang Liu,3 Yufei Bo,1 Shishang Qin,1 Yuhui Miao,4 Kezhuo Yu,1 Wenhong Hou,4

Jianan Li,1 Jirun Peng,3,5 Zhigang Tian,6 Linnan Zhu,1,* Hui Peng,6,* Dongfang Wang,1,* and Zemin Zhang1,4,8,*
1Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking

University, Beijing 100871, China
2Changping Laboratory, Beijing 102206, China
3Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
4Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
5Ninth School of Clinical Medicine, Peking University, Beijing 100038, China
6TheCASKey Laboratory of Innate Immunity andChronic Disease, School of BasicMedical Sciences, Division of Life Sciences andMedicine,
University of Science and Technology of China, Hefei 230027, China
7These authors contributed equally
8Lead contact
*Correspondence: zhuln@pku.edu.cn (L.Z.), huipeng@ustc.edu.cn (H.P.), wangdf19@pku.edu.cn (D.W.), zemin@pku.edu.cn (Z.Z.)

https://doi.org/10.1016/j.cell.2023.07.034
SUMMARY
Natural killer (NK) cells play indispensable roles in innate immune responses against tumor progression. To
depict their phenotypic and functional diversities in the tumor microenvironment, we perform integrative sin-
gle-cell RNA sequencing analyses on NK cells from 716 patients with cancer, covering 24 cancer types. We
observed heterogeneity in NK cell composition in a tumor-type-specific manner. Notably, we have identified
a group of tumor-associated NK cells that are enriched in tumors, show impaired anti-tumor functions, and
are associated with unfavorable prognosis and resistance to immunotherapy. Specific myeloid cell subpop-
ulations, in particular LAMP3+ dendritic cells, appear to mediate the regulation of NK cell anti-tumor immu-
nity. Our study provides insights into NK-cell-based cancer immunity and highlights potential clinical utilities
of NK cell subsets as therapeutic targets.
INTRODUCTION

Although T cell-centric immunotherapies have achieved indis-

putable clinical successes, the limited number of patients

achieving durable response presses for complementary thera-

peutic strategies.1 Natural killer (NK) cells, as one important

component in the tumor microenvironment (TME), are involved

in multiple processes of tumor control, such as direct cell killing

and secretion of proinflammatory cytokines.2,3 A plethora of

strategies, characterized with promising properties including

their safety and efficacy, have been proposed to harness NK

cells for cancer treatment.4 Of particular note is the remarkable

clinical success achieved by chimeric antigen receptor (CAR)-

NK cell therapies in lymphoma, myeloma, and leukemia.5,6 How-

ever, NK-cell-based therapies are hindered in solid tumors partly

due to the incomplete understanding of tumor-infiltrating NK

cells, especially their infiltration to tumor, phenotypic heteroge-

neities, and dysregulation within the TME.7,8

In humans, NK cells can be subdivided into two major groups,

CD56dimCD16hi and CD56brightCD16lo, based on the expres-

sion levels of CD56 (NCAM1) and CD16 (FCGR3A).9,10 The

CD56dimCD16hi NK cell population predominantly mediates the
Cell 186, 4235–4251, Septemb
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killing of target cells by secreting perforin and granzymes,11

whereas the CD56brightCD16lo NK cell population exhibits immu-

noregulatory and cytokine-producing capacity.12 Recently,

single-cell RNA sequencing (scRNA-seq) technologies have

facilitated the characterization of the heterogeneity of tumor-

infiltrating immune cells, providing great opportunities to eluci-

date the spectrum of tumor-infiltrating NK cell subpopulations.13

For example, we have identified a CD160+HSPA1A+ liver-resi-

dent NK cell subset specifically enriched in hepatocellular carci-

noma (HCC),14 and others have reported specialized NK cell

populations infiltrated in melanoma with regional variation.15 In

parallel, the distribution and function of human NK cell popula-

tions have been investigated in healthy tissues and blood.16–18

However, for tumor-infiltrating NK cells, the scale of most

scRNA-seq analyses is limited, and it is still unclear to what

extent they acquire heterogeneous phenotypes in malignant

conditions.19–21

Compared with CD8+ T cells, NK cells serve as alternative

sources of cytotoxic activities and combat tumor cells with low

mutation load and aberrant expression of major histocompatibil-

ity complex (MHC) class I.22,23 Although the dysfunctional state

of CD8+ T cells is well-characterized with reduced cytotoxicity
er 14, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 4235
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and high expression ofmultiple inhibitory receptors,24 theNK cell

dysfunction has not been studied in detail. Previously, NK cell

hypofunction has been reported in HCC, but the immunoregula-

tory mechanisms have not been analyzed,25,26 and whether this

phenomenon exists in other cancer types is not clear. In addition,

although the inhibitory roles of TIGIT and TIM3 have been estab-

lished in tumor-infiltrating NK cells,27,28 it is still controversial

whether other immune checkpoints, such as PD-1 and CTLA4,

play the same role or are even expressed in those cells.28,29

Furthermore, NK cells are sensitive to immunosuppressive fac-

tors of the TME, which may contribute to their dysfunctional

phenotype,4 but how distinct regulatory processes influence

the function and abundance of NK cells within the TME of

different cancer types remains unclear. Together, these promp-

ted us to conduct a deep investigation of NK cells to elucidate

their heterogeneity and dysfunction at the pan-cancer level.

Here, we collected a broad spectrum of published and newly

generated scRNA-seq data to construct a comprehensive tu-

mor-infiltrating human NK cell atlas and explored the heteroge-

neity of NK cells across cancer types and tissues. We uncovered

the tumor-infiltrating NK cell state transitions and highlighted the

components of the TME that presumably led to the NK cell

dysfunction. These data will serve as a rich resource for

advancing the understanding of the global properties of NK cells

in major cancer types and provide valuable insights into NK-cell-

based immunotherapy development.

RESULTS

Construction of a human pan-cancer NK cell landscape
at single-cell resolution
To construct a comprehensive pan-cancer single-cell transcrip-

tome atlas for tumor-infiltrating NK cells, we first compiled

scRNA-seq data from both our newly generated dataset with

47 patients diagnosed with one of the 8 cancer types and 70

additional published datasets (Table S1). These data covered

24 cancer types, including 1,223 samples from 716 patients

across the tumor, adjacent non-tumor tissue, peripheral

blood, and other tissues such as lymph nodes, and 60 healthy

controls (Figures 1A, 1B, S1A, and S1B). After stringent quality

control and a combinative strategy of computational gating

(CD3�CD56+/KLRF1+) and unsupervised clustering (Figure S1C;

STARMethods), we obtained a collection of 160,011 high-quality

NK cells including 11,963 newly generated NK cells in this study.

Notably, it is essential and challenging to build such a large-scale

human NK cell atlas, given that within the tumor tissue, NK cells

are relatively rare among CD45+ cells (Figure S1D), and their het-

erogeneity is still poorly understood. Compared with the previ-

ous single-cell transcriptome atlas of NK cells constructed with
Figure 1. Pan-cancer single-cell atlas of NK cells and their characteris

(A) Cancer types involved in the pan-cancer NK cell analysis. *, cancer types wit

(B) The number of patients across cancer types. The y axis is scaled by a square

(C and D) Uniform manifold approximation and projection (UMAP) visualizations

(E and F) Compositions of (E) CD56dimCD16hi and (F) CD56brightCD16lo NK cell s

(G) The expression pattern of functional genes in NK cells. Score represents the A

median of the corresponding score.

See also Figures S1, S2, and S7 and Tables S1, S2, and S7.
approximately 7,000 NK cells from human blood and spleen,17

our data scale has expanded >20-fold, representing most major

cancer types and multiple tissues.

To unbiasedly define the pan-cancer population structure

of NK cells, we integrated scRNA-seq data with minimal

batch effects among datasets and performed two rounds of un-

supervised clustering (Figure S1E; STAR Methods). The first-

round analysis pertained to distinguishing two well-character-

ized major cell types, CD56brightCD16lo and CD56dimCD16hi,

based on the high expression of canonical cell markers,

NCAM1 and FCGR3A, which corresponded to the previously

reported ‘‘NK_1’’ and ‘‘NK_2’’ populations,17 respectively. The

CD56brightCD16lo compartment can be further subdivided into

5 subsets, whereas 9 CD56dimCD16hi subsets were identified

during the second-round clustering (Figures 1C and 1D). We

did not observe notable differences in the expression of KLRF1

in either of the two major populations across cancer types or

different subsets (Figures S1F and S1G). Notably, previously re-

ported innate lymphoid cell (ILC) signature genes were hardly ex-

pressed in these NK cell subsets,30 further suggesting the purity

of our data (Figure S1H). These subsets were all characterized by

the high expression of distinct signature genes within eachmajor

population (Figures S2A and S2B; Table S2). As expected, pre-

viously described subsets were readily identified in our atlas,

such as CD56brightCD16lo c5-CREM with high expression of

CREM31 (Figure S2B). CD56dimCD16hi c8-KLRC2 NK cells with

high expression of KLRC2 (NKG2C) were regarded adaptive

NK cells.32,33 Our atlas additionally uncovered several underap-

preciated NK cell subsets with unique transcriptional pheno-

types. For example, CD56dimCD16hi c5-MKI67 was distin-

guished by high expression of proliferation markers like MKI67

and STMN1, and CD56dimCD16hi c6-DNAJB1 specifically ex-

pressed genes related to stress response (Figure S2A). Our

atlas also captured a low fraction of CD56brightCD16hi NK cells

in almost all cancer types, simultaneously expressing high

levels of NCAM1 and FCGR3A (Figures S1I and S2D).

CD56brightCD16hi NK cells displayed intermediate features

between CD56brightCD16lo and CD56dimCD16hi NK cells (Fig-

ure S2E), potentially representing developmental intermediates

in analogy to mouse CD27+CD11b+ NK cells, which have also

been thought to be a transient maturation stage in mice yet

barely detectable by scRNA-seq.17 We next examined the tissue

distribution of all subsets, with distinct tissue enrichment pat-

terns observed, indicating that our integrative analyses can pre-

serve the heterogeneity of different tissues (Figures 1E, 1F, and

S2C). To further corroborate the stability of the clustering, NK

cells from blood, tumor, and adjacent non-tumor tissues were

re-clustered separately, with highly consistent results revealed

(Figure S3F). Finally, leveraging the Ratio of Global Unshifted
tics

h newly generated data.

root transformation.

of (C) CD56brightCD16lo and (D) CD56dimCD16hi NK cells.

ubsets across tissues. Kruskal-Wallis test.

UCell index of signature genes (STARMethods). Each dashed line indicates the
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Entropy (ROGUE) index that can measure the cell cluster pu-

rity,34 we illustrated that all these populations were robust across

various cancer types (Figure S1J).

NK cell subsets were involved in different developmental

stages as revealed by their expression of common lineage-spe-

cific genes. Cells from both the tumor-enriched CD56bright

CD16lo c4-IL-7R and the blood-enriched c2-IL-7R-RGS1lo,

highly expressing signature of NK cell precursors including

KIT and IL7R,16,19,20 were mapped at the early developmental

stage. By contrast, other immature CD56brightCD16lo subsets

exhibited a progressive reduction of the precursor signature

and substantial gain of CD160 expression. The more mature

CD56dimCD16hi subsets, especially c6-DNAJB1 and c7-

NR4A3, exhibited concomitant upregulation of the killer immu-

noglobulin-like receptor (KIR) family in addition to FCGR3A

and B3GAT1 (CD57) (Figure S2E). NK cell subsets in varied

developmental states were concurrent in tumors, indicating

that NK cell migration to the tumor may be decoupled with NK

cell maturation.

We further inspected the gene expression signature to deci-

pher the functional divergence between different populations

(Figures 1G and S2F). CD56dimCD16hi NK cells exhibited high

expression of cytotoxic effector genes including perforin

(PRF1) and most granzyme (GZMB, GZMA, and GZMH)

except GZMK, which was instead exclusively expressed in

CD56brightCD16lo NK cells.35 CD56brightCD16lo NK cells ex-

pressed various cytokine genes such as IL18. We also observed

that both CD56brightCD16lo c2 and c4 simultaneously expressed

IL18 and its receptor IL18R1, implying a potentially crucial role of

IL-18-dependent autocrine pathway in these subsets. Strikingly,

CD56dimCD16hi NK cell subsets could also exhibit specific

expression of certain cytokines, but with a distinct pattern from

those CD56brightCD16lo subsets. In particular, the CD56dim

CD16hi subset c4-NFKBIA exhibited a relatively high inflamma-

tory score among all NK cell subsets, predominantly expressing

CCL3, CCL4, and CCL4L2, indicating their ability to recruit

other immune cells such as T cells.36 Recent studies have asso-

ciated the recruitment of type 1 conventional dendritic cells

(cDC1s) into tumor with NK cells by secreting XCL1, XCL2,

and CCL5.37 Our results identified various NK cell subsets

involved in the cDC1 recruitment through cell-type-specific

complementary strategies. CD56brightCD16lo c2 and c4 ex-

pressed primary levels of XCL1 and XCL2, whereas another

cDC1 chemoattractant gene CCL5 was preferentially produced

by both CD56brightCD16lo (c1-GZMH and c3-CCL3) and

CD56dimCD16hi (c1-IL-32 and c8-KLRC2) NK cells. Additionally,

we depicted the profile of activating and inhibitory receptors,

observing clear variations across NK cell subsets (Fig-

ure S2G). For example, KLRC1 was expressed at a higher level

in CD56brightCD16lo NK cells than CD56dimCD16hi NK cells,
Figure 2. Heterogeneity of tumor-infiltrating NK cells across cancer ty

(A) Relative ratios of CD56dimCD16hi and CD56brightCD16lo NK cells in multiple c

(B and C) Boxplots comparing the proportions of two major NK populations divide

respectively. Two-sided unpaired Wilcoxon test.

(D) Boxplots showing the frequencies of selected NK cell subsets in tumors. For

(E) Heatmaps showing scores of inhibitory and activating receptors in NK cell su

See also Figure S3.
although not specifically, and LAG3 and TIGIT were highly ex-

pressed in c8-KLRC2. Notably, compared with other tissue-en-

riched CD56dimCD16hi subsets (c4-NFKBIA, c5-MKI67, and

c7-NR4A3), c6-DNAJB1 NK cells showed the highest stress

score and the weakest cytotoxicity, indicating their dramatically

different transcriptional and functional phenotypes (Figures 1G

and S2F). Taken together, we provide a detailed transcriptome

profile of NK cells at a fine-grained subset resolution. Rather

than analyzing NK cells as a single population, we dissect sub-

set-specific molecular properties of NK cells and reveal their un-

derappreciated heterogeneities.

Tissue heterogeneity of NK cells across cancer types
We next assessed the preference of tumor-infiltrating NK cell

population among different cancer types, observing clear dis-

crepancies (Figure 2A; STAR Methods). For example, the imma-

ture CD56brightCD16lo NK cells were largely predominant in

nasopharyngeal cancer and basal cell carcinoma, whereas the

mature CD56dimCD16hi NK cells occupied renal carcinoma and

lung cancer, consistent with previous reports38–42. Others,

such as colorectal cancer and HCC, showed no obvious propen-

sity (Figures 2A, S3A, and S3B). To examine whether the afore-

mentioned tendency could be explained by the organ contex-

ture, we analyzed the intrinsic composition of major NK cell

types in adjacent non-tumor tissues and their corresponding

changes in tumors. In certain cancer types such as colorectal

cancer, the NK cell composition of tumor tissues resembled

that of adjacent non-tumor tissues (Figure S3C). As for cancer

types including lung cancer and renal carcinoma, despite the

conservation of major NK cell types between tumor and adjacent

non-tumor tissues, the proportions of CD56dimCD16hi NK cells

significantly decreased (Figure 2B). Intriguingly, the dominant

NK cell population in breast cancer and esophageal cancer

was reversed compared with their adjacent non-tumor tissues

(Figure 2C). These observations suggested that the intrinsic or-

gan properties and malignancy-associated factors have com-

pounded effects on shaping the content of NK cell populations.

We further explored the cancer-type specificity for NK cells

from the subset perspective and performed unsupervised clus-

tering to stratify the analyzed cancer types byNK cell subset pro-

portions. NK cell subsets such as c2-CX3CR1 showed strong

preference in pancreatic cancer, breast cancer, and melanoma.

High variabilities were observed across cancer types for certain

subsets. For example, c4-NFKBIA and c7-NR4A3 showed

dramatically decreased median frequencies from head and

neck squamous cell carcinoma and thyroid carcinoma to esoph-

ageal cancer and nasopharyngeal cancer (Figure 2D). Although

clear variations were observed, cancer types including uterine

corpus endometrial carcinoma, basal cell carcinoma, and

esophageal cancer were clustered together, all with abundant
pes

ancer types.

d by the total NK cell number between tumor and adjacent non-tumor tissues,

each subset, only the cancer types with tumor samples > 3 are shown.

bsets (STAR Methods).
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CD56brightCD16hi c5-CREM and minimal c4-IL-7R NK cells (Fig-

ure S3D). Of particular note is that the rare CD56brightCD16hi NK

cell subset with the hypomaturation stage as aforementioned

was abundant inmelanoma and leukemia, especially in the acute

myeloid leukemia (AML) subtype (Figures 2D and S3E). Such hy-

pomaturation stage of NK cells has been associated with the

reduction of overall survival and relapse-free survival of patients

with AML.43,44 Compared with other NK cell populations, these

CD56brightCD16hi cells exhibited distinctive phenotypic and

functional shifts in terms of their extremely low activating and

inhibitory receptor scores (Figure 2E). Current NK cell-based

therapies are focused on augmenting the activation and

longevity of NK cells but generally disregard the heterogeneity

among cancer types and the suppressive impact of the TME

on NK cell cytotoxic functions, which should be considered in

future therapeutic strategies.

RGS1 is a hallmark of tissue-infiltrating NK cells
As aforementioned, NK cell components significantly altered

from the blood to tissues. Likewise, widespread transcriptional

changes were detected between tissue-infiltrating NK cells and

their blood counterparts (Figures 3A and 3B; Table S3). Prior

studies have identified several markers of tissue-resident NK

cells, such as CD69, CD103, CXCR6, and CD49a.45–47 However,

we found that ITGA1 (CD49a), ITGAE (CD103), and CXCR6 were

poorly detected at the single-cell transcriptome level, and CD69

was expressed widely in NK cells including those from the blood

(Figure 3E). Additionally, preferential expression of these

markers in NK cell populations of particular tissues has been re-

ported.16 These motivated us to discover robust NK cell resi-

dency markers from the pan-cancer perspective in an unbiased

manner.

We selected differentially expressed genes between blood

and tissue and further assessed their sensitivity and specificity

to distinguish the tissue origin of NK cells. Consequently,

RGS1 (regulator of G protein signaling 1) was pronouncedly

recognized, which was exclusively expressed in NK cells within

tumor and adjacent non-tumor tissues, but barely detectable in

the blood (Figures 3C and 3D). In addition, the expression of

RGS1 was opposite to migration signals including KLF2 and

SELL (Figure 3E). Compared with the aforementioned conven-

tional tissue-resident markers, RGS1 showed much higher

sensitivity and specificity (Figures S4A–S4D). We next directly

compared the expression patterns of RGS1 with ITGAE and

CD69 as well as their combinations in the blood, observing

that RGS1 alone had the lowest detection rate in the blood,
Figure 3. Identification of RGS1 as a key tissue-infiltrating marker for

(A and B) Heatmap showing differentially expressed genes for (A) CD56brightCD16

represent signature genes and columns represent different patients.

(C and D) UMAP plots showing the RGS1 expression and its tissue distribution i

(E) The expression pattern of tissue-resident and migration signals of CD56brightC

resident signals and red lines mark the migration signals.

(F) The performance of CD69, ITGAE, and RGS1 as well as their combinations in d

cell sorting (FACS). Red dots denote the NK cells derived from blood, and gray dot

of blood and non-blood NK cells based on the expression level.

(G) Violin plots showing RGS1 expression among tissues at the pan-cancer leve

(H) Heatmap showing the mean expression of RGS1 within the blood, tumor, an

See also Figure S4 and Table S3.
whereas the RGS1/CD69 combination could further increase

the positive detection rate in tissues (Figures 3F and S4E).

Furthermore, the RGS1/CD69 combination could achieve a

higher area under the curve (AUC) value than either alone in dis-

tinguishing blood and non-blood NK cells (Figure S4D). Notably,

RGS1 was widely expressed across analyzed patients and can-

cer types (Figures 3G, 3H, and S4F).

In summary, these characteristics imply the potential role of

RGS1 alone, or its combination with CD69, to be a superior

marker for tissue-infiltrating NK cells at the transcriptome level.

We speculate that the expression of RGS1 may attenuate the

signaling activity of G-proteins,48 leading to the weakness of

NK cell chemotactic migration ability and promoting NK cell res-

idency. Further studies are required to demonstrate the func-

tional mechanism of RGS1 in NK cells.

Tumor-associated NK cell programs and their
characteristics
We next sought to elucidate the specific characteristics of NK

cells in tumors. Aside from the tumor-specific enrichment of

certain subsets as described above, we found that compared

with the adjacent non-tumor tissue, in tumors, the cytokine pro-

duction of CD56brightCD16lo c3-CCL3 NK cells was lower as indi-

cated by the diminished expression of CCL3 and CCL4, and the

expression of XCL1 and XCL2 in c5-CREMNK cells decreased in

most cancer types (Figures S5A and S5B; Table S5), implicating

their functional shifts in tumors. We then identified activated reg-

ulons for both tumor-infiltrating CD56brightCD16lo and CD56dim

CD16hi NK cell subsets using SCENIC.49 Importantly, the tu-

mor-enriched c6-DNAJB1 subset exhibitedmuch higher expres-

sion of transcription factors such as KLF6 and EGR3, which are

associated with the inhibition of cytotoxicity functions50–52

(Figure S5C).

Using RNA velocity,53,54 we decoded the transcriptional dy-

namics of NK cells, observing a clear directional flow from

blood-enriched subsets to tumor-infiltrating populations both

in CD56brightCD16lo and CD56dimCD16hi NK cells (Figures 4A

and S5D). Correspondingly, the expression of RGS1 was

elevated along the velocity flow (Figure S5E). We found that

CD56dimCD16hi c6-DNAJB1 NK cells were located at the end

of the velocity, thereby inferred as the terminal state (Figure 4A).

Notably, CD56dimCD16hi NK cells from the adjacent non-tumor

tissue were mainly observed in the uniform manifold approxima-

tion and projection (UMAP) area enriched with c7-NR4A3 cells;

by contrast, tumor-derived CD56dimCD16hi NK cells were pre-

dominant in the UMAP area enriched with c6-DNAJB1 cells
NK cells
lo and (B) CD56dimCD16hi NK cells between blood and non-blood tissue. Rows

n (C) CD56brightCD16lo and (D) CD56dimCD16hi NK cells.

D16lo and CD56dimCD16hi NK cells in varied tissues. Blue lines mark the tissue-

istinguishing tissue-derived NK cells based on in silico fluorescence-activated

s denote tissue-derived NK cells. Dashed lines indicate the predicted boundary

l. Two-sided unpaired Wilcoxon test.

d adjacent non-tumor tissues across analyzed cancer types.
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Figure 4. Characteristics of tumor-associated NK cells

(A) RNA velocities overlaid on the UMAP of CD56dimCD16hi NK cells (STARMethods). Arrows show the RNA velocity field. Dots are colored by CD56dimCD16hi NK

cell subsets. Only our newly generated data are used.

(B) Density plots of CD56dimCD16hi NK cells from the tumor and adjacent non-tumor tissue. Dashed lines represent the enriched area of c6-DNAJB1 cells.

(C) Volcano plot showing differentially expressed genes for CD56dimCD16hi NK cells between tumor and adjacent non-tumor tissues. Genes with an adjusted

p value < 0.05 are significant. Two-sided unpaired Wilcoxon test.

(D) Representative example of an HCC tumor stained by multiplex immunofluorescence to show TaNK cells (arrows). The scale bar represents 20 mm.

(E) The percentage of CD56dimCD16hi HSP40+ NK cells among CD56dimCD16hi NK cells in tumor and adjacent non-tumor regions of liver cancer patients using

flow cytometry. *p < 0.05, **p < 0.01, ***p < 0.001, paired t test.

(F) The gene expressions plotted along the pseudotime (STAR Methods).

(G) Boxplots showing signature scores among CD56dimCD16hi c4�NFKBIA, c6-DNAJB1, and c7-NR4A3 cells. Two-sided unpaired Wilcoxon test.

(H) Representative example of an HCC tumor stained by multiplex immunofluorescence to show the expression of granzyme B in HSP40+ (white arrows) and

HSP40� NK cells (red arrows). The scale bar represents 20 mm.

(I and J) Comparison of (I) cytotoxic granules and (J) inhibitor receptors for CD56dimCD16hi HSP40+ and HSP40� NK cells in the tumor region of liver cancer

patients using flow cytometry. *p < 0.05, **p < 0.01, ***p < 0.001, paired t test.

See also Figure S5 and Tables S4 and S5.
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(Figure 4B). Consistently, markers of tumor-enriched c6-

DNAJB1 NK cells such asDNAJB1 andHSPA1Awere highly ex-

pressed in the tumor-infiltrating CD56dimCD16hi NK cell popula-

tion (Figure 4C). In addition, we observed similar expression

levels of mitochondrial genes in c6-DNAJB1 and c7-NR4A3 NK

cells, indicating that the stress phenotype of c6-DNAJB1 NK

cells was unrelated to cell quality (Figure S5F). Since c6-DNAJB1

cells were specifically enriched in tumors, we termed this popu-

lation as tumor-associated NK (TaNK) cells.
4242 Cell 186, 4235–4251, September 14, 2023
The presence of TaNK cells in cancers was further substanti-

ated by multiplex immunofluorescence staining (Figures 4D

and S5G). We also validated the tumor enrichment of TaNK cells

(CD56dimCD16hi HSP40+) in vivo using flow cytometry. In one in-

trahepatic cholangiocarcinoma and six HCC samples, TaNK

cells were identified, and their proportion in tumor-infiltrating

CD56dimCD16hi NK cells was higher than that in the matched

adjacent liver tissue, consistent with our scRNA-seq data

(Figures 4E and S5H; Table S4).
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We then used the pseudotime inference analysis55 to investi-

gate the dynamic of CD56dimCD16hi NK cells and found that

TaNK cells increasingly appeared along the inferred pseudotime

of CD56dimCD16hi NK cells and were enriched in the terminal

stage (Figure S5I), consistent with results of the RNA velocity

analysis. To examine the emerging characteristics of TaNK

cells, we fitted the gene expression profile to the pseudotime

(STAR Methods). Interestingly, CD56dimCD16hi NK cells showed

decreased cytotoxicity and elevated expression of inhibitory re-

ceptors and stress genes along the transition process (Figure 4F).

Of note, the terminal TaNK cells had the lowest cytotoxicity and

highest stress scores among all tumor-infiltrating CD56dim

CD16hi NK cell subsets. By contrast, the corresponding c7-

NR4A3 enriched in adjacent non-tumor tissues was highly cyto-

toxic (Figure 4G). By performing the multiplex immunofluores-

cence staining on several cancer types, we observed that

TaNK cells exhibited a lower level of GZMB (Figures 4H, S5J,

and S5K). Further confirmed by flow cytometry analyses of liver

cancer patients, TaNK cells had lower expression of cytotoxic

granules (granzyme B and perforin) and higher expression of

inhibitory receptors including CD158a (KIR2DL1) and CD158e

(KIR3DL1) compared with the CD56dimCD16hi HSP40� NK cells

at the tumor site (Figures 4I and 4J). These results suggest that

TaNK cells may be associated with dysfunctional status. Further-

more, we also observed the differential dynamic tendency of the

NR4A nuclear receptor family as the pseudotime increases (Fig-

ure 4F). c7-NR4A3 NK cells expressed high levels of NR4A2 and

NR4A3, whereas TaNK cells highly expressed NR4A1 (Fig-

ure S5L). Intriguingly, NR4A1 has been identified as a key medi-

ator of the T cell dysfunction56 and postulated to contribute to re-

stricting theCART cell function in solid tumors.57 In summary, our

data suggested that TaNK cells in tumors might be terminally

dysfunctional and potentially play critical roles in the TME.

The association of TaNK cells with unfavorable
prognosis and immunotherapy resistance
Since NK cells and CD8+ T cells exhibit extensive phenotypic

and functional similarities,4,19 we next examined whether im-

mune checkpoint blockade (ICB) therapies targeting CD8+

T cells would also impact NK cells. Within tumor-infiltrating NK

cells and CD8+ T cells, TaNK cells and exhausted T cells (Tex)

exhibited a prominent stress state (Figure 5A), suggesting their

involvement in the tumor immune response. Both highly ex-

pressed a series of inhibitory receptor molecules; however,

they held divergent expression profiles over various immune

modulatory genes. Conventional immune checkpoint genes

such as PDCD1 and CTLA4 were barely expressed on TaNK

cells (Figure 5A), implying that they are not direct targets of

anti-PD-1/CTLA-4 therapies. Thus, TaNK cells may play different

roles from Tex cells in the TME and current ICB treatments.

We observed a remarkable discrepancy in the TaNK cell abun-

dance across cancer types (Figure 5B), and tumor stages made

marginal impacts on the proportion of TaNK cells (Figure 5C).

Notably, in The Cancer Genome Atlas (TCGA) datasets, the

high TaNK cell signal in tumors was associated with poor survival

for most cancer types (Figures 5D and 5E). We further applied a

deep learning-based model to perform deconvolution and cell

composition analyses,58 finding that the high TaNK cell fre-
quency indicated an unfavorable prognosis of cancer patients

(Figures S5M and S5N). We additionally examined whether

TaNK cells were linkedwith ICB treatment response by analyzing

scRNA-seq data of pretreatment tumors from previous ICB ther-

apy studies of breast cancer and melanoma15,59 (Figure 5F).

Strikingly, a higher proportion of TaNK cells was observed in

nonresponsive patients than responsive ones for both cancer

types. Further exploiting published bulk data from a wide variety

of cancers including melanoma,60 lung cancer,61 and metastatic

urothelial carcinoma,62 we validated that nonresponsive patients

exhibited stronger TaNK cell signals than responsive patients

(Figure 5G).

We speculate that the long-term infiltration could confer the

functional state of TaNK cells in tumors, leading to their ineffec-

tive killing of malignant cells. The enrichment of TaNK cells is

linked to impaired immune responses against the tumor as

well as hyposensitivity to current ICB therapy. Our findings

reveal the potential role of TaNK cells in tumors and provide a

reference to facilitate the rational design of NK cell-based

immunotherapies.

Potential mediators in the TME shaping tumor-
infiltrating NK cell functions
To gain insights into the regulatory programs of NK cells in the

TME, we utilized CellPhoneDB63 to probe potential cell-cell inter-

actions between NK and other CD45+ immune cells, including T

and myeloid cells13,64 (STAR Methods). Compared with T cells,

most myeloid cell types except mast cells exhibited strong

potential interactions with CD56dimCD16hi NK subsets (Fig-

ure 6A). Of particular interest is that TaNK cells were predicted

to regulatemultiplemyeloid cell types via ANXA1, a protein asso-

ciated with immunosuppression and induction of macrophage

reprogramming during inflammatory responses65,66 (Figure 6B;

Table S6). This implied that dysfunctional NK cells might have

the potential to suppress proinflammatory macrophages in the

TME. To further clarify the role of NK cell-derived ANXA1 in mac-

rophages, we performedmultiplex immunofluorescence staining

of tumor samples from lung cancer and liver cancer and identi-

fied a population of ANXA1+ NK cells (Figure S6A). Macrophages

close to ANXA1+ NK cells were found to exhibit lower expression

levels of activation marker CD86 (Figures 6C, 6D, S6B, and S6C)

and higher anti-inflammatory marker transforming growth factor

b (TGF-b) than those far from ANXA1+ NK cells (Figures 6E, 6F,

S6D, and S6E).

Notably, among dendritic cell (DC) subsets, LAMP3+ DCs, the

mature cDCs recently characterized (also called mregDC),14,67

showed the strongest interaction potential with CD56dimCD16hi

NK cells (Figure 6A). The multiplex immunofluorescence analyses

showed that LAMP3+ DCs were co-localized with NK cells

(Figures 6J and S6L). In addition, interactions between them

were predicted to be mediated via the IL-15-IL-15 receptor and

NECTIN2-TIGIT interaction axes (Figure 6B). Importantly,

LAMP3+ DCs expressed the highest level of IL15, PVRL2

(NECTIN2), and PVR among immune populations at the transcrip-

tome level (Figures 6G and S6F). The high expression of IL-15 in

LAMP3+ DCs was also demonstrated by flow cytometry

(Figures 6H, S6G, and S6H; Table S4). IL-15 has been identified

as a homeostasis-related cytokine for the longevity maintenance
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Figure 5. The relationship between TaNK cells and clinical outcomes

(A) Expression patterns of selected genes in specific NK cell and T cell subsets from tumors.

(B) Proportions of CD56dimCD16hi c6-DNAJB1 NK cells in all NK cells across cancer types. Kruskal-Wallis test.

(C) Boxplots comparing the proportion of TaNK cells in all NK cells among different tumor stages. Two-sided unpaired Wilcoxon test.

(D) Forest plot showing the effect of TaNK cells on overall survival. The y axis is scaled by a log10 transformation. *p < 0.05, **p < 0.01, ***p < 0.001. P values are

adjusted by Benjamini-Hochberg.

(E) Kaplan-Meier plots showing the association of the signature activity of TaNK cells in tumors with prognosis (STAR Methods). +, censored observations; log-

rank test.

(F) Boxplots comparing proportions of TaNK cells in CD56dimCD16hi NK cells between non-responders (NRs) and responders (Rs) in ICB therapy datasets (STAR

Methods).

(G) Boxplots showing that NR exhibited a higher TaNK cell signal than R in bulk RNA-seq datasets (STAR Methods).

See also Figure S5.
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of NK cells and utilized for NK cell infusion and in vitro propaga-

tion.4,68 By contrast, TIGIT contributes to suppressing NK cell-

mediated immune responses as an inhibitory receptor.28,69,70

Furthermore, in TCGA datasets, the abundance of LAMP3+ DCs

was correlated with CD56dimCD16hi NK cells (Figures 6I, S6I,

and S6J). We next investigated the specific regulatory process

of LAMP3+ DCs in tumors and found that tumor-infiltrating

LAMP3+ DCs exhibited lower expression of IL15 compared with

those in the adjacent non-tumor tissue (Figure S6K), indicating

that LAMP3+ DCs might have impaired activation effects on

CD56dimCD16hi NK cells in the TME. Indeed, NK cells with close

physical proximity to LAMP3+ DCs expressed granzyme B at a

lower level (Figures 6J, 6K, and S6L). Together, our analyses sug-
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gested the abnormal regulation of CD56dimCD16hi NK cells by

LAMP3+ DCs in the TME.

Distinct transcriptome patterns of peripheral blood NK
cell subsets
NK cells comprise a sizable proportion of the lymphoid cell

compartment in the blood, but their role in the tumor-induced pe-

ripheral immune system is relatively opaque. Our atlas contains

nine scRNA datasets of blood-derived NK cells from 35 healthy

donors (Table S7), enabling us to probe specific alterations of

NK cells in the peripheral blood of tumor patients.

We first compared the transcriptome features of circulating

NK cells from healthy donors with those from tumor patients.



Figure 6. The relationship of LAMP3+ DCs with CD56dimCD16hi NK cells across cancer types

(A) Heatmap showing the number of significant ligand-receptor pairs for each cluster (STAR Methods).

(B) Bubble heatmap showing selected ligand-receptor pairs for interactions of CD56dimCD16hi NK and other immune cell clusters in tumors. Dot size indicates the

p value generated by permutation test, and color the mean expression of each ligand-receptor pair.

(C–F) Representative images and quantification of fluorescence intensity of (C and D) CD86 or (E and F) TGF-b expression on macrophages adjacent to and

distant from ANXA1+ NK cells in HCC tumors. White arrows represent macrophages adjacent to ANXA1+ NK cells, whereas red arrows far from ANXA1+ NK cells.

Scale bar represents 20 mm. Data are represented as mean ± SEM. Two-sided t test.

(legend continued on next page)
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Circulating NK cells displayed high similarities among healthy

donors from different datasets (Figure S7B). By contrast, for

circulating CD56brightCD16lo cells from tumor patients, we

observed substantial transcriptome deviations from those in

healthy donors; even more dramatic differences were found for

circulating CD56dimCD16hi cells in all analyzed cancer types (Fig-

ure S7A). Notably, tumor patients exhibited remarkable compo-

sitional changes in NK cell subsets, and such patterns appeared

to be cancer-type-specific (Figure S7C). For example, the frac-

tion of circulating CD56brightCD16lo c3-CCL3 NK cells increased

in colorectal cancer, head and neck squamous cell carcinoma,

renal carcinoma, and HCC, but not in other analyzed can-

cer types.

Next, we focus on the CD56dimCD16hi c8-KLRC2 adaptive NK

cells, which were enriched in certain cancer types such as colo-

rectal cancer and gastric cancer (Figure S7D). Adaptive NK cells

have been viewed as an attractive source of CARNK cells, due to

their effector characteristics of augmented cytokine response

and intrinsic resistance to the immunosuppressive effects.4 Of

particular interest is that these cells specifically expressed

MHC class II genes, compared with other circulating NK cells

based on our data (Figure S7E). We additionally examined func-

tional shifts of these NK cells in tumor patients and found that

compared with those in healthy donors, patient-derived adaptive

NK cells had significantly higher expression of functional genes

and MHC class II genes (Figures S7F and S7H), implying their

highly activated state in tumor patients. We further confirmed

the high expression of MHC class II molecules on circulating

NK cells from HCC patients compared with those from healthy

donors by flow cytometry (Figure S7G). Accordingly, genes upre-

gulated in patient-derived adaptive NK cells were involved in

pathways such as positive regulation of the immune effector pro-

cess (Figure S7I). Taken together, our analyses revealed that

circulating NK cells were involved in the systematic change of

the peripheral immune environment during tumor progression.

DISCUSSION

In this study, we collected a wide variety of NK cells covering 24

cancer types and systematically explored the unappreciated

complexity of tumor-infiltrating NK cells. It is indeed challenging

to simultaneously achieve high purity and completeness of the

assembled NK cell atlas due to the heterogeneity of datasets

from different labs and the similar transcriptional phenotype

among NK cells, effector T cells, and other ILCs. Our computa-

tional strategy can ensure a pure NK cell atlas with a minimal ef-

fect on the downstream proportion comparisons and other ana-

lyses. In particular, we confirmed that well-characterized human
(G) The expression patterns of IL15, PVR, and PVRL2 in major immune populatio

mean expression.

(H) A representative plot of IL-15 expression in the tumor tissue of an HCC patie

(I) Scatterplots showing correlations of CD56dimCD16hi NK cells with LAMP3+ DC

(J) Multiplex immunofluorescence staining to show the co-localization of LAMP3+

(K) Quantification of the fluorescence intensity for granzymeB in NK cells near to LA

image analysis platform (Indica Labs). Data are represented as mean ± SEM. Tw

(A), (B), and (G) are plotted using our newly generated data.

See also Figure S6 and Tables S4 and S6.
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ILC signature genes were hardly expressed in all identified NK

cell subsets (Figure S1H). However, any computational strategy

may inevitably leave certain NK cells out, and the effects of our

strategy on NK cells derived from different tissues and develop-

mental stages as well as the potential induced bias should be

explored further.

Based on our high-dimensional scRNA-seq data on a large

scale, we separately explored CD56brightCD16lo and CD56dim

CD16hi subsets, which corresponded to the previously re-

ported NK_1 and NK_2,17 respectively, and revealed that tu-

mor-infiltrating NK cells were structured with heterogeneous

populations accompanying phenotypic variation and func-

tional diversity. These NK cells appear to involve in extensive

anti-tumor responses such as direct killing of cancerous

cells, secretion of proinflammatory cytokines, and recruitment

of other immune components (Figures 7A and 7B). NK cell

populations exhibited substantial cancer-type preferences,

which were associated with both intrinsic organ properties

and factors from the TME. Particularly, the reduction of

CD56dimCD16hi NK cells in tumors observed for most cancer

types represents a potential mechanism of tumor escaping

from the NK cell immunosurveillance. Previously, higher NK

cell activity has been associated with the response to trastu-

zumab, an anti-HER2 antibody, for breast cancer patients,71

which inspires us that the function of tumor-infiltrating NK

cells may affect the clinical efficacy of antibody drugs through

antibody-dependent cellular cytotoxicity.

Facilitating NK cell infiltration in solid malignancies has been a

key focus of developing therapeutic NK cell products. We recog-

nized RGS1 as a key marker of tissue-infiltrating NK cells at the

transcriptome level (Figure 7C). Analogously, RGS1 is highly

correlated with T cell function and tissue residency,72,73 but the

functional effect on NK cells is still unclear and needs further

investigation. It is still difficult to accurately discriminate whether

RGS1marks all NK cells entering tissues or only bona fide tissue-

resident NK cells.

We identified a tumor-enriched NK cell subset in potentially

dysfunctional states, named TaNK cells (Figure 7D). Analogous

to the exhaustion of T cells,24,74 the dysfunction of NK cells sug-

gests the impairment of natural cytotoxicity.75,76 Notably,

although TaNK cells are not always the dominant component

of tumor-infiltrating NK cells in all cancers, the enrichment of

TaNK cells in tumors is robust in various cancers including those

dominated by CD56brightCD16lo NK cells. The high abundance of

these cells was related to unfavorable prognosis and immuno-

therapy resistance in multiple cancer types, implicating their

roles in clinical settings. We speculated that TaNK cell enrich-

ment may reflect or affect the tumor immune responses in the
ns based on scRNA-seq data. Dot size represents percentage, and color the

nt, analyzed by flow cytometry.

s in the TCGA dataset (STAR Methods). Pearson correlation test.

DCs (DC-LAMP3+) and NK cells (CD3�CD56+). The scale bar represents 20 mm.

MP3+DCs (n = 19) or far from LAMP3+DCs (n = 26) from (D) using theHalo v3.3

o-sided unpaired Wilcoxon test.



Figure 7. Summary of NK cell features and dynamics in this study
Sketch map showing the phenotypic shifts of different tumor-infiltrating NK cell subsets

(A) CD56brightCD16lo c5-CREM NK cells downregulated XCL2 and XCL1 in tumors, possibly leading to attenuated cDC1 recruitment.

(B) CD56brightCD16lo c3-CCL3 NK cells exhibited reduced cytokine production in tumors, including CCL3 and CCL4.

(C) In contrast to circulating NK cells, tumor-infiltrating NK cells consistently expressed RGS1.

(D) c6-DNAJB1 NK cells, exhibiting higher expression of KIRs, elevated stress response, and reduced cytotoxicity, were considered the potentially dysfunctional

state of tumor-infiltrating CD56dimCD16hi NK cells.

(E) Cellular interactions with LAMP3+ DCs shape tumor-infiltrating CD56dimCD16hi NK cell functions.

ll
OPEN ACCESSResource
TME, although those cells may be not the direct target of ICB

therapies. Further exploration of larger cohorts is expected to

corroborate the functional roles of TaNK cells in both tumor pro-

gression and ICB treatment. We also explored the mechanism of

how these NK cells are affected in tumors. We identified internal

regulators for TaNK cells, including NR4A1, which has been re-

ported to inhibit effector T cell differentiation and play critical

roles in T cell exhaustion.56,57 External factors from other cell

populations in the TME including myeloid-derived suppressor

cells, Tregs, and tumor-associated macrophages can also sup-

press the anti-tumor function of NK cells.4,77 Our analyses and

experimental evidence support myeloid cells as core mediators

of NK cells. Specifically, LAMP3+ DCs can serve as a crucial

regulator and potentially inhibit CD56dimCD16hi NK cell function

in the TME, whereas further direct functional validation is still

imperative (Figure 7E). Overall, our results provide cues to main-

tain the anti-tumor activity of NK cells in vivo via searching for

cell-intrinsic and TME-associated factors.

Emerging studies have unveiled the alteration of systemic im-

munity during tumor progression.78 Our study revealed a
CD56dimCD16hi c8-KLRC2 adaptive NK cell population that is

characterized by the upregulation of certain proinflammatory cy-

tokines and MHC class II genes in the peripheral blood of tumor

patients. Although the mechanism underlying their phenotypic

shifts in tumor patients remains unclear, a possible explanation

is that the malignancy-induced release of cytokines might result

in an inflammatory context of peripheral blood and then activate

NK cells accompanied by MHC class II molecule expressions.

We expect future studies to pay more attention to the role of

adaptive NK cells in the systemic immunity and elucidate the

connection between circulating NK cells and intra-tumoral im-

mune responses.

In summary, our comprehensive analyses enhance the cur-

rent understanding of NK cells from a pan-cancer view, illumi-

nating insights into NK cell population structures as well as tu-

mor-induced local and systemic NK cell responses. To facilitate

the usage of our data for the wide research community, an

interactive portal (http://pan-nk.cancer-pku.cn/) has been

developed for analyzing and visualizing our single-cell data.

We envision that our large-scale data can further promote the
Cell 186, 4235–4251, September 14, 2023 4247
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application of NK cell-based immunotherapy to more cancer

patients.
Limitations of the study
We lack detailed clinical information on patients from public da-

tasets. Further investigating the functional and compositional

variances of NK cells in specific contexts including different tu-

mor stages, metastatic positions, and expression status of

MHC class I class genes, is challenging in our study. Epigenetic

characteristics of TaNK cells are still unexplored, and the func-

tional validation for these cells is limited due to the difficulty of

in vitro culturing. Estimations about the clinical significance of

TaNK cells are not conditioned on other possibly confounding

immune cell types. Nevertheless, this first pan-cancer single-

cell NK cell atlas captures the complex tumor-infiltrating NK

cell characteristics and informs future developmental directions

of NK cell-based immunotherapy strategies that can be person-

alized for the maximal clinical benefit.
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Antibodies

CoraLite�488-conjugated Rabbit IgG control Polyclonal antibody Proteintech Cat# CL488-30000; RRID: AB_2919216

CoraLite�488-conjugated DNAJB1 Polyclonal antibody Proteintech Cat# CL488-13174; RRID: AB_2919069

Brilliant Violet 421� anti-human CD3 Antibody Biolegend Cat# 317344; RRID: AB_2565849

APC anti-human Perforin Antibody Biolegend Cat# 353312; RRID: AB_2571969

CD3 Polyclonal antibody Proteintech Cat# 17617-1-AP; RRID: AB_1939430

Anti-rat IgG (H+L), (Alexa Fluor� 488 Conjugate) Cell Signaling

Technology (CST)

Cat# 4416S; RRID: AB_10693769

DC-LAMP Antibody (1010E1.01) Novus Biologicals Cat# DDX0191P-100; RRID: AB_2827532

Recombinant Anti-NCAM1 antibody [EP2567Y]

(ab75813),100uL(CD56)

Abcam Cat# ab75813; RRID: AB_2632384

PE anti-human CD158a (KIR2DL1) Antibody Biolegend Cat# 374903; RRID: AB_2832735

APC Mouse Anti-Human CD158e1 (NKB1) BD Biosciences Cat# 564103; RRID: AB_2738594

PE-CF594 Mouse Anti-Human Granzyme B BD Biosciences Cat# 562462; RRID: AB_2737618

Brilliant Violet 510� anti-human CD45 Antibody Biolegend Cat# 304036; RRID: AB_2561940

Alexa Fluor� 700 anti-human CD16 Antibody Biolegend Cat# 302026; RRID: AB_2278418

PE/Cyanine7 anti-human CD56 (NCAM) Antibody Biolegend Cat# 362510; RRID: AB_2563927

anti-DNAJB1 polyclonal Antibody Solarbio Cat# K106727P

Annexin A1 Polyclonal antibody Proteintech Cat# 21990-1-AP; RRID: AB_11182596

CD68 Monoclonal antibody Proteintech Cat# 66231-2-Ig; RRID: AB_2881622

CD86 (E2G8P) Rabbit mAb Cell Signaling Technology Cat# 91882S; RRID: AB_2797422

Recombinant Anti-TGF beta 1 antibody [EPR21143] Abcam Cat# ab215715-40ul; RRID: AB_2893156

CD3 Monoclonal Antibody (SK7), APC-eFluor� 780 Thermo Fisher Scientific Cat# 47-0036-42; RRID: AB_10717514

CD19 Monoclonal Antibody (SJ25C1), APC-eFluor� 780 Thermo Fisher Scientific Cat# 47-0198-42; RRID: AB_10719114

CD56 (NCAM) Monoclonal Antibody (CMSSB), APC-eFluor� 780 Thermo Fisher Scientific Cat# 47-0567-42; RRID: AB_10854573

PerCP/Cyanine5.5 anti-human CD45 Biolegend Cat# 368504; RRID: AB_2566352

Brilliant Violet 650(TM) anti-human CD197 (CCR7) Biolegend Cat# 353234; RRID: AB_2563867

Mouse Anti-Human CD208 Monoclonal Antibody, PE Conjugated BD Biosciences Cat# 558126; RRID: AB_647194

IL-15 Monoclonal Antibody (34559), APC Thermo Fisher Scientific Cat# MA5-23627; RRID: AB_2608838

Mouse Anti-PD-L1 Monoclonal Antibody, PE-Cy7 Conjugated BD Biosciences Cat# 558017; RRID: AB_396986

BV510 Mouse Anti-Human CD83 BD Biosciences Cat# 563223; RRID: AB_2738080

BD OptiBuild� BUV395 Mouse Anti-Human HLA-DR, DP, DQ BD Biosciences Cat# 740302; RRID: AB_2740041

PE/Cyanine7 anti-human Perforin Biolegend Cat# 353316; RRID: AB_2571973

PerCP/Cyanine5.5 anti-human CD56 (NCAM) BioLegend Cat# 362506; RRID: AB_2563915

Critical commercial assays

LIVE/DEAD� Fixable Near-IR Dead Cell Stain Kit, for 633 or

635 nm excitation

Invitrogen Cat# L34975

Tumor Dissociation Kit, human Miltenyi Biotec Cat# 130-095-929

Zombie Violet Fixable Viability Kit Thermo Fisher Scientific Cat# 423114

PanoPANEL Kits Panovue Cat# 10234100100

eBioscience� Foxp3 / Transcription Factor Staining Buffer Set Invitrogen Cat# 00-5523-00

Chemicals, peptides, and recombinant proteins

100 mm Smart Straine Miltenyi Biotec Cat# 130-098-463

Red blood cell lysis buffer TIANDZ Cat# 90309

Human BD Fc Block BD Cat# 564219
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Deposited data

Data files for human scRNA-seq dataset This study GEO: GSE212890

Raw data for human scRNA-seq dataset This study GSA for Human: HRA000321

Public human cancer scRNA-seq datasets Other public studies See Table S1 for details

Human breast cancer treatment-related scRNA-seq dataset Zhang et al.59 GEO: GSE169246

Human melanoma treatment-related scRNA-seq dataset de Andrade et al.15 GEO: GSE139249

Human lung cancer treatment-related RNA-seq dataset Jung et al.61 GEO: GSE135222

Human melanoma treatment-related RNA-seq dataset Riaz et al.60 GEO: GSE91061

Human metastatic urothelial carcinoma treatment-related

RNA-seq dataset

Balar et al.62 IMvigor210

Software and algorithms

Prism Software 9.1.1 GraphPad Software https://www.graphpad.com/scientific

software/prism/

HALO 3.3 Indica Labs https://www.indicalab.com/halo

Flowjo Software 10.4 Flowjo, LLC https://www.flowjo.com/solutions/flowjo

OlyVIA 3.8 OLYMPUS https://olyvia.software.informer.com/

BBKNN 1.5.1 Pola�nski et al.79 https://github.com/Teichlab/bbknn

Cellranger 3.0.0 10x Genomics https://10xgenomics.com/

CellPhoneDB 2.1.7 Efremova et al.63 https://www.cellphonedb.org/

Scanpy 1.8.2 Wolf et al.80 https://scanpy.readthedocs.io/en/latest/

SCENIC 1.1.2-2 Aibar et al.49 https://github.com/aertslab/SCENIC

Scrublet 0.2.3 Wolock et al., 201881 https://github.com/AllonKleinLab/scrublet

scVelo 0.2.3 Bergen et al.54 https://scvelo.readthedocs.io/

ROGUE Liu et al.34 https://github.com/PaulingLiu/ROGUE

Metascape Zhou et al.82 https://metascape.org/gp/index.html#/

main/step1

Scaden Menden et al.58 https://github.com/KevinMenden/scaden

R 4.1.2 R Core Team, 202183 https://www.r-project.org/

Python 3.7.6 Van Rossum and

Drake, 200984
https://www.python.org/

Other

Interactive explorer of human NK cells This study http://pan-nk.cancer-pku.cn/

Code This study https://github.com/TangFei965/pan-NK
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Zemin

Zhang (zemin@pku.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The accession numbers for the raw sequencing in this paper are GSA for Human (Genome Sequence Archive for Human in BIG

Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences): HRA000321. The gene expression data can be ob-

tained from the NCBI GEO database with accession number GEO: GSE212890. Visualization of the scRNA-seq datasets in this

study can be found at http://pan-nk.cancer-pku.cn/.
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Resource
d Our analysis code has been uploaded to the github (https://github.com/TangFei965/pan-NK). GEO accession numbers for

public treatment-associated datasets are listed in the key resources table. The detailed information of all public datasets

has been provided in Tables S1 and S7.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human participants
Ten patients enrolled in this study were those pathologically diagnosed with liver cancer, including nine males and one female,

through the Beijing Shijitan Hospital, Beijing, China. The written informed consents were obtained from all participants before tissue

and blood sample collection for research according to regular principles. Ethical approvals were gained from the Ethics Committee of

Beijing Shijitan Hospital, Capital Medical University. Patients were pathologically diagnosed with hepatocellular carcinoma (HCC)

except P20220722 and P20220520 who were diagnosed with intrahepatic cholangiocarcinoma (ICC). Patient P20220706 was

treated with interventional therapy, while others had no prior chemotherapy or targeted systemic therapy. The ages of these patients

ranged from 49 to 72, with a mean age of 60. The clinical stages of these patients, which were classified according to the guidance of

AJCC, covered four stage I, three stage II, and three stage III. Detailed clinical metadata of these patients in this study are provided in

Table S4. The patient specimens collected within this study were from East Asians. Paired samples of tumors and adjacent liver tis-

sues were collected for NK cell isolation. Tumor tissues were dissected approximately 2 cm from tumor edge, and adjacent non-tu-

mor tissues were at least 2 cm from the paired tumor.

The samples of forty-seven cancer patients were collected and analyzed in our previous study.64 This study was also approved by

the Research and Ethical Committee of Peking University Cancer Hospital and complied with all relevant ethical regulations. The

detailed clinical information of the patients was shown in Table S1.

METHOD DETAILS

Sample collection and flow cytometry
Patients’ or healthy donor’s PBMCs were isolated through density gradient centrifugation using HISTOPAQUE�-1077 from antico-

agulated whole blood. Fresh tumor and adjacent liver tissue from patients were dissociated with Tumor Dissociation Kit, human (Mil-

tenyi Biotec, 130-095-929), according to the manufacturer’s instructions. After being subsequently filtered by 100 mm Smart Straine

(Miltenyi Biotec, 130-098-463), the dissociated cells were treated with red blood cell lysis buffer (TIANDZ, 90309) on ice for

1�2 minutes to lyse red blood cells. Single-cell suspensions were centrifuged at 400 g for 5 min and resuspended with PBS, and

then were stained with LIVE/DEAD� Fixable Near-IR Dead Cell Stain Kit (Invitrogen, L34975) or Zombie Violet Fixable Viability Kit

(Invitrogen, 423114) to distinguish live cells from labeled dead cells. After washing with PBS with 2% FBS, fluorochrome-conjugated

antibodies for cell surface antigens were added and stained for 30 min at 4�C. For intracellular staining, cells were fixed and permea-

bilized using eBioscience� Foxp3 / Transcription Factor Staining Buffer Set (invitrogen, 00-5523-00). In brief, cells were thoroughly

resuspended using Fixation/permeabilization solution and fixed for 30min at 4�C, then washed with 1X Perm/Wash Buffer. After that,

cells were blocked for 10min at 4�C using Human Fc Block (BD, 564219) and antibodies for intracellular antigens were added and

then incubated for 1 hour at 4�C. During IL-15 detection, cells were not re-stimulated. Data were collected by a FACS Aria Sorp

flow cytometer and analyzed with FlowJo software.

Multiplex immunofluorescent staining
Tumor samples from patients were placed in 4% Paraformaldehyde for 24 h, and then dehydrated and embedded in paraffin. Sec-

tions were stained using PanoPANEL Kits (panovue, 10234100100) to performmultiplex immunofluorescence according to the man-

ufacturer’s instructions. Briefly, slides were deparaffinized with xylene and a graded series of ethanol dilutions (100%, 95% and

70%), and were then fixed with 10% neutral buffered formalin for 10 minutes, followed by microwave-based antigen retrieval using

the antigen restoration solution and antibody blocking for 30minutes. Primary antibodies were incubated for 1h at room temperature,

and HRP-labeled secondary antibodies were incubated at room temperature for 30 minutes, followed by TSA fluorescent dye work-

ing solution incubation for 30 minutes. Finally, after multi-antigen staining, nuclei were stained with DAPI for 20 minutes. Slides were

enclosed using Nail Polish, scanned using the SLIDEVIEW VS200 (Olympus), and analyzed with OlyVIA software.

Single cell RNA library preparation and sequencing
Tumor and adjacent non-tumor tissues were collected from matched patients. Single cells were digested from tissues as described

previously.64 The tissues were cut into approximately 1-2mm3 small pieces in the RPMI-1640medium (GIBCO) with 10% fetal bovine

serum (FBS, GIBCO), and enzymatically digested by Tumor Dissociation Kit (Miltenyi Biotec) for 60 min on a 37 �C rotor according to

the manufacturer’s protocol.

Dissociated cells were then passed through a 100mm SmartStrainer and centrifuged at 400g for 5 min. To lyse red blood cells, the

pelleted cells were treated with red blood cell lysis buffer (Miltenyi Biotec) on ice for 1-2 min after removing the supernatant. After
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washing twice with 1 x PBS (GIBCO), the cell pellets were re-suspended in sorting buffer (PBS supplemented with 1% FBS) and

stained with antibodies against CD45 and 7AAD for FACS with a BD FACSAria� III sorter (BD Biosciences) instrument.

10,000�20,000 cells were loaded for library construction using the 10x Chromium Single cell 5‘ Library (10x Genomics, V3), accord-

ing to the manufacturer’s instructions. Purified libraries were subject to an Hiseq X Ten sequencer (Illumina) for sequencing with

150-bp paired-end reads.

Single-cell RNA-seq data preprocessing
Newly generated single-cell sequencing data were aligned with the GRCh38 human reference genome and quantified using Cell

Ranger (version 3.0, 10x Genomics Inc). The preliminary filtered data generated from Cell Ranger were used for downstream filtering

and analyses. The quality of cells was then assessed based on two metrics: (1) The number of detected genes per cell; (2) The pro-

portion of mitochondrial gene counts per cell. Specifically, cells with detected genes fewer than 200 and mitochondrial unique mo-

lecular identifier (UMI) count percentage larger than 10%were filtered out. The genes detected in more than 3 cells were retained. To

remove the potential doublets, Scrublet81 was used for each sequencing library with the expected doublet rate set to be 0.05, and

cells with the predicted doubletScore larger than 0.3 were further filtered out.

For scRNA-seq data from other publications, the same filtering steps were applied for the datasets with raw count matrix to obtain

high-quality cells. As for the specific datasets with no available count data, the CPM or TPM matrix were downloaded and used

directly. The detailed meta data (including tissue location, sample and patient identifier) were retrieved from the original studies

(Table S1).

We next normalized the count data generated from the droplet-based platform (Such as 10x Genomics Chromium and IndropSeq)

using the normalize_total function with parameter ‘target_sum=1e4’ in Scanpy.80 Count data generated from Smart-seq2 were

normalized by length of each gene before using the Scanpy pipeline. All the normalized data were logarithmically transformed for

downstream analyses. Although unsupervised clustering is widely used to identify cell populations in the analysis of scRNA-seq

data, we found that it inevitably included other cell types during NK cell identification (data not shown). Thus, we firstly isolated

the potential NK cells based on the positive expression (above zero) of either NCAM1 or KLRF1 as well as the negative expression

of the CD3 genes, including CD3D, CD3G and CD3E.16,17,85,86 We further excluded the cells expressing marker genes of other cell

types in subsequent unsupervised clustering (details in the next section). The detailed reasons for the sorting strategy are as follows:

1) BothNCAM1 andKLRF1were used for the in silico FACS of NK cells to address the potential bias introduced by dropout events. 2)

NKp80 (KLRF1) is one of markers of human NK cells, which is not expressed on ILC1s,20,45 and this gene is also extensively used as a

NK cell marker in scRNA-seq data.85,86 By contrast, we found that another NK cell marker used in mouse models, EOMES, could be

detected in human T cells and ILC1s as well,20 thereby not included in our strategy. 3) Since CD3D, CD3G and CD3E are highly ex-

pressed in effector T cells, NK-T cells and human ILC1s, we used these genes as negative selection markers to ensure the purity of

NK cells. Other CD3-related genes associated with NK cell functions such as CD3z87 were completely preserved in our scRNA-

seq atlas.

Batch effect correction and unsupervised clustering
Highly variable genes (HVGs) were selected within each cancer type to ensure the selection of genes that are conserved at the pan-

cancer level using the scanpy.pp.highly_variable_genes function with the parameter setting ‘batch_key=cancer types’. The unex-

pected effects of the total counts and the percentage of mitochondrial gene counts per cell were regressed out from the normalized

expression matrix using the scanpy.pp.regress_out function on the matrix of HVGs following the common workflow of Scanpy. Next,

principal component analysis (PCA) was performed on thematrix of HVGs to reduce noise and reveal themain axes of variation using

the scanpy.tl.pca function, and the top 40 components were retained for downstream analyses.

The batch effects were corrected by the BBKNN algorithm, which detected the top nearest neighbors of each cell from each batch

respectively instead of the entire cell pool.79 The parameters of the scanpy.external.pp.bbknn function were set to ‘‘batch_key=’pa-

tient’, n_pcs=40’’. Uniform Manifold Approximation and Projection (UMAP) was employed for visualization via the scanpy.tl.umap

function with default parameters.

We performed two rounds of unsupervised clustering to unveil the structure of NK cell population using the scanpy.tl.leiden func-

tion. After the first-round of unsupervised clustering (the resolution parameter of clustering was set to 1.0), each cell cluster was an-

notated as CD56brightCD16lo or CD56dimCD16hi NK cells based on the expression levels of CD56 (NCAM1) and CD16 (FCGR3A). The

obtainedCD56brightCD16lo andCD56dimCD16hi NK cell populations were analyzed separately to obtain the high-resolutionmap of NK

cell populations in the second-round of unsupervised clustering with the resolution parameter set to 0.6. Notably, we removed clus-

ters showing signature of B cells (CD19, MS4A1), myeloid cells (LYZ, C1QA, CD68) or epithelial cells (EPCAM, KRT18, KRT19). The

cluster-specific marker genes were identified using the scanpy.tl.rank_genes_groups function with the parameter of ‘method=wil-

coxon’ (Table S2). We identified NK cell clusters by their whole signature genes, and we named them by selection of one specific

signature gene after simultaneously considering the observed expression pattern and previous conventions.

To confirm that our clustering results sufficiently depicted the transcriptional heterogeneity of NK cells and no further sub-clus-

tering was necessary, an entropy-based universal metric ROGUE was applied for the defined subsets.34 The ROGUE index ap-

proaching one represents a relatively purer subset with fewer significant intra-cluster variations.
Cell 186, 4235–4251.e1–e7, September 14, 2023 e4



ll
OPEN ACCESS Resource
The proportion and tissue distribution of NK cell subsets
To quantify the distribution of NK cell population, we calculated the proportion of each NK cell subset for all samples from blood,

tumor and adjacent non-tumor tissues. Samples with the number of cells less than 20 were excluded to avoid the bias caused by

inaccurate estimations. Subsets from CD56brightCD16lo and CD56dimCD16hi NK cells were processed respectively. Due to insuffi-

cient sample numbers, all metastatic samples were incorporated into ‘‘other tissue’’ and not included in downstream analysis.

Calculation of signature score
We used the R package AUCell49 to calculate the signature score of a specific gene set. AUCell is ranking-based, and is independent

of the gene expression units and the normalization procedure. We first built the ranked expression matrix using the AUCell_buil-

dRankings function, and then calculated the AUC value using the AUCell_calcAUC function. Detailed gene sets used in this study

were defined in the following sections.

Definition of cytotoxicity, inflammatory and stress gene sets
To evaluate the functional variations between CD56brightCD16lo and CD56dimCD16hi NK cell subsets, we defined cytotoxicity, inflam-

matory and stress-related gene sets after comprehensive compilation of previous studies. The cytotoxicity gene sets were defined as

GZMA,GZMB,GZMH,GZMM,GZMK,GNLY, PRF1 andCTSW.88,89 The inflammatory gene set was defined as CCL2,CCL3,CCL4,

CCL5, CXCL10, CXCL9, IL1B, IL6, IL7, IL15 and IL18.90,91 The general stress gene set was defined as BAG3, CALU, DNAJB1,

DUSP1, EGR1, FOS, FOSB, HIF1A, HSP90AA1, HSP90AB1, HSP90B1, HSPA1A, HSPA1B, HSPA6, HSPB1, HSPH1, IER2, JUN,

JUNB, NFKBIA, NFKBIZ, RGS2, SLC2A3, SOCS3, UBC, ZFAND2A, ZFP36 and ZFP36L1.88 Each score was calculated by AUCell

as we mentioned above.

Definition of HLA-dependent and -independent receptors
To evaluate the expression levels of inhibitory and activating receptors on NK cell surface, we defined four gene sets based on their

inhibitory or activating properties and HLA-dependence, including HLA-dependent inhibitory receptors (KIR2DL1, KIR2DL3,

KIR3DL1, KIR3DL2, LILRB1 and LAG3), HLA-independent inhibitory receptors (PDCD1, SIGLEC7,CD300A,CD96, IL1RAPL1, TIGIT

and HAVCR2), HLA-dependent activating receptors (KIR2DL4, CD160 and KLRC2) and HLA-independent activating receptors

(NCR3, NCR1, KLRK1, CRTAM and FCGR3A).92 Each score was calculated by AUCell as we mentioned above.

Hierarchical clustering of cancer types
In order to compare the composition of NK cells among different cancer types, we performed unsupervised hierarchical clustering for

all analyzed cancer types in this study based on the proportions of CD56brightCD16lo and CD56dimCD16hi NK cell subsets. The fre-

quencies of all subsets were used as input for the R function tree to hierarchically cluster the cancer types. Only the tumor-derived NK

cells were used for analysis.

Specificity and sensitivity assessment
We evaluated the sensitivity for selected differentially expressed genes between NK cells with different tissue origins using the per-

mutation test. We randomly shuffled the tissue label of each NK cell using the sklearn.model_selection.permutation_test_score func-

tion with the parameter of ‘n_permutation=1000’. The selected gene could be a good predictor, if the score on original data is much

greater than those obtained from the permuted data and the P value is less than 0.05.

To compare the expression specificity for each selected gene, we calculated the relative fold change between tissue-infiltrating NK

cells and circulating NK cells according to the following formula:

specificity =
Nti
Nt

�
Nbi

Nb
where Ntreferred to the number of all tissue-infiltrating NK cells, N
ti the number of NK cells expressing gene i in the tumor and adja-

cent non-tumor tissue, Nb the number of all blood-derived NK cells, and Nbi the number of NK cells expressing gene i in blood. The

above analyses were performed for CD56brightCD16lo and CD56dimCD16hi NK cells, respectively.

RNA velocity analysis
The newly generated 10x scRNA-seq data was used for the RNA velocity analysis.53 First of all, the spliced and unspliced UMIs were

recounted by the python package velocyto.54 Then we normalized the count matrices by the library size and kept the genes detected

in over 20 cells in both spliced and unsplicedmatrices. Next, HVGswere selected by the scanpy.pp.highly_variable_genes function to

be used for PCA. The moments of normalized spliced and unspliced counts were calculated using the scvelo.pp.moments function

for each cell with default parameters. The RNA velocity was estimated using the scvelo.tl.velocity function with the dynamical mode

selected and the velocity graph was built with the cosine similarity using the scvelo.tl.velocity_graph function. The RNA velocities

were projected into the UMAP coordinates with the scv.pl.velocity_embedding_stream function for visualization.
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Pseudotime trajectory inference
The diffusion map algorithm was used to infer the differentiation trajectory of all tumor-infiltrating CD56dimCD16hi NK cells following

the workflow in Scanpy.55 Based on the above BBKNN-derived batch-balanced k nearest-neighbor graph, the diffusion map was

built using the scanpy.tl.diffmap function with default parameters. We selected the CD56brightCD16hi NK cells as the root because

they located at the start of the directed streamline inferred by RNA velocity, and calculated the diffusion pseudotime for

CD56dimCD16hi NK cells using the scanpy.tl.dpt function. We then fit the expression profile of each gene to the pseudotime using

a polynomial regression model.

SCENIC analysis
Activated regulons in tissue-enriched CD56brightCD16lo and CD56dimCD16hi NK cell subsets were analyzed by SCENIC, respec-

tively.49 The newly generated scRNA data in this study was used as input for the python implementation of the SCENIC algorithm

(pyscenic). Briefly, the gene-gene co-expression relationships between transcription factors (TF) and their potential targets were in-

ferred using the grn function with the gene regulatory network reconstruction algorithm ‘grnboost2’ selected. Next, the command

aucell was used to calculate the regulon activity for each cell. Finally, the differentially activated regulons were recognized in a spe-

cific NK cell subset by wilcoxon test with adjusted P value < 0.05.

Cell-cell interaction analysis by CellPhoneDB
The Python package CellPhoneDB63 was applied to infer the cell-cell interactions between NK cells and other immune cells in our

newly generated data.We first collected scRNA-seq data of myeloid cells and T cells from our previous studies and kept their original

annotations for downstream analyses.13,64 Of note, only the immune cells in tumors were used. For the cell-cell interactions between

each CD56dimCD16hi NK cell subset and other immune cell types, the predicted ligand-receptor pairs with P values < 0.05 and

average expression > 1, were extracted for counting and presentation in the figures (Table S6).

Analysis of immunotherapy datasets
To address whether TaNK cells were associated with ICB treatment response, we collected the published scRNA-seq data from pa-

tients subjected to the ICB therapy with sufficient NK cells. The bulk RNA-seq datasets of ICB therapy from large cohorts were also

included in our analysis. The samples from primary tumors were used for downstream analyses.

For the scRNA-seq data, we compared the proportion of TaNK cells in all CD56dimCD16hi NK cells for each patient. Then we used

wilcoxon test to compare the proportion of TaNK cells between responders and non-responders. As for the bulk RNA-seq data, all

count data were normalized (TPM) and log2-transformed. To address the discordance in clinical information, all patients were re-

named as responder (including CR/PR patients) or non-responder (including SD/PD patients) based on their clinical responses after

treatment. To test the correlation of TaNK cells and immunotherapy responses, we applied the five marker genes (KLRF1, DNAJB1,

BAG3, SERPINE1 and NR4A1) as the signature of TaNK cells, and further compared the signature activity of TaNK cells between

responders and non-responders.

TCGA RNA-seq data analysis
The expression data of TCGA and the clinical information of patients were downloaded using the TCGAbiolinks package. We calcu-

lated the signature scores of CD56dimCD16hi NK cells and LAMP3+ DCs to verify their connections. Based on previous studies, LYZ,

CST3, LAMP3, FSCN1 and CCL19 were used as the LAMP3+ DC signature, and NCR1, NCR3, KLRB1, CD160 and PRF1 were used

as the NK cell signature.14,37,64 Patients with the NCAM1 expression lower than the median level were regarded as the

CD56dimCD16hi NK cell enrichment group. The correlation between LAMP3+ DCs and CD56dimCD16hi NK cells at the pan-cancer

level was calculated by Pearson correlation.

Survival analysis
The prognostic performance of TaNK cells among tumors was evaluated by TCGA data of each cancer type. The signature score of

TaNK cells was defined as above. The TCGA patients of each cancer type were classified into high and low groups based on the

optimal cutpoint returned by the surv_cutpoint function. To explore the effect of TaNK cells on overall survival, we performed survival

analyses by the Cox proportional hazards model implemented in the R package survival after correcting the effects of other clinical

factors including tumor stage, gender and patient age. Survival curves were fit using the Kaplan-Meier formula in the R package sur-

vival, and visualized using the ggsurvplot function of the R package survminer. We performed deep learning–based cell composition

analysis to further validate the association between the TaNK cell frequency and prognosis based on Scaden.58We trained the neural

network model on 100,000 simulated samples which were generated by randomly combining different numbers of TaNK cells and

other cell types, and resulted in a 96% accuracy on an independently simulated validation dataset. We then applied the optimized

model on TCGA data and patients of each cancer type were classified into high and low groups based on the deconvoluted TaNK cell

frequencies. The detailed code andmodels used to perform this analysis in this study are available at the following github repository:

https://github.com/TangFei965/pan-NK.
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Comparison with human peripheral blood for NK cells
Here, we used all blood-derived scRNA-seq data for downstream analyses with the exception of GES158055, because it was gener-

ated using a unique alignment and quantification algorithm (Table S7). In order to define the level of change in circulating NK cells, the

similarities of each major circulating NK cell population between healthy donors and patients were measured based on the cosine

distance of their respective transcriptome. First, we combined the cell-by-gene expression matrix from healthy donors and patients

from each of the examined cancer types separately. The HVGswere then selected from each joint matrix to serve as the input for PCA

projection. Finally, the low-dimensional space spanned by the top 40 PCswas used to calculate the cosine distance between healthy

donors and patients.

We further evaluated the changes for NK cells in peripheral blood in terms of the compositional changes of NK cell subset and gene

expression fluctuations. For each cancer type, we calculated the fold change of the average proportion for each NK cell subset be-

tween tumor patients and healthy donors.

We also compared the ratio of the observed and expected number of cells (Ro/e) for c8�KLRC2 NK cell subset in each cancer

types to examine their tissue preference, where the expected cell numbers for each subset were obtained from the chi-square

test.93 One subset was assumed as an enriched population in a specific tissue if the corresponding Ro/e index is greater than 1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Statistical analyses used in this study included Kruskal-Wallis test, Wilcoxon test and t-test as described in the Figure legends. The

Kaplan-Meier method was applied in survival analyses. Correlations among immune cell subsets were estimated by Pearson

correlation.
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Figure S1. Basic information of the data and the integration of NK cells, related to Figure 1

(A) Schematic diagram of construction for human pan-cancer NK cell atlas.

(B) The sample number of NK cells derived from blood (n = 157), tumor (n = 773) and adjacent non-tumor (n = 195) tissues.

(C) The number of NK cells across cancer types. The y axis is scaled by using a square root transformation.

(D) The proportion of NK cells in all CD45+ cells for each sample across cancer types. Dashed line indicates the median value.

(E) UMAP plot showing integrated CD56brightCD16lo and CD56dimCD16hi NK cell atlas with information of datasets.

(F) Violin plots showing the expression level of KLRF1 across all NK cell subsets.

(G) The comparison of KLRF1 expression level across cancer types in both CD56brightCD16lo and CD56dimCD16hi NK cells.

(H) The expression pattern of ILC markers among NK cell subsets. The color represents the mean expression within each of the NK subsets and the dot size

indicates the fraction of cells in the subsets expressing the corresponding gene.

(I) Boxplots comparing the expression ofNCAM1 and FCGR3A in NK cell major populations. Each dot corresponds to one cell. Two-sided unpairedWilcoxon test.

(J) Boxplots showing cell purity for each NK cell subset across tumors by ROGUE index (STAR Methods).

See also Table S1.
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Figure S2. Characteristics of NK cell subsets, related to Figure 1

(A) Bubble heatmap showing the expression pattern of selected signature genes of the NK cell subsets. Dot size represents the fraction of expressing cells. Color

indicates the Z score scaled gene expression levels.

(B) UMAP plots showing expression levels of signature genes used to name every CD56brightCD16lo or CD56dimCD16hi NK cell subset.

(C) UMAP plots showing the tissue distribution of CD56brightCD16lo and CD56dimCD16hi NK cell.

(D) Barplots showing the contribution of cancer types to each NK cell subset.

(E) Heatmap showing the differential expression of cell markers used for development identification among NK cell subsets. Color represents the Z score scaled

gene expression levels.

(F) Heatmap showing the expression of corresponding genes used to define the functional scores in Figure 1G. Color indicates the Z score scaled gene

expression levels.

(G) Heatmap showing the selected activating and inhibitory receptors differentially expressed in CD56brightCD16lo and CD56dimCD16hi NK cells. Color is coded by

the Z score scaled gene expression.

See also Table S2.
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Figure S3. Heterogeneity of the tumor-infiltrating NK cell populations across different cancer types, related to Figure 2

(A) Boxplots showing that CD56brightCD16lo NK cell subsets were enriched in NPC and CD56dimCD16hi NK cell subsets were enriched in PACA. The frequency of

each NK cell subset is divided by the total NK cell number in tumors. Kruskal-Wallis test.

(B) Flow cytometry analysis showing the ratio of CD56brightCD16lo NK cells to CD56dimCD16hi NK cells in the tumor tissue of HCC patients (n = 6). Data are

represented as mean ± SEM.

(C) Boxplots comparing the proportion of two NK cell major populations divided by the total NK cell number between tumor and adjacent non-tumor tissues,

respectively. Two-sided unpaired Wilcoxon test.

(D) Unsupervised hierarchical clustering of cancer types based on the cellular composition of all NK cell subsets in each cancer type. The average proportion of

each subset is shown.

(E) The cellular compositions of CD56dimCD16hi NK cell subsets in three common types of leukemia including Acute Lymphocytic Leukemia (ALL), Chronic

Lymphocytic Leukemia (CLL), and Acute Myeloid Leukemia (AML).

(F) UMAP plots showing the signature genes of NK cell subsets for each tissue type.

See also Table S4.
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Figure S4. RGS1 as a better identifier of tissue-infiltrating NK cells, related to Figure 3

(A and B) The sensitivity and specificity of representative genes to distinguish the tissue origin of (A) CD56brightCD16lo and (B) CD56dimCD16hi NK cells (STAR

Methods). Dot size represents the significance of sensitivity score evaluated by �log10 (p value). P values are generated by permutation test.

(C) The permutation test for CD69 and RGS1 as tissue-infiltrating marker of NK cells, respectively. Red line marks the score on original labeled data. P values are

generated by permutation test (STAR Methods).

(D) Receiver Operator Characteristic (ROC) curves showing the performance in prediction of non-blood NK cells. The dash line represents the result of random

selection.

(E) The performance of combinations of RGS1 with either CD69 or ITGAE in distinguishing tissue-derived NK cells based on in silico FACS. Red dots denote the

NK cells derived from blood and gray dots denote tissue-derived NK cells. Dashed line indicates predicted boundary of blood and non-blood NK cells based on

the expression level of the combination.

(F) Violin plots showing the significant alterations of RGS1 expression among tissues in CRC. Two-sided unpaired Wilcoxon test.
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Figure S5. Dynamic changes of CD56brightCD16lo NK cell infiltration and the existence of TaNK cells, related to Figures 4 and 5

(A and B) Volcano plots showing differentially expressed genes for (A) CD56brightCD16lo c3-CCL3 NK cells and (B) c5-CREM NK cells from tumor and adjacent

non-tumor tissues. Each red point indicates significantly up- or down-regulated gene with adjusted p value < 0.05, two-sided t test.

(C) Heatmap showing TF activity for tissue-enriched CD56dimCD16hi and CD56brightCD16lo NK cell subsets (STAR Methods).

(D) RNA velocities overlaid on the UMAP of CD56brightCD16lo NK cells by using the newly generated data in this study. Arrows show the RNA velocity field. Dots

are colored by CD56brightCD16lo NK cell subsets.

(E) RNA velocities overlaid on the UMAP of (left) CD56dimCD16hi and (right) CD56brightCD16lo NK cells by using the newly generated data in this study. Dots are

colored by the expression of RGS1. Arrows show the RNA velocity field.

(F) Violin plots showing the percentage of counts in mitochondrial genes of CD56dimCD16hi c6-DNAJB1 and c7-NR4A3 NK cells. Two-sided unpaired Wil-

coxon test.

(G) Multiplex immunofluorescence staining in other representative tumors to show the TaNK cells (arrows). The scale bar represents 20 mm.

(H) Gating strategy of flow cytometry for HSP40+ CD56dimCD16hi NK cells, exemplified by patient P20220722.

(I) Heatmap showing that genes changed along with the inferred pseudotime (STARMethods). The density plot on top of the heatmap showing the distribution of

CD56dimCD16hi c6-DNAJB1 and c7-NR4A3 NK cells along the pseudotime.

(J) Multiplex immunofluorescence staining in other representative tumors to show the expression of granzyme B in HSP40+ (white arrows) and HSP40� NK cells

(red arrows). The scale bar represents 20 mm.

(K) Quantification of the fluorescence intensity for granzyme B in HSP40+ NK cells (n = 6) and HSP40� NK cells (n = 7) from (I) and Figure 4H using the Halo v3.3

image analysis platform. Data are represented as mean ± SEM. Two-sided unpaired Wilcoxon test.

(L) Violin plots showing the expression levels of NR4As in CD56dimCD16hi c6-DNAJB1 and c7-NR4A3 NK cells. Two-sided unpaired Wilcoxon test.

(M) Kaplan-Meier plots showing the signature activity of TaNK cells in different cancer types based on the deconvoluted TaNK cell proportions (STAR

Methods). +, censored observations; log-rank test.

(N) Forest plot showing the effect of TaNK cells on overall survival based on the deconvoluted TaNK cell proportions (STARMethods). The hazard ratios (HRs) are

calculated by Cox regression models with the age, gender and tumor stage corrected. The y axis is scaled by using a log10 transformation. Dashed line indicates

HR = 1. *p < 0.05, **p < 0.01, ***p < 0.001. P values are adjusted by Benjamini-Hochberg.

(D) and (E) are plotted using our newly generated data.

See also Tables S4 and S5.
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Figure S6. The interaction of myeloid cells and NK cells in various cancer types, related to Figure 6

(A) Representative multiplex immunofluorescence images of HCC and lung cancer (LC) tumors. White arrows represent ANXA1+ NK cells. Scale bar repre-

sents 20 mm.

(B–E) Representative images and quantification of fluorescence intensity of (B and C) CD86 and (D and E) TGF-b expression on macrophages adjacent to or

distant from ANXA1+ NK cells in tumor tissue of lung cancer. White arrows represent macrophages adjacent to ANXA1+ NK cells, whereas red arrows far from

ANXA1+ NK cells. Scale bar represents 20 mm. Data are represented as mean ± SEM. Two-sided t test.

(F) Scatterplot showing the correlation of LAMP3 and IL15 in TCGA data. Pearson correlation test.

(G) The gating strategy of flow cytometry for tumor-infiltrating immune cells and IL-15 production.

(H) Flow cytometry analysis of the proportion and expression level of IL-15 among different tumor-infiltrating immune cells in HCC patients (n = 5). Data are

represented as mean ± SEM.

(I) Scatterplots showing correlations of CD56dimCD16hi NK cells with LAMP3+ DCs in the TCGA dataset on each cancer type, based on their signature gene

expressions. Pearson correlation test.

(J) Heatmap showing the Pearson correlation coefficient for gene signatures of distinct cell types in the TCGA dataset. r, Pearson correlation coefficient.

(K) Violin plot showing the comparison of IL15 expression between tumor and adjacent non-tumor tissues in scRNA-seq data from GEO: GSE154763.

(L) Multiplex immunofluorescence staining to show the co-localization of LAMP3+ DCs (DC-LAMP3+) and NK cells (CD3�CD56+) in LC and CRC. The scale bar

represents 20 mm.

See also Table S4.
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Figure S7. Alterations of circulating NK cells in patients, related to Figure 1
(A) Lollipop plot showing the similarities of NK cell major subsets (CD56dimCD16hi and CD56brightCD16lo NK cells) between healthy donors and patients,

measuring by cosine distance (STAR Methods). The distance approaching zero indicates higher similarity. Dashed lines represent the average similarity of

CD56dimCD16hi (right) and CD56brightCD16lo (left) NK cells among the healthy donors.

(B) Heatmap showing the similarities of NK cell major subsets (CD56dimCD16hi and CD56brightCD16lo NK cells) among healthy donors from varied datasets.

(C) Heatmap showing log fold changes (FCs) of mean proportion between patients and healthy donors for each subset. *p < 0.05, **p < 0.01, ***p < 0.001, two-

sided unpaired Wilcoxon test.

(D) Lollipop plot showing the tissue distribution of c8-KLRC2 NK cells by Ro/e score. The cluster is characterized as being enriched in a specific cancer type with

Ro/e > 1.

(E) Violin plots showing the expression levels of MHC class II genes in circulating CD56dimCD16hi NK cell subsets.

(F) Volcano plot showing differentially expressed genes for c8-KLRC2 NK cells from patients and healthy donors. Red dots denote gene with adjusted

p value < 0.05, two-sided unpaired Wilcoxon test.

(G) The representative plots (left) and proportions of MHC class II molecule expression (right) on peripheral blood NK cells from healthy donors and HCC patients,

analyzed by flow cytometry. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, two-sided t test.

(H) Boxplots showing the average expression of functional genes in c8-KLRC2 NK cells from patients and healthy donors. Each dot corresponds to one patient.

*p < 0.05, **p < 0.01, ***p < 0.001, two-sided t test.

(I) Pathways enriched in c8-KLRC2 NK cells in tumor patients by using Metascape.82 Hypergeometric test. Benjamini-Hochberg adjusted p value < 0.01.

See also Tables S4 and S7.
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