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Clonal evolution1 drives cancer initiation, progression and 
relapse due to the stepwise acquisition and/or selection 
of fitter subclones2,3. The understanding of tumor evolu-

tion is hampered by the analysis of bulk tumor cell populations at 
low resolution and at single or limited time points of the disease 
course in most studies4. A better knowledge of this process might 
translate into anticipation-based treatment strategies5. RT in CLL 
represents a paradigmatic model of cancer evolution occurring 
rarely in treatment-naive patients with CLL but found in 4–20% 
of patients after chemoimmunotherapy (CIT) and targeted thera-
pies6. RT sometimes occurs within the first months after treatment  

initiation7–9, suggesting selection of pre-existing subclones10. 
Nonetheless, the genomic/epigenomic mechanisms driving RT after 
CIT11–17 or targeted agents18–21 are not well known. The aims of the 
present study were to reconstruct the evolutionary history of RT and 
to reveal the molecular processes underlying this transformation.

Results
Genomic characterization of RT. We sequenced 53 whole genomes 
and 1 whole exome of synchronous or longitudinal samples of 19 
patients (up to six time points per patient) in whom CLL trans-
formed into diffuse large B cell lymphoma (RT-DLBCL; n = 17), 
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Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B 
cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole 
genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, 
of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered 
minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which 
were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational 
signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high–B cell receptor (BCR)low-signaling transcriptional 
axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seed-
ing of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT.
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plasmablastic lymphoma (RT-PBL; n = 1) or prolymphocytic leu-
kemia (RT-PLL; n = 1). Nontumor samples were available in 12 
patients. RT occurred simultaneously with CLL at diagnosis (n = 3) 
or after up to 19 years following different lines of treatment with 
CIT (n = 6) and targeted therapies (n = 10; BCR inhibitors, ibruti-
nib n = 6; duvelisib n = 2; idelalisib n = 1; and BCL2 inhibitor, vene-
toclax n = 1). All instances of RT were clonally related to CLL, 15 
tumors had unmutated IGHV (U-CLL) and 4 had mutated IGHV 
(M-CLL). Whole-genome sequencing (WGS) data were inte-
grated with bulk epigenetic and transcriptomic analyses as well as 
single-cell DNA and RNA sequencing (Fig. 1a, Extended Data Fig. 1 
and Supplementary Tables 1 and 2).

The WGS and epigenome of CLL and RT revealed a concor-
dant increased complexity from CLL diagnosis to relapse and RT  
(Fig. 1b, Extended Data Fig. 2a and Supplementary Tables 3–8). The 
RT genomes carried a median of 1.8 mutations per megabase, 18 
copy number alterations (CNAs) and 37 structural variants (SVs) 
that contrasted with 1.1 mutations per megabase, 4 CNAs and 5 SVs 
observed at CLL diagnosis. No major differences were seen among 
RT occurring after different therapies (Fig. 1b and Extended Data 
Fig. 2b). We discovered new driver genes and mechanisms in RT, 
expanding previous observations12–18,21–24 (Fig. 1c, Extended Data 
Fig. 2c–e, Supplementary Fig. 1 and Supplementary Tables 9 and 10). 
The main alterations involved cell-cycle regulators (17 of 19, 89%), 
chromatin modifiers (79%), MYC (74%), nuclear factor (NF)-κB 
(74%) and NOTCH (32%) pathways. These aberrations were simul-
taneously present in most cases but alterations in MYC and NOTCH 
pathways only co-occurred in 2 of 19 cases (Fig. 1c). Aberrations 
in genes such as TP53, NOTCH1, BIRC3, EGR2 and NFKBIE were 
usually present and clonally dominant after the first CLL sample, 
whereas others were only detected at RT or during the disease 
course (for example CDKN2A/B, CDKN1A/B, ARID1A, CREBBP, 
TRAF3 and TNFAIP3) (Fig. 1c). New alterations included deletions 
of CDKN1A and CDKN1B in five cases of RT associated with down-
regulation of their expression, one immunoglobulin (IG)-CDK6 
translocation and one CCND2 mutation already present at CLL 
diagnosis, and CCND3-IG and MYCN-IG translocations acquired 
at RT in two different cases (Fig. 1d,e, Extended Data Fig. 3a,b and 
Supplementary Table 11). Most chromatin remodelers were affected 
by deletions with reduced gene expression. New alterations in this 
group were deletions of ARID4B and truncations of CREBBP25 and 
SMARCA4 (ref. 16) by translocations and chromoplexy (Fig. 1f and 
Extended Data Fig. 3c–e). We also identified recurrent IRF4 alter-
ations in RT, which have been linked to increased MYC levels in 
CLL26. BTK/PLCG2 or BCL2 mutations were not detected in any RT 
after treatment with BCR or BCL2 inhibitors, respectively. Notably, 
the two cases of M-CLL developing RT after targeted therapies car-
ried the IGLV3–21R110 mutation, which triggers cell-autonomous 
BCR signaling27 (Fig. 1c).

In addition to the high frequency of CNAs previously identi-
fied in RT11,14, we observed a high number of complex structural 
alterations (Fig. 1c). Chromothripsis was found in eight RT tumors 
targeting CDKN2A/B and the new CDKN1B in five and one cases, 
respectively, and MYC, MGA, SPEN, TNFAIP3 and chromatin 
remodeling genes in additional cases (Fig. 1g and Extended Data 
Fig. 3f–j).

Altogether, our analyses expand the catalog of driver genes, path-
ways and mechanisms involved in RT and recognize a similar distri-
bution of these alterations in RT after different therapies, suggesting 
that treatment-specific pressure is not a major determinant of the 
driver genomic landscape of these tumors.

New mutational processes in RT. To understand the increased 
mutational burden of RT, we explored the mutational processes 
re-shaping the genome of CLL and RT. An unsupervised analy-
sis showed that the mutational profile of RT was notably different  

from M-CLL and U-CLL before therapy (ICGC-CLL cohort, 
n = 147)28 or at post-treatment relapse (independent cohort of 27 
CLL post-treatment samples) (Fig. 2a). We identified 11 mutational 
signatures distributed genome-wide and 2 in clustered mutations 
(Extended Data Fig. 4 and Supplementary Tables 12–14). Among 
the former, we extracted a new signature characterized by (T>A)A 
and, to a lesser extent, (T>C/G)A mutations not recognized previ-
ously in any cancer type, including CLL and DLBCL28–33. We named 
this single-base substitution signature, SBS-RT (Fig. 2b). SBS-RT 
was present in the RT sample of 7 of 18 patients, 1 of 6 after CIT 
and 6 of 10 after multiple therapies, including targeted agents and 
detected in all subtypes of transformation (RT-DLBCL, RT-PBL and 
RT-PLL) (Fig. 2c and Supplementary Table 15). It was also pres-
ent in CLL samples before RT in patients 12 and 3,299 but was not 
identified in the reanalysis of our ICGC-CLL or post-treatment CLL 
cohorts. None of the patients in these two additional cohorts had 
evidence of RT (median follow-up 9.8 years, range 0.2–30.4) (Fig. 
2c, Extended Data Fig. 5a and Supplementary Table 15). Further 
characterization of this new signature showed (1) a modest corre-
lation between SBS-RT and total number of mutations (R = 0.79, 
P = 0.11); (2) SBS-RT mutations present in all different chromatin 
states and early/late replicating regions although with a moderate 
enrichment in heterochromatin/late replication; and (3) lack of rep-
lication and transcriptional strand bias (Extended Data Fig. 5b–f 
and Supplementary Table 16).

Among the remaining ten genome-wide signatures, five were pre-
viously identified in CLL and DLBCL (SBS1 and SBS5 (clock-like), 
SBS8 (unknown etiology), SBS9 (attributed to polymerase eta) and 
SBS18 (possibly damage by reactive oxygen species)); three had been 
only found in DLBCL (SBS2 and SBS13 (APOBEC enzymes) and 
SBS17b (unknown)); and two have been recently described related 
to treatments with melphalan34 or ganciclovir35, which were named 
here as SBS-melphalan and SBS-ganciclovir, respectively (Fig. 2b,c 
and Extended Data Fig. 4). SBS-melphalan was found in three RT 
cases, two had received melphalan as a conditioning of their allo-
genic stem-cell transplant 1.9 and 4.2 years before RT, respectively. 
SBS-ganciclovir was found in the RT sample of one patient that had 
received valganciclovir (prodrug of ganciclovir) due to cytomega-
lovirus reactivation (Fig. 2c,d and Extended Data Fig. 1a). Notably, 
all cases with the new SBS-RT at time of RT had been treated with 
the alkylating agents bendamustine (n = 5) or chlorambucil (n = 2) 
during their CLL history at a median of 2.9 years (range 0.7 to 
6.8) before RT. Contrarily, RT cases lacking the SBS-RT had never 
received these drugs (Fig. 2c,d and Extended Data Fig. 1a).

To time the activity of each mutational process, we reconstructed 
the phylogenetic tree for the 11 patients with multiple synchronous 
(n = 2) or longitudinal (n = 9) samples and germline available and 
measured the contribution of each signature to the mutational pro-
file of each subclone. The major subclone at time of transformation 
was named ‘RT subclone’ (Supplementary Table 17). As expected, 
clock-like mutational signatures were present all along the phy-
logeny (constantly acquired), whereas SBS9 was found only in the 
trunk of the two M-CLL tumors (patients 365 and 19; early events). 
DLBCL-related signatures, SBS-ganciclovir, SBS-melphalan and 
SBS-RT were found in single RT subclones in six cases while two 
cases carried two simultaneous subclones with SBS-RT (patients 
12 and 19) (Fig. 2e). SBS-RT represented 28.6% of the mutations 
acquired in RT (mean 679, range 499–1,167) and it was occa-
sionally associated with coding mutations in driver genes (EP300 
and CIITA) (Fig. 2f, Extended Data Fig. 5g and Supplementary  
Table 16). By applying a high-coverage, unique molecular identi-
fier (UMI)-based next-generation sequencing (NGS) approach 
in longitudinal samples of patients 12, 19 and 63 (Supplementary 
Table 18), we observed that mutations of the RT subclones found 
in the main peaks of the SBS-RT were mainly identified in samples 
collected after bendamustine or chlorambucil therapy, whereas 
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mutations not associated with SBS-RT were detected earlier dur-
ing the disease course (Fig. 2g and Extended Data Fig. 5h). These 
results suggest a causal link between the exposure to these drugs 
and SBS-RT. The finding of SBS-melphalan, SBS-ganciclovir and 
SBS-RT in RT argues in favor of a single-cell expansion model for 
RT; a single cell that can carry the footprints of cancer therapies 
(Fig. 2h). Contrarily, the lack of SBS-RT in the 27 post-treatment 
CLL samples (7 patients treated with bendamustine or chlorambu-
cil) suggests that CLL relapse might be driven by the simultaneous 
expansion of different subclones, hindering the detection of SBS-RT 
through bulk sequencing34,36.

RT subclones also acquired kataegis, mainly within the immuno-
globulin loci, attributed to activation-induced cytidine deaminase 
(AID) activity (SBS84 and SBS85)29,32 (Fig. 2i and Extended Data 
Fig. 4). These kataegis led to the acquisition of mutations in the rear-
ranged V(D)J gene in five RT cases (one after CIT and four targeted 
therapies) (Fig. 2i, Extended Data Fig. 5i,j and Supplementary Table 
19). This canonical AID activity in RT is concordant with the acqui-
sition of SBS9 mutations in two RT samples (4,686 (CIT) and 3,495 
(targeted therapies)) and SVs mediated by aberrant class-switch 
recombination or somatic hypermutation in six RT (one before 
therapy, two CIT and three new agents), which targeted MYC, 
MYCN, TRAF3 and CCND3 (Fig. 1c and Supplementary Table 2).

SBS-RT mutations were found in CLL samples before the trans-
formation in patient 3,299 although it was only present in the RT 
subclone (Fig. 2c,e). SBS-RT was also found in two different sub-
clones in case 12 and 19. We speculated that these secondary sub-
clones with SBS-RT (named ‘RT-like’ subclones) could correspond 
to the single-cell expansion of a ‘transformed’ cell that could have 
been missed by the routine analysis (Fig. 2e). The reanalysis of flow 
cytometry data available for case 12 detected two cell populations 
at time point (T) 4 differing in size and surface markers (likely CLL 
and RT-like subclones), whereas at T5 we detected an additional 
population of large cells (RT subclone, 0.2% cells) that expanded 
at T6, substituting the previous large cell population (RT-like sub-
clone) (Fig. 2j and Extended Data Fig. 5k–m). WGS analysis showed 
that the RT-like and RT subclones diverged from a cell carrying a 
deletion of CDKN2A/B and truncation of CREBBP, each acquiring 
more than 2,100 specific mutations (Fig. 2e,j).

Altogether, these findings show that RT may arise simultaneously 
from different subclones and that such subclones can be detectable 
time before their final expansion and clinical manifestation. The 
identification of mutations in RT associated with early-in-time CLL 
therapies demonstrates that RT emerges from the clonal expansion 
of a single cell previously exposed to these therapies.

Dormant seeds of RT at CLL diagnosis. The WGS-based subclonal 
phylogeny of the nine patients with fully characterized longitudinal 
samples predicted that the RT subclone was present at low cancer cell 
fraction (CCF) in the preceding CLL samples in five (56%) patients 
and only detected at time of transformation in the remaining four 
(44%) (Fig. 3a). Indeed, the RT subclone was detected at time of 
CLL diagnosis in three of five patients, remained stable at a min-
ute size (<1%) for 6–19 years of natural and treatment-influenced 
CLL course and expanded at the moment of clinical manifestations 
(patients 12, 19 and 63) (Fig. 3a). In the other two patients, the RT 
subclone was also detected in the first CLL sample analyzed but rap-
idly expanded driving the RT 0.6 and 3.5 years later in patients 3,034 
and 3,299 (RT-PLL), respectively (Fig. 3a and Extended Data Fig. 6).

We next performed single-cell DNA sequencing (scDNA-seq) 
of 32 genes in 16 longitudinal samples of 4 patients (12, 19, 365 
and 3,299) to validate these evolutionary histories of RT (202,210 
cells passing filters, mean of 12,638 cells per sample; Fig. 1a, 
Supplementary Fig. 2 and Supplementary Table 20). Focusing on 
patient 19 with a time lapse of 14.4 years from diagnosis to RT  
(Fig. 3b), the RT subclone (subclone 5) at transformation (T6) 

carried CDKN2A/B and TP53 (p.G245D) alterations, whereas 
the main CLL subclones driving the relapse after therapy at T4 
and T5 harbored a different TP53 mutation (p.I195T; subclones 3  
and 4). The WGS predicted the presence of all these subclones at 
CLL diagnosis (T1). Using scDNA-seq we identified two small pop-
ulations accounting for 0.1% of cells carrying the TP53 p.I195T and 
p.G245D mutations, respectively, at T1, which were also detected 
at relapse 7.2 years later (T3). The subclone carrying TP53 p.I195T 
expanded to dominate the second relapse after 3.7 years at T4 and 
T5 but was substituted by the subclone carrying TP53 p.G245D at 
T6 in the RT 14.4 years after diagnosis. All these subclones car-
ried the SF3B1 and NOTCH1 mutations of the initial CLL subclone 
(Fig. 3c and Supplementary Table 20). The scDNA-seq of the three 
additional cases also corroborated the phylogenies and most of the 
dynamics inferred from WGS (Extended Data Fig. 6a). These results 
suggest that CLL evolution to RT is characterized by an early driver 
diversification probably generated before diagnosis, consistent with 
the early immunogenetic and DNA methylation diversification pre-
viously reported in CLL37–39 and that RT may emerge by a selection 
of pre-existing subclones carrying potent driver mutations rather 
than a de novo acquisition of leading clones.

As we identified five cases of RT carrying specific mutations in 
the immunoglobulin genes by WGS (Fig. 2i), we analyzed whether 
these immunoglobulin-based RT subclones were already present at 
CLL diagnosis using high-coverage NGS in patients 12 and 3,495 
(Supplementary Table 21). Focusing on patient 3,495, for which 
the lack of germline material precluded our phylogenetic analyses, 
the RT occurring after treatment with ibrutinib harbored two new 
V(D)J mutations generating an unproductive IGH gene. NGS iden-
tified 0.002% sequences carrying the same two mutations at CLL 
diagnosis 1.72 years before (Fig. 3d). We also observed the expan-
sion of additional unproductive subclones accounting for 11.8% 
of all sequences at time of RT, suggesting that BCR-independent 
subclones may have a proliferative advantage under therapy with 
BCR inhibitors (Fig. 3d). Similar results were found in patient 12 
in which the V(D)J sequence of RT carrying a new mutation was 
already identified at CLL diagnosis 19.5 years before at DNA and 
RNA level (Fig. 3e). As the immunogenetic features represent a 
faithful imprint of the B cell of origin, the early identification of 
the same immunogenetic subclone provides further evidence for an 
early seeding of RT.

We finally tracked RT subclones during the disease course using 
single-cell RNA sequencing (scRNA-seq) of 19 longitudinal samples 
of five patients (24,800 tumor cells passing filters, mean of 1,305 
cells per sample; Fig. 1a and Supplementary Table 22). As expected, 
RT and CLL cells had remarkably different gene expression profiles 
(Fig. 3f and Extended Data Fig. 7a–d). The transcriptome of CLL 
cells was dominated by three main clusters identified across patients 
and characterized by different expression of CXCR4, CD27 and 
MIR155HG, respectively, which may represent the recirculation of 
CLL cells between peripheral blood and lymph nodes40–42 (Fig. 3f,g 
and Extended Data Fig. 7a–d). Contrarily, RT intraclonal heteroge-
neity was mainly related to distinct proliferative capacities with a 
cluster of cells showing high MKI67 and PCNA expression as well 
as high S and G2M cell-cycle phase scores. The remaining RT clus-
ters were characterized by the expression of different marker genes 
among patients, including CCND2, MIR155HG and TP53INP1 (Fig. 
3f–h and Extended Data Fig. 7a–d). When considering each time 
point separately, we detected RT cells in all CLL samples before 
transformation in patient 12, 19, 63 and 3,299 but not in patient 365 
(Fig. 3i and Extended Data Fig. 7a–i). The presence and dynamics 
of these RT subclones according to their transcriptomic profile reca-
pitulated the findings obtained by WGS, scDNA-seq and immuno-
globulin analyses in all five patients, suggesting that they captured 
the same cells. Indeed, using scRNA-seq we could identify the CNAs 
involved in simple and complex structural alterations found at time 
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of RT by WGS already in the dormant RT cells at CLL diagnosis 
and subsequent time points before their final expansion (Fig. 3j and 
Extended Data Fig. 8). These findings suggest an early acquisition 
of SVs, including chromothripsis and transcriptomic identity in RT.

To validate our observations, we reanalyzed the longitudinal 
scRNA-seq dataset from Penter et al.43 consisting of nine patients 
with CLL, one of which developed RT. In this case, we identi-
fied RT cells in the CLL sample collected 1.6 years before the RT 
(Extended Data Fig. 7j). Overall, our integrative analyses uncovered 
a widespread early seeding of RT cells up to 19 years before their 
expansion and clinical manifestation.

OXPHOShigh–BCRlow transcriptional axis of RT. To understand 
the transcriptomic evolution from CLL to RT and its epigenomic 

regulation, we integrated genome-wide profiles of DNA methyla-
tion, chromatin activation (H3K27ac) and chromatin accessibility 
(ATAC-seq) with bulk RNA-seq and scRNA-seq of multiple lon-
gitudinal samples of six patients treated with BCR inhibitors (Fig. 
1a). The DNA methylome of RT mainly reflected the naive and 
memory-like B cell derivation of their CLL counterpart, whereas 
chromatin activation and accessibility were remarkably differ-
ent upon transformation (Fig. 4a). We identified 150 regions with 
increased H3K27ac and 426 regions that gained accessibility in RT 
(Fig. 4b, Extended Data Fig. 9a and Supplementary Tables 7 and 8). 
These de novo active regions were enriched in transcription fac-
tor (TF) families different from those known to modulate the epig-
enome of CLL44. Among them, 24 were enriched and upregulated 
in RT (Supplementary Table 7). The top TF was TEAD4, which 
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activates genes involved in oxidative phosphorylation (OXPHOS) 
through the mTOR pathway45 and co-operates with MYCN46. 
Additional TFs were related to MYC (MAZ), proliferation/cell cycle 
(E2F family) or IRF family, among others (Fig. 4c). Notably, high 
IRF4 levels seem to attenuate BCR signaling in CLL47, whereas they 
are necessary to induce MYC target genes, OXPHOS and glycolysis 
in activated healthy B cells48.

The RNA-seq analysis, excluding cases 19 and 3,299 (RT-PLL) 
due to their intermediate transcriptomic profile, identified 2,248 
differentially expressed genes (DEGs) between RT and CLL (1,439 
upregulated and 809 downregulated) (Fig. 4a,d,e, Extended Data 
Fig. 10a and Supplementary Tables 11 and 23). A remarkable frac-
tion of upregulated/downregulated genes overlapped with regions 
with the respective increase/decrease of H3K27ac (20%) and 
chromatin accessibility (16%) at RT (Fig. 4d and Extended Data  
Fig. 9b). Contrarily, only 4% of the DEGs overlapped with any of the 
2,341 differentially methylated CpGs (DMCs) between RT and CLL, 
emphasizing the limited effect of DNA methylation on gene regu-
lation49. Most DMCs were hypomethylated at RT (2,112 of 2,341; 
90%), found in open sea and intergenic regions and correlated 
with the proliferative history of the cells measured by the epiCMIT 
score49 (1,681; 72%), which increased during CLL evolution and at 
RT (Fig. 4d,f, Extended Data Fig. 9c–g and Supplementary Table 6).

Genes upregulated in RT involved pathways that seem indepen-
dent of BCR signaling such as Wnt (WNT5A and others)50, Toll-like 

receptors (TLR9 among others)51 and a number of cyclin-dependent 
kinases. Downregulated genes included, among others, CXCR4, 
HLA-A/B and chromatin remodelers also targeted by genetic altera-
tions in some cases (Fig. 4d and Extended Data Fig. 10b,c). Gene 
sets modulated by gene expression in RT were in harmony with the 
identified chromatin-based changes and included upregulation of 
E2F targets, G2M checkpoints, MYC targets, MTORC1 signaling, 
OXPHOS, mitochondrial translation, glycolysis, reactive oxygen 
species and DNA repair pathways, among others. In addition, RT 
showed downmodulation of BCR signaling (Fig. 4g,h, Extended Data 
Fig. 10d and Supplementary Table 11). The OXPHOShigh–BCRlow 
pattern observed by bulk RNA-seq in RT was further refined using 
scRNA-seq: two of five tumors had OXPHOShigh–BCRlow (12 and 63, 
although the latter showed some intercluster variability), the two 
M-CLL carrying IGLV3–21R110 had RT with BCR expression similar 
to CLL and were OXPHOShigh–BCRnormal (365) or OXPHOSnormal–
BCRnormal (19) and the RT-PLL (3,299) was OXPHOSlow–BCRlow 
(Fig. 4i, Extended Data Fig. 10e–j and Supplementary Table 23). 
In addition, the scRNA-seq analysis showed that the OXPHOS/
BCR profiles of RT were already identified in the early dormant 
RT cells, suggesting that they might represent an intrinsic charac-
teristic of RT cells rather than being modulated by BCR inhibitors 
(Fig. 4j and Extended Data Fig. 10g–j). To expand these observa-
tions, we measured the expression of OXPHOS and BCR pathways 
in the scRNA-seq dataset from Penter et al.43. Case CLL9, which  
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Fig. 5 | Cellular respiration, BCR signaling and OXPHOS inhibition in RT cells. a, Oxygen consumption of intact CLL and RT cells of three patients at 
routine respiration (routine), oligomycin-inhibited leak respiration (uncoupled) and uncoupler-stimulated ETC. Each dot represents a technical replicate. 
The mean of the replicates is shown using a horizontal line (left). Summary of the routine respiration of CLL and RT cells of the three patients collapsed 
(right). b, Calcium kinetics of tumoral cells (CD19+, CD5+) upon stimulation with 4-hydroxytamoxifen (4-OHT) and anti-BCR (black arrow). Basal calcium 
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developed RT in the absence of any therapy, showed a remarkably 
higher OXPHOS and slightly lower BCR expression at time of RT 
compared to CLL (Fig. 4k and Extended Data Fig. 10k,l).

Overall, the epigenome and transcriptome of RT converge 
to an OXPHOShigh–BCRlow axis reminiscent of that observed in 
the de novo DLBCL subtype characterized by high OXPHOS 
(DLBCL-OXPHOS) and insensitive to BCR inhibition52–54. This axis 
might explain the selection and rapid expansion of small RT sub-
clones under therapy with BCR inhibitors.

OXPHOS and BCR activity in RT. We next validated experimen-
tally the OXPHOS and BCR activity of RT in samples of patients 
12, 19 and 63. Respirometry assays confirmed that OXPHOShigh 
RT cells (patients 12 and 63) had a 3.5-fold higher oxygen consump-
tion at routine respiration and fivefold higher electron transfer sys-
tem capacity (ETC) compared to CLL. In addition, OXPHOSnormal 
RT (patient 19) showed a routine oxygen consumption similar to 
CLL, although also had a relatively higher ETC than its CLL coun-
terpart (Fig. 5a, Supplementary Fig. 3a–d and Supplementary Table 
24). BCR signaling measured by Ca2+ mobilization upon BCR stim-
ulation with IgM showed that BCRlow RT cells (patients 12 and 63) 
had a lower Ca2+ flux compared to CLL, which contrasted with the 
higher flux observed in the BCRnormal RT cells of patient 19, concor-
dant with its IGLV3–21R110 mutation27 (Fig. 5b, Supplementary Fig. 
4a,b and Supplementary Table 25).

To determine the biological effect of OXPHOShigh in RT, we per-
formed in vitro proliferation assays using IACS-010759 (100 nM), 
an OXPHOS inhibitor that targets mitochondrial complex I 
(Supplementary Figs. 3e and 4c and Supplementary Table 25). 
OXPHOShigh RT (patients 12 and 63) had a higher proliferation at 
72 h compared to OXPHOSnormal RT (patients 19) and all of them were 
higher than their respective CLL. OXPHOS inhibition resulted in a 
marked decrease in proliferation in OXPHOShigh RT (mean 49.1%), 
which contrasted with that observed in OXPHOSnormal RT (2.2% 
decrease) and CLL (23.2% decrease) (Fig. 5c and Supplementary 
Fig. 4d). Overall, these results confirm the role of OXPHOShigh phe-
notype in high proliferation of RT and suggest its potential thera-
peutic value in RT as proposed for other neoplasms53–57.

Discussion
The genome of RT is characterized by a compendium of driver 
alterations in cell cycle, MYC, NOTCH and NF-κB pathways, fre-
quently targeted in single catastrophic events and by the footprints 
of early-in-time, treatment-related, mutational processes, includ-
ing the new SBS-RT potentially associated with bendamustine and 
chlorambucil exposure. A very early diversification of CLL leads to 
emergence of RT cells with fully assembled genomic, immunoge-
netic and transcriptomic profiles already at CLL diagnosis up to 19 
years before the clonal explosion associated with the clinical trans-
formation. RT cells have a notable shift in chromatin configuration 
and transcriptional program that converges into activation of the 
OXPHOS pathway and downregulation of BCR signaling, the latter 
potentially compensated by activating Toll-like, MYC and MAPK 
pathways17,51,58,59. The rapid expansion of RT subclones under treat-
ment with BCR inhibitors is consistent with its low BCR signaling, 
except when carrying the IGLV3–21R110 and further supported by 
the increased number of subclones carrying unproductive immu-
noglobulin genes and the development of RT with plasmablastic 
differentiation, a cell type independent of BCR signaling60. Finally, 
we also uncovered that OXPHOS inhibition reduced the pro-
liferation of RT cells in vitro, a finding worth exploring in future  
therapeutic strategies55,57.

In conclusion, our comprehensive characterization of CLL 
evolution toward RT has revealed new genomic drivers and epig-
enomic reconfiguration with very early emergence of subclones 
driving late stages of cancer evolution, which may set the basis for 

developing single-cell-based predictive strategies. Furthermore, 
this study also identifies new RT-specific therapeutic targets and 
suggests that early intervention to eradicate dormant RT subclones 
may prevent the future development of this lethal complication  
of CLL.
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Methods
Consent and sample processing. Written informed consent was obtained 
from all patients. The study was approved by the Hospital Clinic of Barcelona 
Ethics Committee. Tumor DNA was extracted from tumor cells purified from 
fresh/cryopreserved mononuclear cells, frozen lymph nodes or formalin-fixed 
paraffin-embedded (FFPE) tissue (n = 1, CLL sample of patient 1,669). Germline 
DNA was obtained from the non-tumoral purified cell fraction in 12 cases. In 
two patients (1,523 and 4,675) who had received allogeneic stem-cell transplant 
before RT, germline DNA of the donor was also collected. All extractions were 
performed using appropriate QIAGEN kits (QIAamp DNA Blood Maxi kit, cat. 
no. 51194; QIAamp DNA Mini kit, cat. no. 51304; and AllPrep DNA/RNA FFPE 
kit, cat. no. 80234). Tumor RNA was obtained from tumor cells purified from 
fresh/cryopreserved mononuclear cells with TRIzol reagent (Invitrogen, cat. no. 
15596026).

A specific flow cytometry analysis was conducted on peripheral blood samples 
of patient 12, which were stained with the Lymphocyte Screening Tube according 
to EuroFlow protocols (https://www.euroflow.org/protocols). At least 100,000 
cells were acquired in a FACSCanto II instrument. Analysis was conducted using 
the Infinicyt 2.0 software. The sequential gating analysis was as follows: singlet 
identification in a FSC-W versus FSC-H plot; leukocyte identification in SSC-A 
versus CD45 (V500-C) plot and FSC-A versus SSC-A; lymphocytes identified as 
SSC-A low and CD45 high and back-gated in FSC-A versus SSC-A to exclude 
monocytes; in the lymphocyte gate, T cells were identified as CD3+ cells in SSC-A 
versus CD3 (APC) followed by sequentially distinguishing TCRγδ+ T cells, 
CD4 T cells and CD8 T cells; after excluding T cells, B cells were selected in a 
SSC-A versus CD19 (PE-Cy7), followed by inspection of CD19 (PECy7) versus 
CD20 (PacB), CD5 (PerCPCy5.5) versus CD20 (PacB) and CD20 (PacB) versus 
CD38 (APC-H7) plots to evaluate the expression of these B cell markers and the 
assignation of κ and λ expression in a plot of IgK (PE) versus IgL (FITC); after 
excluding B cells, natural killer cells were identified in a SSC-A versus CD56 (PE) 
plot followed by SSC-A versus CD38 (APC-H7) plot.

WGS and WES. Library preparation and sequencing. All samples available were 
subjected to WGS except the FFPE CLL, which was analyzed by whole-exome 
sequencing (WES). WGS libraries were performed using the Kapa Library 
Preparation kit (Roche, cat. no. 07961901001), TruSeq DNA PCR-Free kit 
(Illumina, cat. no. 20015963) or TruSeq DNA Nano protocol (Illumina, cat. no. 
20015965) and sequenced on a HiSeq 2000/4000/X Ten (2 × 126 bp or 2 × 151 bp) 
or NovaSeq 6000 (2 × 151 bp) instrument (Illumina). WES was performed using 
the SureSelect Human All Exon V5 (Agilent Technologies, cat. no. 5190-6209 and 
G9611B) coupled with a KAPA Hyper Prep kit (Roche, cat. no. 07962363001) 
for the DNA pre-capture library. Sequencing was performed on a HiSeq 2000 
(2 × 101 bp). We also included WGS of three published CLL/germline pairs 
(patients 12, 19 and 63)28 (Supplementary Table 1).

General considerations. Overall, 12 patients had a complete dataset (germline, CLL 
and RT samples), 6 patients lacked germline DNA and 1 patient had only the RT 
sample (case 4,676). We conducted tumor versus normal analyses in cases with 
a complete dataset. For the six patients lacking the germline sample, we used the 
CLL samples as ‘normal’ to identify SNV acquired at RT for mutational signature 
analyses. In addition, tumor-only analyses were conducted in these CLL and RT 
samples, as well as in the patient with only a RT sample available, to identify driver 
gene mutations and genome-wide CNAs (Supplementary Table 1).

Read mapping and quality control. Reads were mapped to the human reference 
genome (GRCh37) using the BWA-MEM algorithm (v.0.7.15)61. BAM files were 
generated and optical/PCR duplicates flagged using biobambam2 (v.2.0.65, https://
gitlab.com/german.tischler/biobambam2). FastQC (v.0.11.5, www.bioinformatics.
babraham.ac.uk/projects/fastqc) and Picard (v.2.10.2, https://broadinstitute.github.
io/picard) were used to extract quality control metrics. Mean coverage was 33× and 
119× for WGS and WES, respectively (Supplementary Table 1).

Immunoglobulin gene characterization. Immunoglobulin gene rearrangements 
were characterized using IgCaller (v.1.2)62. The rearranged sequences obtained 
were reviewed on the Integrative Genomics Viewer (IGV; v.2.9.2)63 and annotated 
using IMGT/V-QUEST (https://www.imgt.org/IMGT_vquest) and ARResT/
AssignSubsets (http://bat.infspire.org/arrest/assignsubsets).

Tumor versus normal SNVs and indel calling. SNVs were called using Sidrón28, 
CaVEMan (cgpCaVEManWrapper, v.1.12.0)64, Mutect2 (Genome Analysis Toolkit 
(GATK) v.4.0.2.0)65 and MuSE (v.1.0 rc)66 and normalized using bcftools (v.1.8)67. 
Variants detected by CaVEMan with more than half of the mutant reads clipped 
(CLPM > 0) and with supporting reads with a median alignment score (ASMD) 
<90, <120 or <140 for sequencing read lengths of 100, 125 or 150 bp, respectively, 
were excluded. Variants called by Mutect2 with MMQ < 60 were eliminated. 
Mutations detected by at least two algorithms were considered. Short insertions/
deletions (indels) were called by SMuFin (v.0.9.4)68, Pindel (cgpPindel, v.2.2.3)69, 
SvABA (v.7.0.2)70, Mutect2 (GATK v.4.0.2.0)65 and Platypus (v.0.8.1)71. The 
somaticMutationDetector.py script (https://github.com/andyrimmer/Platypus/

blob/master/extensions/Cancer/somaticMutationDetector.py) was used to identify 
somatic indels called by Platypus. Indels were left-aligned and normalized using 
bcftools67. Indels with MMQ < 60, MQ < 60 and MAPQ < 60 for Mutect2, Platypus 
and SvABA, respectively, were removed. Only indels identified by at least two 
algorithms were retained. Annotation of mutations was performed using snpEff/
snpSift (v.4.3t)72 and GRCh37.p13.RefSeq as a reference. This approach showed 
a 93% specificity and 88% sensitivity when benchmarked against the mutations 
found at a VAF >10% in our previous high-coverage NGS study73.

Tumor-only SNVs and indel calling. Tumor-only variant calling was restricted 
to coding regions of 243 genes described as drivers in CLL and other B cell 
lymphomas (Supplementary Table 10). Mini-BAM files were obtained using 
Picard tools and variant calling was performed using Mutect2 (GATK v.4.0.4.0)65, 
VarScan2 (v.2.4.3)74, VarDictJava (v.1.4)75, LoFreq (v.2.1.3.1)76, outLyzer (v.1.0)77 
and freebayes (v.1.1.0, https://github.com/freebayes/freebayes). Variants were 
normalized using bcftools (v.1.9)67 and annotated using snpEff/snpSift (v.4.3t)72. 
Only non-synonymous variants that were identified as PASS by ≥2 algorithms were 
considered. Variants reported in 1000 Genomes Project, ExAC or gnomAD with 
a population frequency >1% or reported as germline in our ICGC database of 506 
WES/WGS28 were considered as polymorphisms.

Tumor versus normal CNA calling. CNAs were called using Battenberg 
(cgpBattenberg, v.3.2.2)78 and ASCAT (ascatNgs, v.4.1.0)79. CNAs within any of the 
immunoglobulin loci were not considered. We used the tumor purities obtained 
by Battenberg in downstream analyses. The median tumor cell content was 91.5% 
(Supplementary Table 1).

Tumor-only CNA calling. CNAs were extracted using CNVkit (v.0.9.3)80. CNAs 
<500 kb, with an absolute log2 copy ratio (log2CR) < 0.3 or located within any of the 
immunoglobulin loci were removed. CNAs were classified as gains if log2CR > 0.3, 
deletions if log2CR < −0.3, high-copy gains if log2CR > 1.1 and homozygous 
deletions if log2CR < −1.1. The log2CR cutoff was set to 0.15 for two samples 
with low tumor cell content (102-01-01TD and 4690-03-01BD). To avoid a high 
segmentation of the CNA profile, CNAs belonging to the same class were merged if 
they were separated by <1 Mb and had an absolute log2CR difference <0.25.

Array-based CNA calling in FFPE. CNAs were examined in the FFPE CLL sample 
using the Oncoscan CNV FFPE Assay kit (Thermo Fisher Scientific, cat. no. 
902695) and analyzed using Nexus 9.0 software (Biodiscovery).

Tumor versus normal SV calling. SVs were extracted using SMuFin (v.0.9.4)68, 
BRASS (v.6.0.5)81, SvABA (v.7.0.2)70 and DELLY2 (v.0.8.1)82. SVs identified were 
intersected considering a window of 300 bp around break points. We kept for 
downstream analyses the SVs identified by at least two programs if at least one 
of the algorithms called the alteration with high quality (MAPQ ≥ 90 for BRASS, 
MAPQ = 60 for SvABA and DELLY2). In addition, IgCaller (v.1.2)62 was used to 
call SVs within any of the immunoglobulin loci. All SVs were visually inspected 
using IGV63. SVs were categorized into simple or complex events. Chromothripsis83 
was defined as ≥7 oscillating changes between two or three copy number states 
or the presence of >7 SV break points occurring in a single chromosome and 
supported by additional criteria83,84. Chromoplexy was determined by the presence 
of ≥3 chained chromosomal rearrangements, where chains were identified using a 
window of 50 kb85,86. Cycles of templated insertions were defined as copy number 
gains in ≥3 chromosomes linked by SVs87. Breakage-fusion bridge cycles were 
defined as patterns of focal copy number increases and fold-back inversions, 
together with telomeric deletions. Chains of rearrangements having >2 SVs and 
not fulfilling any of the previous criteria were classified as ‘other complex events’. 
Chromothripsis and ‘other complex events’ were subcategorized according to the 
number of chromosomes involved. The longitudinal nature of our dataset allowed 
us to refine the obtained classification based on the presence of the involved 
alterations in each time point analyzed.

Patients who underwent allogenic stem-cell transplant. In these patients, we conducted 
tumor versus patient’s germline and tumor versus donor’s germline variant calling in 
parallel. Only the intersection of variants identified was considered.

Rescue of alterations based on longitudinal information. SNVs called in one sample 
were automatically added to the samples of additional time point(s) if at least one 
high-quality read with the mutation was found in the BAM file (alleleCounter 
v.4.0.0, parameters: min_map_qual = 35; and min_base_qual = 20). Similarly, indels 
and SVs detected in one sample were added in the additional time point(s) if any of 
the algorithms detected the alteration, regardless of its filters.

WGS-based subclonal reconstruction. A Markov chain Monte Carlo sampler 
for a Dirichlet process mixture model was used to infer putative subclones, 
to assign mutations to subclones and to estimate the subclone frequencies in 
each sample from the SNV read counts, copy number states and tumor purities 
(Supplementary Table 17)78,88. Clusters with <100 mutations were excluded. 
The phylogenetic relationships between subclones were identified following the 
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‘pigeonhole principle’, which was relaxed using a case-specific ‘tolerated error’88. 
Clusters not assigned to the reconstructed phylogenetic tree were excluded. Fish 
plots were generated using the TimeScape R package (v.1.6.0). The CCF of indels 
was calculated integrating read counts, CNAs and tumor purity89. Driver indels 
subjected to validation by scDNA-seq and/or relevant to the tumor phylogeny 
were manually assigned to subclones. Similarly, driver CNAs relevant to the 
phylogeny were manually assigned. Seven SNVs found in TP53/ATM overlapping 
with CNAs were manually assigned to the most likely subclone as they were not 
automatically assigned by the Dirichlet process and were subjected to scDNA-seq 
(Supplementary Table 9).

Mutational signatures. We studied mutational signatures acting genome-wide 
and in localized regions (inter-mutation distance ≤1Kb)29,32. We integrated the 
mutations identified in this CLL/RT cohort together with those of 147 CLL 
treatment-naive samples (ICGC-CLL)28 and 27 new CLL collected at relapse 
post-treatment (mean coverage 31.5×; Supplementary Table 15). The WGS of 
these two additional cohorts was (re-)analyzed using our current bioinformatic 
pipeline (Supplementary Table 12). Mutational signatures were analyzed for SNVs 
or single-base substitutions (SBSs) according to their 5′ and 3′ flanking bases 
following three steps30:

	1.	 Extraction: de novo signature extraction was performed using a hierarchi-
cal Dirichlet process (HDP, v.0.1.5; https://github.com/nicolaroberts/hdp), 
SignatureAnalyzer (v.0.0.7)90, SigProfiler (SigProfilerExtractor, v.1.0.8)32 
and sigfit (v.2.0.0; https://github.com/kgori/sigfit). HDP was run with four 
independent posterior sampling chains, followed by 20,000 burn-in iterations 
and the collection of 200 posterior samples off each chain with 200 iterations 
between each. SigProfiler was run with 1,000 iterations and a maximum of 
ten extracted signatures. Similarly, sigfit was run to extract five signatures 
with 10,000 burn-in iterations and 20,000 sampling iterations.

	2.	 Assignment: each extracted signature was assigned to a given COSMIC sig-
nature (v.3.2)32 if their cosine similarity was >0.85. Otherwise, the extracted 
signature was decomposed into ‘n’ COSMIC signatures using an expectation 
maximization (EM) algorithm91. The EM algorithm was first run using the 
COSMIC signatures identified in the previous step. If their cosine similarity 
was <0.85, we ran the EM algorithm, including all signatures reported in 
COSMIC and by Kucab et al.33 (55 mutational signatures related to environ-
mental agents). Three exceptions were made: (1) we combined two HDP 
signatures that together constituted COSMIC signature SBS5 to avoid split-
ting of signatures (Extended Data Fig. 4a); (2) APOBEC signatures (SBS2 and 
SBS13) were favored to be assigned to one of the signatures extracted by HDP 
and SignatureAnalyzer although it was not the best EM solution probably be-
cause they were only found in one sample, which impaired a clean extraction 
of the signatures (Extended Data Fig. 4f); and (3) one signature extracted by 
HDP and SignatureAnalyzer was directly assigned to the mutational signature 
associated with ganciclovir treatment35 (cosine similarity 0.987 and 0.993, 
respectively) (Extended Data Fig. 4). The new SBS-RT extracted by HDP was 
considered for downstream analyses as it had less background noise than 
the one extracted by SignatureAnalyzer, favoring a higher specificity during 
the fitting step. Similarly, the SBS-ganciclovir extracted by HDP was used in 
downstream analyses (Extended Data Fig. 4). We also performed a detailed 
review to remove signatures susceptible of being originated due to sequencing 
artifacts (Supplementary Table 13).

	3.	 Fitting: we used a fitting approach (MutationalPatterns, v.3.0.1) to measure 
the contribution of each mutational signature in each sample. Based on (1) 
the de novo identification of the therapy-related SBS-ganciclovir and (2) 
that two patients received melphalan before RT, the mutational signature 
associated with melphalan therapy34 was also included in this step. To avoid 
the so-called inter-sample bleeding effect30, we iteratively removed the 
less-contributing signature if its removal decreased the cosine similarity 
between the original and reconstructed 96-profile <0.01 (ref. 32). SBS1 and 
SBS5 were added if addition improved the cosine similarity32. Similarly, SBS9 
was added in CLL/RT samples classified as M-CLL if addition improved the 
cosine similarity. We also ran mSigAct (v.2.1.1; https://github.com/stevero-
zen/mSigAct) to confirm the presence/absence of SBS-melphalan (Sup-
plementary Table 15). To assess the contribution of each signature to each 
subclone we followed the same fitting strategy but (1) considered only the 
signatures that were present in the corresponding sample and (2) removed 
the final step of adding SBS9 in M-CLL to avoid its addition in multiple 
subclones with low evidence.

Genomic locations and strand bias. We assessed the contribution of SBS-RT to 
coding SNVs in RT subclones (also including cases in which the CLL sample was 
used as a ‘germline’) by calculating the probability that a given mutation was caused 
by SBS-RT. To perform this calculation, we considered the signatures present in the 
subclone/sample and their signature profile92. The reference epigenomes of CLL44 
were used to explore the contribution of the mutational processes in different 
regulatory regions. We simplified the described chromatin states in four categories: 
heterochromatin (H3K9me3_Repressed, Heterochromatin Low_Signal), polycomb 

(Posied_Promoter, H3K27me3_Repressed), enhancer/promoter (Active_Promoter, 
Strong_Enhancer1, Weak_Promoter, Weak_Enhancer, Strong_Enhancer) and 
transcription (Transcription_Transition, Weak_Transcription, Transcription_
Elongation). We also mapped the activity of mutational processes in early/late 
replication regions of the genome considering peaks/valleys of early/late replication 
as those regions of ≥1 kb with absolute replication timing >0.5 (ref. 93). All SNVs 
of the CLL and RT subclones were classified in any of the four chromatin states 
and early/late replication regions before fitting mutational signatures. A cutoff 
of 0.005 was used to remove the less-contributing signature during the fitting 
step. We also generated replication and transcriptional strand bias profiles of the 
RT-specific mutations using the MutationalPatterns R package34. The replication 
strand was annotated based on the left/right replication direction of the timing 
transition regions94. The transcriptional strand was annotated using the TxDb.
Hsapiens.UCSC.hg19.knownGene R package (v.3.2.2). Finally, kataegis was defined 
as a genomic region having six or more mutations with an average inter-mutation 
distance ≤1 kb.

High-coverage, UMI-based gene mutation analysis. Data generation. A 
high-coverage, UMI-based NGS was performed to track 77 mutations identified by 
WGS (Supplementary Table 18). Molecular-barcoded and target-enriched libraries 
were prepared using a Custom CleanPlex UMI NGS Panel (Paragon Genomics) 
and CleanPlex Unique Dual-Indexed PCR Primers for Illumina (Paragon 
Genomics, cat. no. 716011 and 716013). Libraries were sequenced on a MiSeq and/
or NextSeq 2000 instrument (2 × 150 bp, Illumina).

Data analysis. Raw reads were trimmed using cutadapt (https://cutadapt.
readthedocs.io; v.1.15 with parameters: -g CCTACACGACGCTCTTCCGATCT  
-a AGATCGGAAGAGCACACGTCTGAA -A AGATCGGAAGAGCGTCGTGTA 
GG -G TTCAGACGTGTGCTCTTCCGATCT -e 0.1 -O 9 -m 20 -n 2). 
Trimmed FASTQ reads were converted to unmapped BAM using Picard’s 
FastqToSam tool (v.2.10.2). UMI information was extracted and stored as 
a tag using fgbio ExtractUmisFromBam (http://fulcrumgenomics.github.
io/fgbio/; v.1.3.0 with parameters: –read structure = 16M+T 16M+T, –
single-tag = RX, –molecular-index-tags = ZA ZB). Template read was converted 
to FASTQ with Picard’s SamToFastq. Template reads were mapped against 
the human reference genome (GRCh37) and reads were merged with the 
UMI information using Picard’s MergeBamAlignment. Finally, reads were 
grouped by UMI and a consensus was called using fgbio GroupReadsByUmi 
(parameters were –strategy = adjacency, –edits = 1, –min-map = 10) and 
CallMolecularConsensusReads (parameters were –min-reads = 3), respectively. A 
minimum of three reads was required to create a UMI-based final read. Final reads 
were converted back to FASTQ using Picard’s SamToFastq and mapped against the 
reference genome using BWA-MEM (v.0.7.15)61. Mean coverage was determined 
using Picard’s CollectTargetedPcrMetrics (parameters: CLIP_OVERLAPPING_
READS = true, MINIMUM_MAPPING_QUALITY = 15 MINIMUM_BASE_
QUALITY = 15). Read counts were collected at all targeted genomic positions 
for all samples using bcftools mpileup (v.1.8, parameters: -B -Q 13 -q 10 -d 
100,000 -a FORMAT/DP,FORMAT/AD,FORMAT/ADF,FORMAT/ADR -O v)67. 
Allele positions lacking mutations by WGS were used to model the background 
sequencing noise, which was unified according to the trinucleotide context of each 
possible mutation. Mutations of interest were annotated as high confidence when 
their frequency was above the background noise with a probability of 95%.

High-coverage immunoglobulin gene characterization. DNA-based. The 
LymphoTrack IGHV Leader Somatic Hypermutation Assay Panel, MiSeq 
(Invivoscribe Technologies, cat. no. 71210069) was performed in samples of 
two patients (Supplementary Table 21). Libraries were sequenced on a MiSeq 
instrument (2 × 301 bp, Illumina). Clonotypes were defined as IGHV-IGHD-IGHJ 
gene rearrangements with the same IGHV gene and IGH CDR3 amino acid 
sequence within a sample. Clonotypes with different nucleotide substitutions 
within the FR1-CDR1-FR2-CDR2-FR3 sequence of the rearranged IGHV gene 
were defined as subclones. Raw FASTQ files were trimmed using Trimmomatic 
(v.0.36)95 to keep only high-quality reads and bases (parameters were LEADING:30 
TRAILING:30 SLIDINGWINDOW:4:30 MINLEN:100). Trimmed, paired-end 
FASTQ files were analyzed using the LymphoTrack Software, MiSeq (v.2.3.1, 
Invivoscribe Technologies, cat. no. 75000009), which combines forward and 
reverse reads to generate full-length sequences. Identical full-length sequences 
were grouped and reported together with their cumulative frequency. The reported 
full-length sequences were annotated using IMGT/HighV-QUEST (v.1.8.3; https://
www.imgt.org/HighV-QUEST). Finally, we (1) selected the sequences that belonged 
to the dominant productive clonotype; (2) kept only sequences with complete 
V-region (missing bases and indels within the V-region were not allowed); and (3) 
merged sequences that shared the exact V-region nucleotide sequence.

RNA-based. For patient 12, cryopreserved samples collected at four different 
time points were thawed and malignant cells were enriched using the The 
EasySep Human B Cell Enrichment kit II without CD43 depletion (Stemcell 
Technologies, cat. no. 17923). Next, 1–2 million tumor cells were used to perform 
the Omniscope BCR VDJ sequencing assay (https://www.omniscope.ai). Cells 
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were lysed and the RNA was reverse transcribed to complementary DNA with 
UMIs before amplification of the V(D)J region using BCR-specific multiplex 
PCR. Following sequencing, reads were aligned using STARsolo (v.2.7.9a; https://
github.com/alexdobin/STAR/blob/master/docs/STARsolo.md) to the hg38 
human genome. IGV63 was used to review and quantify the mutation of interest 
(chr14:106714886C>T).

DNA methylation. Data generation and processing. DNA methylation data of 39 
samples was generated using EPIC BeadChips (Illumina). These samples included 
different healthy B cell subpopulations (naive B cells (NBCs), n = 2; germinal 
center B cells (GCs), n = 1; memory B cells (MBCs), n = 3; tonsillar plasma cells 
(tPCs), n = 1); CLL samples without evidence of RT (n = 12) and longitudinal CLL/
RT samples (n = 20) (Supplementary Table 6). R and core Bioconductor packages, 
including minfi (v.1.34.0)96, were used to integrate and normalize DNA methylation 
data49. We removed non-CpG probes, CpGs representing single nucleotide 
polymorphisms, CpGs with individual-specific methylation previously reported 
in B cells, CpGs in sex chromosomes and CpGs with a detection P value >0.01 in 
>10% of the samples. The data were normalized using the SWAN algorithm and 
CpGs were annotated using the IlluminaHumanMethylationEPICanno.ilm10b4.
hg19 package (v.0.6). Tumor cell content of each sample was inferred from DNA 
methylation49 and samples with a tumor cell content <60% were excluded. After 
all filtering criteria, we retained 33 samples (NBCs, n = 2; GCs, n = 1; MBCs, 
n = 3; tPCs, n = 1; CLL controls, n = 12; CLL/RT samples, n = 14 (six patients); 
Supplementary Table 6).

Differential analyses, CLL epitypes and epiCMIT. We compared the DNA 
methylation status of each CpG to the mean of such CpGs in NBCs to calculate 
the number of hyper- and hypomethylation changes per CLL/RT sample. Changes 
in each sample were defined based on a minimum difference of 0.25 methylation. 
To perform a differential analysis between CLL and RT, we compared the 
DNA methylation of each CpG in each CLL sample (first available time point 
used) versus their respective RT sample. Differentially methylated CpGs were 
considered as those showing a minimum difference of 0.25 in at least four of the 
five longitudinal cases of RT versus CLL analyzed (Supplementary Table 6). The 
epigenetic subtypes (epitypes) and epiCMIT score for each CLL and RT sample 
were calculated49.

ChIP-seq of H3K27ac and ATAC-seq. Data generation. ChIP-seq of H3K27ac and 
ATAC-seq data were generated as described in http://www.blueprint-epigenome.
eu/index.cfm?p=7BF8A4B6-F4FE-861A-2AD57A08D63D0B58 (antibody anti 
H3K27ac, Diagenode, cat. no. C15410196/pAb-196-050, lot A1723-0041D; 
Supplementary Tables 7 and 8). Libraries were sequenced on Illumina machines 
aiming at 60 million reads/sample (Supplementary Tables 7 and 8).

Read mapping and initial data processing. FASTQ files were aligned to the reference 
genome (GRCh38) using BWA-ALN (v.0.7.7, parameter: -q 5)61, duplicated 
reads were marked using Picard tools (v.2.8.1) and low-quality and duplicated 
reads were removed using SAMtools (v.1.3.1, parameters: -b -F 4 -q 5 -b -F 
1,024)67. PhantomPeakQualTools (v.1.1.0) were used to generate wiggle plots 
and for extracting the predominant insert-size. Peaks were called using MACS2 
(v.2.1.1.20160309, parameters for H3K27ac: -g hs -q 0.05 -keep-dup all -nomodel 
-extsize insert-size; parameters for ATAC-seq: -g hs -q 0.05–keep-dup all -f 
BAM –nomodel –shift −96 –extsize 200; no input control)97. Peaks with q values 
<1 × 10−3 were included for downstream analyses. For each mark separately, a 
set of consensus peaks, including regions within chromosomes 1–22 and present 
in published healthy B cells44 and CLL samples was generated by merging the 
locations of the separate peaks per individual sample. For ChIP-seq, the numbers 
of reads per sample per consensus peak were calculated using the genomecov 
function (bedtools, v.2.25.0). For ATAC-seq, the number of Tn5 transposase 
insertions per sample per consensus peak was calculated by first determining the 
estimated insertion sites (shifting the start of the first mate 4 bp downstream) 
before using the genomecov function. Variance stabilizing transformation (VST) 
values were calculated for all consensus peaks using DESeq2 (v.1.28.1)98, which 
were then corrected for the consensus SPOT score (the percentage of reads that fall 
within the consensus peaks) using the ComBat function (sva R package, v.3.36.0). 
To that purpose, the cell condition (tumor and different healthy B cell subtypes) 
was assigned to each sample and samples were clustered in 20 bins of 5% according 
to their consensus SPOT score. The bins on the extremes, which contained fewer 
than five samples, were joined with their neighboring bins to ensure that each bin 
contained five samples or more. PCA was generated using the corrected VST values 
of peaks that were present in more than one sample.

Detection of differential epigenetic regions and RT-specific changes. We first 
determined the regions with stable epigenetic profiles in the healthy B cell 
counterparts (NBCs and MBCs) by applying a threshold of s.d. < 0.8 with respect 
to the mean value. For all these NBC/MBC stable regions, we then calculated the 
log2FC between the mean of VST-corrected healthy B cell values and each of the 
tumor samples. Due to the data distribution variability, we applied slightly different 
thresholds of log2FC for each case (Supplementary Tables 7 and 8). To identify 

regions changing in RT for each case individually, we selected the regions that 
presented substantial epigenetic changes as compared to the normal counterpart 
and to the previous CLL (absolute log2FC > 1). The ATAC-seq RT-specific 
signature encompassed differential regions common in two or more cases of RT, 
whereas the H3K27ac RT-specific signature included differential regions common 
in three or more cases. Potential protein-coding target genes were assigned to each 
of the RT-specific regions using two strategies. To identify close target genes, we 
took the overlap with the regions of genes of interest adding 2 kb upstream of their 
transcription start site. To identify distant target genes, we used Hi-C data from 
the GM12878 cell line and selected all genes located within the same topologically 
associated domain as the region of interest. We only considered DEGs identified by 
bulk RNA-seq (Supplementary Tables 7 and 8).

Transcription factor analysis. Enrichment for TF-binding sites was analyzed in 
chromatin accessible regions within the RT-specific active chromatin regions. 
Accessible peaks were determined as regions with presence of ATAC peaks in 
two or more RT cases. Enrichment analysis of known TF-binding motifs was 
performed using the AME tool (MEME suite) considering the non-redundant 
Homo sapiens 2020 Jaspar database and applying one-tailed Wilcoxon rank-sum 
tests with the maximum score of the sequence, a 0.01 FDR cutoff and a background 
formed by reference GRCh38 sequences extracted from the consensus ATAC-seq 
peaks (91,671 regions). We then established the occupancy of these motifs in RT 
and CLL by calculating the percentage of the target RT-specific active regions and 
of the regions with increased H3K27ac in CLL, respectively, which contained these 
motifs. Finally, we selected TFs presenting an occupancy difference between RT 
and CLL ≥ 10% and overexpressed in RT (bulk RNA-seq, log2FC > 0, adjusted P 
value <0.01).

Bulk RNA-seq. Data generation. Bulk RNA-seq data of six patients with paired CLL 
and RT samples were analyzed. Libraries were prepared using the TruSeq Stranded 
mRNA Library Prep kit (Illumina, cat. no. 20020595) or the Stranded mRNA 
Library Prep, Ligation kit (Illumina, cat. no. 20040534) and sequenced on a HiSeq 
4000 (2 × 76 bp, Illumina) or NextSeq 2000 (2 × 100 bp, Illumina). All samples had a 
tumor purity ≥92% as assessed by flow cytometry (Supplementary Table 11).

Data analysis. Ribosomal RNA reads were filter out using SortMeRNA (v.4.3.2)99. 
Non-ribosomal reads were trimmed using Trimmomatic (v.0.38)95. Gene-level 
counts (GRCh38.p13, Ensembl release 100) were calculated using kallisto 
(v.0.46.1)100 and tximport (v.1.14.2). A paired DEA was conducted using DESeq2 
(v.1.26.0)98. Adjusted P value <0.01 and absolute log2(fold change) > 1 were used 
to identify DEGs. Gene set enrichment analysis (GSEA) was conducted using a 
pre-ranked gene list ordered by −log10(P) × (sign of fold change) using the ‘GSEA’ 
function (clusterProfiler R package, v.3.14.3). We focused on C2 (curated) and 
Hallmark gene sets from the Molecular Signatures Database (v.7.4) with a minimal 
size of 10 and maximal size of 250. Gene ontology (GO) GSEA was conducted 
using the pre-ranked gene list as input of the ‘gseGO’ function (clusterProfiler) 
focusing on biological processes. Redundancy in the output list of GO terms was 
removed using the ‘simplify’ function (cutoff of 0.35).

Single-cell DNA-seq. Data generation. scDNA-seq was performed for 16 samples 
of 4 patients using the Tapestri Platform (Mission Bio, cat. no. 191335) and a 
commercial 32-gene panel (Tapestri single-cell DNA CLL panel, Mission Bio, cat. 
no. MB53-0011_J01). Cryopreserved cells were thawed on 5 ml of fetal bovine 
serum (FBS; Fisher Scientific, cat. no. 10082147) and incubated at 37 °C for 5 min. 
Then, cells were washed twice with 1 ml phosphate buffered saline (PBS; Thermo 
Fisher, cat. no. 20012-019) with 4% bovine serum albumin (BSA; Miltenyi Biotec, 
cat. no. 130-091-376) and centrifuged at 400g for 4 min. Cell concentration and 
viability were verified by counting with a TC20T Automated Cell Counter (Bio-Rad 
Laboratories, cat. no. 1450102). After a final centrifugation step, supernatant was 
removed and cells were resuspended in an appropriate volume of Mission Bio cell 
buffer to obtain a final cell density of 3,000–4,000 cells μl−1. Encapsulation, lysis and 
barcoding of cells were performed following the exact manufacturer’s instructions. 
Afterwards, PCR products were digested and cleaned up with AMPure XP Reagent 
(Beckman Coulter, cat. no. 100-265-900), followed by quantification of PCR 
products using a High-Sensitivity dsDNA 1× Qubit kit (Qubit, Invitrogen, cat. 
no. Q32851). Final library preparation consisted of a Target Library PCR with the 
V2 Index Primer for ten cycles and a library cleanup with AMPure XP Reagent 
(Beckman Coulter). Quality control and final quantification were performed on 
an Agilent Bioanalyzer High Sensitivity chip (Agilent Technologies, cat. no. 5067-
4626). Libraries were sequenced on a NovaSeq 6000 instrument (Illumina) aiming 
for 1,300 reads per cell (Supplementary Table 20).

Data analysis. FASTQ files were analyzed through the Tapestri Pipeline (v.1, 
Mission Bio), which trims adaptor sequences, aligns reads to the human genome 
(hg19) using BWA aligner, performs barcode correction, assigns sequence reads 
to cell barcodes and performs genotype calling using GATK (v.3.7). Loom files 
generated were analyzed using the Tapestri Insights (v.2.2, Mission Bio). For each 
patient (considering all time points together), genotypes with quality <30, read 
depth <10 or allele frequency <20% were marked as missing. Similarly, for each 
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patient, variants genotyped in <50% of the cells or mutated in <1% of the cells 
were removed. Cells with <50% of genotypes present were removed. Mutations 
identified in bulk WGS analysis were used as a whitelist. A list of variants not 
identified in COSMIC and present at low frequency (1–10% of cells) in all samples 
analyzed by scDNA-seq was used to remove potential artifacts. The analysis was 
restricted to coding and splice-site mutations. Genotypes of the selected mutations 
were exported from Tapestri Insights and used as input of ∞SCITE (https://github.
com/cbg-ethz/infSCITE)101. Genotypes were encoded as zero for wild-type, one for 
heterozygous mutation, two for homozygous mutation and three for missing data. 
∞SCITE was used to find the mutation tree that best fitted the genotypes observed 
and to assign cells into subclones. ∞SCITE was run using a global sequencing 
error rate (false-positive rate) of 1%102, an estimated rate of non-mutated sites called 
as homozygous mutations of 0% and a patient-specific estimated rate of the allele 
dropout rate (false-negative rate). For each patient, the estimated rate of missed 
heterozygous mutations (dropout of the mutated allele) and the estimated rate of 
heterozygous mutations called as homozygous mutations (dropout of the normal 
allele) were calculated from germline single-nucleotide polymorphisms reported in 
gnomAD with a population frequency >1% and called as mutated in at least 75% 
of cells with a VAF per read count between 47% and 53% according to Tapestri 
Insights. Patient-specific allele dropout rates were calculated for all patients except 
for patient 365, which did not have any heterozygous polymorphisms fulfilling 
the previous criteria. In this case, we used an allele dropout rate of 0.07, which is 
within the range measured in the other cases. We ran ∞SCITE with and without 
considering NOTCH1 mutations and manually curated the result of patient 3,299 
carrying an RPS15 mutation due to the high allele dropout rate observed in these 
genes (Supplementary Fig. 2). We ran ∞SCITE for each patient combining all 
time points and obtained time-point-specific subclone sizes by counting the cells 
assigned to each subclone in each sample102. Only cells uniquely assigned to one 
subclone were considered. Cells genotyped as wild-type for all selected mutations 
were considered as non-tumoral cells and were removed.

Single-cell RNA-seq. Data generation. scRNA-seq was performed on longitudinal 
samples of five patients using three different approaches:

	1.	 Smart-seq2: full-length scRNA-seq libraries were prepared for samples 
of patient 63 using the Smart-seq2 protocol103 with minor modifications. 
Single cells were sorted into 96-well plates containing the lysis buffer (0.2% 
Triton-100, 1 U μl−1 RNase inhibitor; Applied Biosystems, cat. no. N8080119). 
Reverse transcription was performed using SuperScript II (Thermo Fisher 
Scientific, cat. no. 18064014) in the presence of 1 μM oligo-dT30VN (IDT, 
cat. no. 22859789), 1 μM template-switching oligonucleotides (QIAGEN, cat. 
no. PER-YCO0075516) and 1 M betaine (Merck, cat. no. W422312-5KG-K). 
cDNA was amplified using the KAPA Hifi Hotstart ReadyMix (Kapa Biosys-
tems, cat. no. 7958935001) and IS PCR primer (IDT, cat. no. 228597989), with 
25 cycles of amplification. Following purification with Agencourt Ampure XP 
beads (Beckmann Coulter), product size distribution and quantity were as-
sessed on a Bioanalyzer using a High Sensitivity DNA kit (Agilent Technolo-
gies). A total of 140 pg of the amplified cDNA was fragmented using Nextera 
XT (Illumina, cat. no. FC-131-1096) and amplified with Nextera XT indexes 
(Illumina, cat. no. 20027215). Products of each well of the 96-well plate were 
pooled and purified twice with Agencourt Ampure XP beads (Beckmann 
Coulter). Pooled sequencing was performed on a HiSeq 4000 (2x75bp, Il-
lumina) to an average depth of 0.5 million reads per cell.

	2.	 Cell hashing experiment and 10x Genomics: For each patient (12, 19, 365 
and 3,299, experiment BCLLATLAS_10), samples obtained at different time 
points of the disease were labeled following a cell hashing protocol104. For 
each sample, 1–2 million cells were resuspended in 100 μl of cell stain-
ing buffer (BioLegend, cat. no. 420201) and incubated for 10 min at 4 °C 
with 5 μl of Human TruStain FcX Fc Blocking reagent (BioLegend, cat. no. 
422302). Next, a specific TotalSeq-A antibody-oligo conjugate (BioLegend, 
TotalSeq-A anti-human Hashtag 1–8, cat. no. 394601, 394603, 394605, 
394607, 394609, 394611, 394613 and 394615) was added and incubated on 
ice for 30 min. Cells were then washed three times with cold PBS-0.05% BSA 
and centrifuged for 5 min at 500g at 4 °C. Finally, cells were resuspended in 
an appropriate volume of 1× PBS-0.05% BSA to obtain a final cell concentra-
tion of 500–1,000 cells μl−1, suitable for 10x Genomics scRNA-seq. An equal 
volume of hashed cell suspension from each of the conditions was mixed 
and filtered with a 40-µm strainer (pluriSelect, cat. no. 43-10040-70). Cell 
concentration was verified by counting with a TC20 Automated Cell Counter 
(Bio-Rad Laboratories, cat. no. 1450102). Cells were partitioned into Gel 
Bead In Emulsions with a Target Cell Recovery of 10,000 total cells. Sequenc-
ing libraries were prepared using the Chromium Next GEM Single Cell 3′ 
GEM, Library & Gel Bead kit v.3.1 (10x Genomics, cat. no. 1000121) with 
some adaptations for cell hashing, as indicated in TotalSeq-A Antibodies and 
Cell Hashing with 10x Single Cell 3′ Reagent kit v.3.1 Protocol by BioLe-
gend. Briefly, 1 µl of 0.2 µM HTO primer (IDT, Hashtag Oligonucleotides; 
GTGACTGGAGTTCAGACGTGTGC*T*C; *phosphorothioate bond) was 
added to the cDNA amplification reaction to amplify the hashtag oligonu-
cleotides together with the full-length cDNAs. An SPRI selection cleanup 
was performed to separate messenger RNA-derived cDNA (>300 bp) from 

antibody-oligonucleotide-derived cDNA (<180 bp), as described in the 
above-mentioned protocol. 10x cDNA sequencing libraries were prepared 
following 10x Genomics Single Cell 3′ v.3.1 mRNA kit protocol, whereas 
HTO cDNAs were indexed by PCR as follows: 5 µl of purified hashtag oligo-
nucleotide cDNA were mixed with 2.5 µl of 10 µM Illumina TruSeq D70X_s 
primer (IDT) carrying a different i7 index for each sample, 2.5 µl of SI primer 
(10x Genomics, cat. no. 2000095), 50 µl of 2× KAPA Hifi Hotstart ReadyMix 
(Kapa Biosystems, cat. no. 7958935001) and 40 µl of nuclease-free water. 
HTO libraries were purified with 1.2× SPRI bead selection. Size distribution 
and concentrations of cDNA and HTO libraries were verified on an Agilent 
Bioanalyzer High Sensitivity chip (Agilent Technologies, cat. no. 5067-4626). 
Finally, HTO and cDNA libraries were sequenced on a NovaSeq 6000 (Il-
lumina) to obtain approximately 25,000 reads per cell.

	3.	 Non-cell hashing experiment and 10x Genomics. Samples with a low number 
of cells in the previous experiment (samples of patient 365 and a subset 
of samples of patients 12 and 19) were analyzed using a non-cell hashing 
experiment (BCLLATLAS_29). Frozen samples were thawed and 1 ml of 
37 °C pre-warmed Hibernate-E (Thermo Fisher Scientific, cat. no. A1247601) 
supplemented with 10% FBS (Thermo Fisher Scientific, cat. no 10082147) was 
added drop-wise with gently swirling of the sample. After 1 min of incuba-
tion at room temperature, 2,000 µl of pre-warmed medium was added as 
mentioned before. Samples were again kept at room temperature for 1 min 
and 5,000 µl pre-warmed medium was gently added. This step was conducted 
twice. Afterwards, samples were centrifuged at 500g for 5 min. Supernatant 
was removed and pellets were resuspended in 500 µl 1× PBS supplemented 
with 0.05% BSA and stained with 4,6-diamidino-2-phenylindole (DAPI) 
(Thermo Fisher Scientific, cat. no. D1306) at 1 µM final concentration. 
DAPI-negative live individual cells were sorted with a BD FACSAria Fusion 
Flow cytometer (BD Biosciences) in 1× PBS supplemented with 0.05% BSA. 
After FACS, cells were partitioned into Gel Bead In Emulsions by using the 
Chromium Controller system (10x Genomics, cat. no. 1000204) aiming at a 
Target Cell Recovery of 5,000 total cells. Sequencing libraries were prepared 
using the v.3.1 single-cell 3′ mRNA kit (10x Genomics). After GEM-RT 
cleanup, cDNAs were amplified during 14 cycles. cDNA quality control and 
quantification were performed on an Agilent Bioanalyzer High Sensitivity 
chip (Agilent Technologies). Libraries were indexed by PCR using the Chro-
miumi7 Sample Index Plate (10x Genomics, cat. no. 220103). Size distribution 
and concentration were verified on an Agilent Bioanalyzer High Sensitiv-
ity chip (Agilent Technologies, cat. no. 5067-4626). Finally, libraries were 
sequenced on a NovaSeq 6000 sequencer aiming for 40,000 reads per cell.

Read alignment. Raw reads were aligned to the GRCh38 human genome with Cell 
Ranger (v.4.0.0), with the ‘chemistry’ parameter set to ‘SC3Pv3’ and the ‘expect-cells’ 
parameter set to 20,000 and 5,000 for cell-hashed and non-hashed libraries, 
respectively. The remaining parameters for cell-hashed libraries were specified as 
described in the ‘Feature Barcode Analysis’ pipeline of Cell Ranger. For Smart-seq2 
libraries, alignment and quantification was performed using zUMIs (v.9.4e)105.

Demultiplexing of hashtag oligonucleotides. Expression matrices were imported into 
R (v.4.0.4) with the ‘Read10X’ function from Seurat (v.4.0.3)106. HTO counts were 
normalized with a centered log-ratio transformation applied across features. Each 
cell barcode was assigned to a specific time point of the disease with the function 
‘HTODemux’ (positive.quantile = 0.99) of Seurat. Barcodes that were positive for 
two or more time points were labeled as doublets and discarded. Likewise, cell 
barcodes negative for all time points were excluded. Finally, Scrublet (v.0.2.1)107 was 
run to aid in the detection of doublets.

Quality control, normalization and dimensionality reduction. Cells that possessed 
<900 UMIs, <250 expressed genes or a mitochondrial expression >22.5% were 
considered as poor quality and removed. Similarly, genes expressed in three 
or fewer cells were filtered out. Following data normalization and correction 
(Seurat and NormalizeData), we performed PCA (Seurat, RunPCA) using the 
scaled expression (Seurat and ScaleData) of the top 2,000 highly variable genes 
(Seurat: FindVariableFeatures, selection.method = VST). For Smart-seq2 data, we 
filtered out cells with <150,000 counts, <550 expressed genes or mitochondrial 
expression >18%. Cells with more than 700,000 counts or 3,750 detected genes 
were excluded. Similarly, genes expressed in three or fewer cells were filtered 
out. To separate neoplastic cells from the microenvironment, we corrected the 
top 30 principal components (PCs) for sample-specific variation using Harmony 
(v.1.0)108, as implemented in the RunHarmony (group.by.vars = sample) function 
(SeuratWrappers package, v.0.3.0). Subsequently, these 30 corrected PCs were used 
to embed cells in a UMAP (Seurat, RunUMAP) and in a 20-nearest neighbors 
graph (Seurat, FindNeighbors) for visualization and clustering, respectively. 
Following Louvain clustering (Seurat, FindClusters, resolution = 0.1), we focused 
our downstream analyses only on tumor B cells (CD79A) due to the low number of 
microenvironment cells.

Dealing with confounders. We observed batch effects between 10x Genomics 
experiments. To avoid batch effects within samples of the same patient, we focused 
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on the BCLLATLAS_10 experiment for patients 12, 19 and 3,299. Conversely, as we 
did not obtain a clear signal-to-noise separation in the HTO demultiplexing of case 
365, we analyzed the cells obtained with BCLLATLAS_29. We also found some 
cell neighborhoods that harbored a high percentage of mitochondrial expression 
and a low number of detected genes. In such cases, we were more stringent with 
the thresholds or fetched and eliminated these clusters with FindClusters. We also 
excluded some clusters of doublets that expressed markers of microenvironment 
cells (erythroblasts, T cells or natural killer cells). Finally, for patient 3,299 in which 
one sample was obtained from peripheral blood (PB), whereas the others were 
obtained from bone marrow (BM), we focused solely on the BM samples to avoid 
misinterpretations. For patient 365, the CLL and RT time points were sampled 
from PB and lymph nodes, respectively. As the same RT sample profiled with bulk 
RNA-seq clustered with other RT samples from PB, we analyzed them jointly. 
After all the filtering, we recomputed the highly variable genes and PCAs. To avoid 
overcorrection, we used the top 20 PCs as input to RunUMAP and FindNeighbors, 
without rerunning Harmony.

Clustering and annotation. Louvain clustering was performed with the FindClusters 
function, adjusting the resolution parameter for each patient independently. 
To annotate each cluster, we ran a ‘one-versus-all’ DEA for each cluster (Seurat, 
FindAllMarkers, Wilcoxon rank-sum test), keeping only upregulated genes with 
a log2FC > 0.3 and a Bonferroni-adjusted P value <0.001. If markers were specific 
to a subset of the cluster, we further stratified it with the FindSubCluster function. 
On the contrary, if two clusters possessed similar markers, we merged them. The 
CellCycleScoring function was used to identify clusters of cycling cells.

DEA and GSEA. We conducted a DEA between RT and CLL clusters of each 
patient independently, merging cells from all time points (Seurat, FindMarkers, 
logfc.threshold = 0, only.pos = FALSE, Wilcoxon rank-sum test). To find 
finer-grained gene expression changes, only nonproliferative clusters were 
considered. Genes with a Bonferroni-adjusted P value <0.05 were considered as 
significant. The resulting list of genes (sorted by decreasing log2FC) was used as 
input to the ‘gseGO’ function of clusterProfiler (v.3.18.1, parameters: ont = ‘BP’, 
OrgDB = org.Hs.eg.db, keyType = ‘SYMBOL’, minGSSize = 10, maxGSSize = 250, 
seed = TRUE). We then removed redundancy in the output list of GO terms with 
the ‘simplify’ function (cutoff of 0.75) and filtered out GO terms with an adjusted 
P value <0.05. To convert the expression of specific GO terms of interest into a 
cell-specific score, we utilized the AddModuleScore function from Seurat.

CNA inference from scRNA-seq data. For each patient separately, we ran inferCNV 
(v.1.11.1) integrating all samples together. We used CLL cells as reference 
because (1) we aimed to identify CNAs acquired at RT and (2) CLL had flat 
copy number profiles in virtually all chromosomes according to WGS. CLL cells 
were downsampled to the number of RT cells. We initialized an ‘infercnv’ object 
(CreateInfercnvObject) using the raw expression counts and the gene-ordering file 
https://data.broadinstitute.org/Trinity/CTAT/cnv/gencode_v21_gen_pos.complete.
txt. CNAs were predicted (infercnv, run, HMM = FALSE, denoise = FALSE) setting 
the cutoff parameter to 1 and 0.1 for Smart-seq2 and 10x data, respectively. We 
customized the plotting with the plot_cnv function.

Analysis of an external scRNA-seq dataset. We downloaded the expression matrices 
and metadata of the dataset from Penter et al.43 with the GEOquery (v.2.62.2) 
(Gene Expression Omnibus identifier GSE165087), created a single Seurat object 
with all cells from all samples and filtered poor-quality cells as specified in the 
original publication43. Dimensionality reduction, DEA, GSEA and gene signature 
scoring were performed as described above.

Cellular respiration. Cryopreserved cells were resuspended on RPMI-1640 
(Gibco, cat. no. 21875034) with 10% FBS (Gibco, cat. no. 10270-106) and 1% 
Glutamax (Gibco, cat. no. 35050-061) at a concentration of 3 million cells ml−1. 
After 1 h of incubation at 37 °C, cellular respiration was performed using 
O2k-respirometers (Oroboros Instruments). Two milliliters of cell suspension 
were added in each respirometer chamber. Cellular respiration was performed 
at 37 °C at a stirrer speed of 750 r.p.m. Respiratory control was studied by 
sequential determination of routine respiration (oxygen consumption in 
living cells resuspended on RPMI-1640 with 10% FBS and 1% Glutamax), 
oligomycin-inhibited leak respiration (2 µl ml−1, Sigma-Aldrich, cat. no. O4876, 
CAS, 1404-19-9), uncoupler-stimulated ETC measured by the sequential titration 
of the ionophore carbonyl cyanide m-chlorophenyl hydrazone (Sigma-Aldrich, 
cat. no. C2759, CAS, 555-60-2) and residual oxygen consumption after inhibition 
of the electron transfer system by the addition into the chamber of rotenone 
(0.5 µM, Sigma-Aldrich, cat. no. R8875, CAS, 83-79-4) and antimycin A (2.5 µM, 
Sigma-Aldrich, cat. no. A8674, CAS, 1397-94-0). Data acquisition and real-time 
analysis were performed using the software DatLab 7.4 (Oroboros Instruments). 
Automatic instrumental background corrections were applied for oxygen 
consumption by the polarographic oxygen sensor and oxygen diffusion into the 
chamber109. The same experimental workflow was used to study cellular respiration 
in CLL and RT cells after 1 h of treatment with IACS-010759 (Selleckchem, cat. no. 
S8731, CAS, 1570496-34-2) at 100 nM.

Calcium flux analysis. Cryopreserved cells were resuspended on RPMI-1640 
medium with 10% FBS, 1% Glutamax and 5% penicillin (10,000 IU ml−1)/
streptomycin (10 mg ml−1) (Thermo Fisher, cat. no. S8731) at 106 cells ml−1. After 
6 h of incubation at 37 °C and 5% CO2, cells were centrifuged and resuspended 
on RPMI-1640 with 4 µM Indo-1 AM (Thermo Fisher, cat. no. I1223) and 0.08% 
Pluronic F-127 (Thermo Fisher, cat. no. P3000MP) for 30 min at 37 °C and 5% 
CO2. Cells were subsequently labeled for 20 min at room temperature with surface 
marker antibodies CD19 (Super Bright 600; Invitrogen, cat. no. 63-0198-42) 
and CD5 (PE-Cy5; BD Biosciences, cat. no. 555354) for the identification of 
tumoral cells (CD19+CD5+). Next, cells were resuspended on RPMI-1640 before 
flow cytometry acquisition. Basal calcium was measured during 1 min before 
stimulation, then cells were incubated during 2 min at 37 °C with or without 
10 µg ml−1 anti-human F(ab′)2 IgM (Southern Biotech, cat. no. 2022-01) and 
3.3 mM H2O2 (Sigma-Aldrich, cat. no. H1009). Finally, 2 µM 4-hydroxytamoxifen 
(4-OHT) (Sigma-Aldrich, cat. no. H6278) was added to all conditions before 
continue recording for up to 8 min. Intracellular Ca2+ release was measured on 
LSRFortessa (BD Biosciences) using BD FACSDiva software (v.8) by exciting 
with ultraviolet laser (355 nm) and appropriate filters: Indo-1 violet (450/50 nm) 
and Indo-1 blue (530/30 nm). Bound (Indo-1 violet) and unbound (Indo-1 blue) 
ratiometric was calculated with FlowJo software (v.10). Gating analysis was as 
follows: cell identification in FSC-A versus SSC-A plot, singlet identification in 
FSC-A versus FCS-H plot, tumoral cells (CD19+CD5+) in CD19 (Super Bright 600) 
versus CD5 (PE-Cy5) plot and Ca2+ release in time versus Indo-1 violet/Indo-1 
blue plot using a kinetics tool. Optimized dilutions for the antibodies were 1:3 for 
CD19 and 1:10 for CD5.

Cell growth assays. Cryopreserved cells were resuspended on PBS at a 
concentration of 107 cells ml−1 and labeled with 0.5 µM CFSE Cell Tracer 
(Thermo Fisher, cat. no. C34554) for 10 min. Cells were centrifuged and 
resuspended on enriched RPMI-1640 medium with 1% Glutamax, 15% FBS, 
1× insulin-transferrin-selenium (Merk, cat. no. I3146), 10 mM HEPES (Fisher 
Scientific, cat. no. BP299), 50 µM 2-mercaptoethanol (Gibco, cat. no. 21985-
023), 1× Non-Essential Amino Acids (Gibco, cat. no. 11140-050), 1 mM sodium 
pyruvate (Gibco, cat. no. 11360-070) and 50 µg ml−1 gentamicin (Gibco, cat. no. 
15710-064) at a concentration of 106 cells ml−1 supplemented with 0.2 µM CpG 
DNA TLR9 ligand (ODN2006-TL9; InvivoGen, cat. no. TLRL-2006) and 15 ng ml−1 
recombinant human IL-15 (R&D Systems, cat. no. 247-ILB-025)110. When 
indicated, cells were treated for 72 h with 100 nM IACS-010759. Cells were labeled 
for 20 min at room temperature with surface marker antibodies CD19 (Super 
Bright 600), CD5 (PE-Cy5) and annexin V (Life Technologies, cat. no. A35122) 
before acquisition in a LSRFortessa (BD Biosciences) using the BD FACSDiva 
software (v.8) and analyzed using FlowJo (v.10). Gating analysis for divided cells 
was as follows: cell identification in FSC-A versus SSC-A plot, singlet identification 
in FSC-A versus FCS-H plot, alive cells in annexin V (PacB) versus SSC-A plot, 
tumoral cells (CD19+CD5+) in CD19 (Super Bright 600) versus CD5 (PE-Cy5) 
plot and proliferating cells in the CFSE histogram. Optimized dilutions for the 
antibodies were 1:3 for CD19, 1:10 for CD5 and 1:3 for annexin V.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data are available from the European Genome–phenome Archive 
(http://www.ebi.ac.uk/ega/) under accession no. EGAS00001006327. scRNA-seq 
expression matrices, Seurat objects and corresponding metadata are available at 
Zenodo (https://doi.org/10.5281/zenodo.6631966).

Code availability
R markdown notebooks used for mutational signature, bulk RNA-seq, H3K27ac 
and ATAC-seq analyses can be found at https://github.com/ferrannadeu/
RichterTransformation. R markdown notebooks to reproduce the scRNA-seq 
analyses can be accessed at https://github.com/massonix/richter_transformation. 
Code to normalize DNA methylation data can be found at https://github.com/
Duran-FerrerM/DNAmeth_arrays. Code to calculate the tumor cell content, CLL 
epitypes and epiCMIT from DNA methylation data can be found at https://github.
com/Duran-FerrerM/Pan-B-cell-methylome.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Cohort studied and types of Richter transformation. a. Representation of the disease course of the patients included in the 
study. Each sample analyzed, treatment and date of RT are depicted. Patients labeled in gray lacked germline DNA. Patient 4676 also lacked DNA from 
the previous CLL sample. Patients are grouped based on the last line of therapy received before RT in three groups: patients developing RT before any 
treatment, after chemo(immuno)therapy, and after targeted therapy. The type of transformation (RT-DLBCL, diffuse large B cell lymphoma type; RT-
PLL, prolymphocytic transformation; RT-PBL, plasmablastic transformation) and IGHV mutational status are also shown. Additional molecular studies 
conducted in each case are also depicted. Abbreviations: Ale: alemtuzumab; AlloSCT: allogenic stem-cell transplantation; AutoSCT: autologous stem-
cell transplantation; B: bendamustine; Burkimab: rituximab, methotrexate, dexametasone, ifosfamide, vincristine, etoposide, cytarabine, doxorubicin 
and vindesine; C: cyclophosphamide; CHOP: cyclophosphamide, doxorubicin, vincristine and prednisone; CLB: chlorambucil; CLB-R: chlorambucil 
and rituximab; CP: cyclophosphamide and prednisone; F: fludarabine; FCM: fludarabine, cyclophosphamide and mitoxantrone; G-GemOx: rituximab, 
gemcitabine, and oxaliplatin; LR-ESHAP: lenalidomide, rituximab, etoposide, methyl-prednisolone, cytarabine and cisplatin; M: mitoxantrone; Prd: 
prednisone; R: rituximab; R-B: rituximab and bendamustine; R-CHOP: rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone; R-CVP: 
rituximab, cyclophosphamide, vincristine and prednisone; R-DHAP: rituximab, dexamethasone, cytarabine and cisplatin; R-ESHAP: rituximab, etoposide, 
methyl-prednisolone, cytarabine and cisplatin; RFC: fludarabine, cyclophosphamide and rituximab; RFCM: rituximab, fludarabine, cyclophosphamide 
and mitoxantrone; R-ICE: rituximab, ifosfamide, carboplatin and etoposide; TBI: total body irradiation. b. Morphology of the RT-DLBCL of patient 63 
(hematoxylin-eosin, H&E, staining). c. Morphology of the RT-DLBCL of patient 365 and Ki67 staining showing high proliferative index. d. Morphology 
of the RT-DLBCL of patient 816. e. Morphology of the RT-PLL of patient 3299. f. Morphology of the RT-PBL of patient 1669 (H&E staining), which was 
negative for CD20 and PAX5, while positive for MUM1/IRF4. Each experiment for b-f was repeated twice. The scale bars in b-f represents 20 μm.
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Extended Data Fig. 2 | See next page for caption.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles NATuRE MEDiCinE

Extended Data Fig. 2 | Genetic and epigenetic changes from CLL to RT, CNA profiles, and landscape of driver alterations. a. Number of somatic genetic 
alterations and epigenetic changes compared to normal counterparts along the course of the disease. Cases/time points with no grid lines correspond 
to unavailable data. b. Mutational burden, number of CNAs and number of SVs found in RT stratified according to the last therapy prior transformation. 
Targeted, targeted therapies. center line, median; box limits, upper/lower quartiles; whiskers, 1.5×interquartile range; points, individual samples. c. Copy 
number landscape of the studied cohort grouped by patient. The diagnosis, IGHV mutational status, last therapy prior RT, and total number of CNAs are 
indicated for each time point. d. Aggregated copy number profile of RT vs CLL. The first CLL samples (time point 1, T1) were considered. The plot shows 
the percentage of samples with gains (up) and losses (down). Among recurrent alterations found either in CLL or RT samples (n ≥ 5), deletions of 9p 
(PTPRD and CDKN2A/B) and deletions of 15q (MGA) were enriched in RT whereas deletions of ATM (11q), TP53 (17p), and 13q14 were found at similar 
frequencies in CLL and RT. e. Oncoprint of putative driver alterations. Samples, grouped by patient (patient id at the top), are represented by columns 
while genes in rows. Novel drivers in RT are labeled in blue. Genes are grouped according to their biological function or if they were previously described 
as potential driver genes in CLL and/or mature B cell lymphomas. Metadata including the type of therapy before RT, number of treatment lines before each 
sample, the spatial/longitudinal nature of the CLL/RT samples analyzed, IGHV mutational status, and diagnosis is detailed in the upper rows. In the main 
plot, mutations (SNVs and indels) are depicted with horizontal rectangles, CNAs using the background color of each cell, and SVs with vertical rectangles. 
The transparency of the color of mutations and CNAs indicates the cancer cell fraction (CCF). For patients lacking the germline sample (patient id 
indicated in gray), the CCF of the alterations could not be inferred and a CCF of 100% was used for illustrative purposes.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Complex genomic rearrangements affecting driver genes. a. Deletions in chr12 identified in four cases with the minimal deleted 
region affecting CDKN1B, which expression in CLL and RT sample pairs is shown on the right. The case carrying the deletion at time of RT is labeled in 
the boxplot. b. Reciprocal translocation juxtaposing CDK6 next to IGKJ5 in patient 4687. c. Deletion in chr1 affecting two cases with the minimal deleted 
region targeting ARID4B. Its expression in CLL and RT sample pairs is shown in the boxplot on the right. d. Reciprocal translocations truncating CREBBP 
and CIITA in the RT sample of patient 12. e. Expression levels of known and novel RT-driver genes in CLL and RT paired samples. Cases carrying deletions/
mutations at time of RT are labeled. f-j. Complex genomic rearrangements affecting driver genes in five selected RT samples. The circos plots show the 
SVs (inner links) and CNAs (middle circle) found in each sample. SVs are colored based on whether they are part of a complex event, while CNAs are 
painted according to their type. Chromosome-specific plots on the right show the main chromosomes affected by complex events targeting driver genes 
(annotated at the bottom). In these chromosome-specific plots, the color of both CNAs and SVs indicates their type. For patient 12 (f), the expression 
levels of three genes affected by simple (TRAF3) and complex (SPEN and TNFRS14) chromosomal alterations are shown. For patient 4675 (j), the partner 
of the translocations found in chr3 and chr8 are not specified for simplicity due to the high number of clustered structural events. All boxplots: center line, 
median; box limits, upper/lower quartiles; whiskers, 1.5×interquartile range; points, individual samples. All p values are from two-sided T tests.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Extraction and assignment of mutational signatures. a–d. Signatures extracted by the Hierarchical Dirichlet Process (HDP)  
(a), SignatureAnalyzer (b), SigProfiler (c), and sigfit (d). COSMIC signatures needed to reconstruct the extracted signatures are shown together with 
their contribution (in percentage). The cosine similarities between the extracted and reconstructed signatures are shown in brackets. e. Workflow of  
the mutational signature analysis. f. The 96-mutation profile of the RT sample of patient 839 (time point 2), which had marked evidence of APOBEC 
activity (SBS2 and SBS13). g. Comparison of the SBS-ganciclovir extracted by HDP and SignatureAnalyzer. Based on the high cosine similarity (0.996), 
we considered that both signatures represented the same mutational process and selected the one extracted by HDP for downstream analyses.  
h. Comparison of the SBS-ganciclovir extracted by HDP and the ganciclovir signature reported by de Kanter et al.35. i. Comparison of the SBS-RT 
extracted by HDP and SignatureAnalyzer. Based on the high cosine similarity (0.941), we considered that both signatures represented the same 
mutational process and selected the one extracted by HDP for downstream analyses. j. Pairwise comparisons of the SBS-RT with known signatures 
from COSMIC and Kucab et al.33. k. Decomposition of the SBS-RT in “n” known signatures using an expectation maximization approach. The low cosine 
similarity (<0.85) between SBS-RT and the best reconstituted signature obtained using any combination of known signatures suggests that SBS-RT 
represents a novel mutational signature.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Fitting of mutational signatures, characterization of SBS-RT, and co-occurrence of RT subclones. a. Mutational processes in 
ICGC-CLL (left) and post-treatment CLL (right) cohorts. b. Correlation of SBS-RT with the total number of SNVs and other mutational processes in RT 
subclones. Gray area, 95% confidence interval. c. Activity of the mutational processes identified in regulatory regions of the genome: heterochromatin 
(Het), polycomb (Pol), enhancer/promoter (EP), and transcription (Tra). The heat map (right) shows the log2-fold change of the observed vs expected 
number of SBS-RT mutations/region. d. Contribution of the mutational processes in early/late replication regions. e-f. Replication (e) and transcriptional 
(f) strand bias of the mutational profile of RT subclones with SBS-RT. The main peaks of the SBS-RT are indicated with their context on the x-axis. 
Significant asymmetries are indicated with asterisks (exact p values are listed in Supplementary Table 16). g. Number of CNAs and SVs in RT samples. 
h. Detection (top) and variant allele frequency (VAF) (bottom) of mutations assigned to the RT subclone during the disease course in patient 19 based 
on UMI-based NGS. Mutations are grouped according to the main peaks of SBS-RT. P values by Fisher’s test. L.C., low confidence; H.C., high confidence. 
Density plot showing the distribution of the cancer cell fraction (CCF) of the SNVs assigned to the RT subclone by WGS (bottom right). i. Mutational 
profiles of kataegis in ICGC-CLL samples (row 1–2), CLL subclones from the present CLL/RT cohort (row 3–4), and RT subclones (all U-CLL) (row 5). 
Mutational processes identified are indicated together with its contribution and cosine similarity to the reconstructed profile. j. Immunoglobulin genes 
of two cases harboring RT-specific SNVs at time of RT (time points, T, highlighted in rose). PB, peripheral blood. BM, bone marrow. k. Complete flow 
cytometry analysis in case 12. Numbers along axes are divided by 1000. l. Density plot showing the comparison of the CCF of the SNVs of synchronous 
BM and PB samples analyzed in patient 12. m. Circos plots of the BM samples of patient 12 for comparison with the rearrangements observed at PB 
(Supplementary Fig. 1).
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Extended Data Fig. 6 | Clonal dynamics from CLL to RT. a. Subclonal reconstruction and clonal evolution of three cases (3299, 12 and 365) with WGS 
and scDNA-seq data available. The upper fish plot shows the clonal evolution along the course of the disease inferred from WGS analyses. Each color 
represents a different subclone and their height is proportional to their cancer cell fraction (CCF) in each time point (vertical lines). The treatments that 
the patient received and the elapsed time (in years) between samples are indicated at the top. The tissue is indicated for samples of patient 3299 in which 
different tissues were analyzed by WGS and scDNA-seq in the same time point. The phylogeny of the subclones is depicted together with the main driver 
alterations (top right). The lower bar plots show the dynamics of the different subclones according to the scDNA-seq analyses. The total number of cells 
per sample is shown at the bottom. The number of cells assigned to each subclone can be found in Supplementary Table 20. The mutation tree inferred 
from scDNA-seq data is shown at the bottom-right part. b-c. Subclonal architecture and dynamics of six cases with longitudinal samples (b) and two 
cases with spatial samples (c) analyzed by WGS.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | scRNA-seq characterization of CLL and RT. a–d. UMAP visualization of tumor cells from all time points colored by annotation and 
tissue of origin. hi, high; lo, low; PB, peripheral blood; LN, lymph node; BM, bone marrow (left). Dot plot with the expression of key markers in each cluster. 
Color and size represent scaled mean expression and proportion of cells expressing each marker gene, respectively (middle-left). Violin plots showing the 
cell-cycle phase scores (S and G-to-M) for each cluster of cells (middle-right). UMAP visualization split by time point (right). ‘n’ refers to the total number 
of cells in that time point, and the percentage refers to the proportion of cells within RT clusters. e-i. Time point-specific UMAP visualizations for each 
case. RT seed cells are depicted in rose and with an increased size. j. UMAP visualization of case CLL9 from Penter et al.43 split by time point. PB, peripheral 
blood; BM, bone marrow.
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Extended Data Fig. 8 | CNA profile of RT cells by scRNA-seq. For each patient, the CNA profile of CLL and RT samples according to WGS is shown (top) 
together with the CNA profile of each individual RT cell based on scRNA-seq (bottom). For scRNA-seq, each row represents a RT cell and the horizontal 
dashed line separates the RT cells identified in the time points previous to the diagnosis of RT (that is, seed RT cells) from those present in the sample 
collected at time of diagnosis of RT. Note that CLL cells were used as reference for CNA analyses using scRNA-seq data.
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Extended Data Fig. 9 | Epigenomic characterization of RT. a. Heatmaps showing the regions with decreased H3K27ac, increased ATAC, and decreased 
ATAC levels, respectively, in RT. b. Overlap of differentially expressed genes by bulk RNA-seq with regions with increased or decreased H3K27ac and 
ATAC levels, respectively. c. Heat map showing differentially methylated CpGs (DMC) between CLL and RT. Normal B cells, CLL, CLL at relapse, and RT 
samples are shown separately with different biological information on top. The correlation of each CpG with the epiCMIT is depicted on the right. To 
note, the epiCMIT is associated with the gain and loss of methylation upon cell division, but its transformation to 0-1 scale (for interpretability purposes) 
makes it anticorrelated with hypomethylation, as the epiCMIT=max{epiCMIT-hyper, epiCMIT-hypo}, being the epiCMIT-hyper=hypermethylation, 
and the epiCMIT-hypo=1-hypomethyaltion at relevant CpGs, as originally reported49. d. Genomic enrichment over the background for hyper- and 
hypomethylated CpGs in CLL vs RT. e. DMC distribution based on their genetic annotation and their intersection with differentially expressed genes by 
bulk RNA-seq analyses. f. DMC distribution based on the correlation of each CpG with the epiCMIT and their p values. CpGs were piled up in color-coded 
bins based on the number of CpGs in each bin to avoid overplotting. g. epiCMIT evolution in longitudinal CLL and RT samples, with the epiCMIT-hyper and 
epiCMIT-hypo scores depicted separately (RT samples being the last time point labeled in rose). The epiCMIT score used to compare among samples is 
the greater of the two (hyper and hypo).
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Extended Data Fig. 10 | Transcriptomic characterization of RT. a. Volcano plot of the differential expression analysis (RT vs CLL, bulk RNA-seq). 
b. Expression levels of selected genes in CLL and RT according to bulk RNA-seq. center line, median; box limits, upper/lower quartiles; whiskers, 
1.5×interquartile range; points, individual samples. c. Differentially expressed genes (RT vs CLL) for each case by scRNA-seq. d. GSEA plots of selected 
hallmark gene sets according to bulk RNA-seq analyses. NES, normalized enrichment score. e. UpSet plots highlighting the intersections of the 
case-specific upregulated (top) and downregulated (bottom) GO terms in RT by scRNA-seq. f. GSEA plots for the terms oxidative phosphorylation 
(OXPHOS), mitochondrial translation, and BCR signaling pathway for cases 12, 63, and 365 based on scRNA-seq. g-j. scRNA-seq-derived UMAP 
visualization of tumor cells from all time points colored by OXPHOS and BCR signaling score (left). Ridge plots showing the same scores across clusters 
(middle). Violin plots displaying the same scores across time points, stratified by CLL and RT clusters (right). k. Violin plots displaying the OXPHOS and 
BCR signaling scores across time points, stratified by CLL and RT clusters, in case CLL9 from Penter et al43. l. GSEA between RT and CLL cells of patient 
CLL9 from Penter et al.43.
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