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epiAneufinder identifies copy number
alterations from single-cell ATAC-seq data

Akshaya Ramakrishnan 1,4, Aikaterini Symeonidi 1,2,4 , Patrick Hanel1,2,
Katharina T. Schmid 2, Maria L. Richter 2, Michael Schubert 3 &
Maria Colomé-Tatché1,2

Single-cell open chromatin profiling via scATAC-seq has become amainstream
measurement of open chromatin in single-cells. Here we present epiAneu-
finder, an algorithm that exploits the read count information from scATAC-seq
data to extract genome-wide copy number alterations (CNAs) for individual
cells, allowing the studyofCNAheterogeneity present in a sample at the single-
cell level. Using different cancer scATAC-seq datasets, we show that epiA-
neufinder can identify intratumor clonal heterogeneity in populations of single
cells based on their CNA profiles. We demonstrate that these profiles are
concordant with the ones inferred from single-cell whole genome sequencing
data for the same samples. EpiAneufinder allows the inference of single-cell
CNA information from scATAC-seq data, without the need of additional
experiments, unlocking a layer of genomic variation which is otherwise
unexplored.

Aneuploidy and copy number alterations describe DNA duplication
anddeletion events that range froma small number of basepairs in the
genome to whole chromosomes. Both conditions have been involved
in disease, and are especially prominent in cancer1. In fact, more than
~90% of solid tumors are aneuploid2, leading to the hypothesis that
aneuploidy confers a growth advantage to cancer cells3. However, the
relationship between aneuploidy and tumorigenesis remains not
clearly understood4,5. Meanwhile, aneuploidy is highly detrimental to
normal cell development and growth6,7.

Because of its biological and clinical relevance, aneuploidy is
widely studied using different experimental strategies8. Traditionally,
CNAs have been studied with spectral karyotyping or (interphase)
fluorescence in situ hybridization (FISH), which are single-cell low-
throughput methods that lack precise genomic resolution8. On the
contrary, comparative genomic hybridization (CGH), whole exome
sequencing (WES) or whole-genome sequencing (WGS) provide high
genomic resolution but do so at the expense of losing single-cell
resolution8. Single-cell whole-genome sequencing (scWGS) offers a
compromise, interrogating copy number gains and losses in a high

throughput fashion at the single-cell level and at a higher genomic
resolution than FISH or spectral karyotyping8–10. Despite being con-
sidered the gold-standard ground truth for the quantification of CNA
heterogeneity in large single-cell populations9, scWGS is not often
used in the laboratory compared to other single-cell sequencing
techniques. Attempts have been made to call copy number variations
from single-cell gene expression data, however, at high genomic
resolution these are confounded by physiological variation in expres-
sion levels11, and calling CNAs from single-cell gene expression alone
proves challenging12–16.

A newer single-cell measurement technique, the single-cell Assay
for Transposase-Accessible Chromatin using sequencing (scATAC-seq),
has become amainstreammeasurement in single cells17, partially owing
to its implementation in the 10x platform18. Single-cell chromatin
opennessmeasurements require the sequencing of the DNA of the cell,
instead of the RNA like in scRNA-seq, hence scATAC-seqmeasurements
have the potential to better recapitulate the DNA content from single
cells. However, scATAC-seq data is extremely sparse, making it chal-
lenging to directly extract copy number calls from the data18,19.

Received: 26 April 2022

Accepted: 23 August 2023

Check for updates

1Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. 2Biomedical
Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany. 3Oncode Institute, Division of Cell Biology,
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands. 4These authors contributed equally: Akshaya Ramakrishnan, Aikaterini
Symeonidi. e-mail: aikaterini.symeonidi@helmholtz-munich.de; maria.colome@bmc.med.lmu.de

Nature Communications |         (2023) 14:5846 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-3897-5677
http://orcid.org/0000-0002-3897-5677
http://orcid.org/0000-0002-3897-5677
http://orcid.org/0000-0002-3897-5677
http://orcid.org/0000-0002-3897-5677
http://orcid.org/0000-0002-3729-3500
http://orcid.org/0000-0002-3729-3500
http://orcid.org/0000-0002-3729-3500
http://orcid.org/0000-0002-3729-3500
http://orcid.org/0000-0002-3729-3500
http://orcid.org/0000-0001-7082-1099
http://orcid.org/0000-0001-7082-1099
http://orcid.org/0000-0001-7082-1099
http://orcid.org/0000-0001-7082-1099
http://orcid.org/0000-0001-7082-1099
http://orcid.org/0000-0002-8510-0128
http://orcid.org/0000-0002-8510-0128
http://orcid.org/0000-0002-8510-0128
http://orcid.org/0000-0002-8510-0128
http://orcid.org/0000-0002-8510-0128
http://orcid.org/0000-0002-6862-5221
http://orcid.org/0000-0002-6862-5221
http://orcid.org/0000-0002-6862-5221
http://orcid.org/0000-0002-6862-5221
http://orcid.org/0000-0002-6862-5221
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41076-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41076-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41076-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41076-1&domain=pdf
mailto:aikaterini.symeonidi@helmholtz-munich.de
mailto:maria.colome@bmc.med.lmu.de


In this paper, we present an algorithm, epiAneufinder, that calls
copy number alterations at the single-cell level from scATAC-seq data.
EpiAneufinder uses binary segmentation combined with an appro-
priate choice of distance measure to identify putative breakpoints in
the genome, and subsequently calls gains and losses per identified
segment. EpiAneufinder can identify single-cell CNAs fromscATAC-seq
data alone, without the need of a reference euploid sample and with-
out the need to supplement the data with other data modalities. We
demonstrate the performance of epiAneufinder by applying it to dif-
ferent scATAC-seq cancer datasets for which an orthogonal measure-
ment of CNAs is available (either scWGS or WGS). In conclusion,
epiAneufinder allows the addition of an extra level of genetic infor-
mation, namely CNAs, to scATAC-seq or single-cell multi-ome (com-
bined scRNA and scATAC-seq) data, without the need of any extra
experimental effort. EpiAneufinder is available as an R package at
https://github.com/colomemaria/epiAneufinder.

Results
epiAneufinder algorithm
The goal of epiAneufinder is to segment the genome into regions of
gain, loss, and normal copy number per single cell. To do that, epiA-
neufinder uses the number of reads from scATAC-seq datamapping to
a genomic region as a proxy of the number of DNA copies present in
that region, for every single cell. To overcome the coverage sparsity
inherent to single-cell sequencing, lowly covered cells are filtered out,
the genome is binned into equally sized windows (by default, window
size is 100,000bp) and the number of mapped reads per window is
quantified (Fig. 1a). Furthermore, we remove the ENCODE blacklisted
set of regions20, composed of certain genomic locations, such as
telomeric ends and repetitive regions, that have systematic biases in
their mappability and that would therefore bias the copy number
inference. For every dataset, epiAneufinder also removes bins that

have zero counts in >85% of all the cells, to discard genomic areas that
have low mappability in every dataset specifically. All parameters can
be adjusted by the user.

After that, the binned dataset is GC corrected using a LOESS fit.
The correction factor is obtained by fitting the raw read counts to the
GC content per bin:

xGC
t = xt � f GC = xt �

meanðxtÞ
Loessðx ∼GCÞt

, ð1Þ

where xt is the number of reads in bin t,meanðxtÞ is the average read
count per bin, and GC is the percentage of base pairs which are GC
per bin.

After data preparation, epiAneufinder applies a binary segmen-
tation algorithm to each single cell separately. Binary segmentation is a
technique used to detect change points in signals by identifying
positions of data distribution changes. In the case of CNA calling, the
assumption is that the distribution of reads mapping per bin is dif-
ferent for a gained, a lost, and a normal copy number region (Sup-
plementary Fig. 1). The goal is to identify the positions in the genome
where the distribution changes take place. To do that, the algorithm
scans the genome of every single cell per chromosome, and calculates
the Anderson–Darling (AD) distance (dAD) between the read distribu-
tions at the left and right of every bin (Fig. 1b). The AD test is a non-
parametric test thatmeasures agreement between distributions. It was
initially developed to check for normality21, but it was subsequently
modified22 to measure the distance between any two empirical dis-
tributions:

dAD =A2
nm =

nm
N

Z 1

�1

Fn xð Þ � Gm xð Þ� �2

HN xð Þ 1� HN xð Þ� �dHN xð Þ, ð2Þ

Fig. 1 | epiAneufinder algorithm. a The genome is binned (default 100,000-bp
windows) and the number of reads in every bin are quantified. Blacklisted regions
are removed, and the data is GC corrected. Bins with zero counts in >85% of all the
cells are removed. b Binary segmentation is applied iteratively per chromosome by
computing the AD distance between the left and right count distribution between

bins. In every segment, the position with the highest AD distance is considered a
breakpoint until a stopping criteria is reached. c After breakpoints have been
identified per chromosome, every segment is assigned to the state loss, normal or
gain based on the read count fold change over the genome-wide mean.
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where FnðxÞ and GmðxÞ are the read distribution functions for the two
genomic segments to compare (with lengths n and m, respectively),
and HNðxÞ is the distribution function of the combined segments:
HNðxÞ= nFnðxÞ+mGmðxÞ

� �
=N, with N =n +m. It was chosen here to

detect copy number differences because it emphasizes the difference
between distribution tails.

The position in every chromosome that maximizes the AD dis-
tance is kept as the most likely breakpoint (Fig. 1b). The same proce-
dure is then repeated iteratively on the two resulting segments, until a
total number of breakpoints are identified per chromosome (by
default 15) (Fig. 1b). After all the breakpoints have been identified
genome-wide, epiAneufinder prunes out breakpoints with an AD dis-
tance lower than the genome-wide mean, to remove low AD distance
breakpoints. This pruning procedure assumes that less than 15
breakpoints are present per chromosome. In situations where more
breakpoints are expected, the parameter for the upper number of
breakpoints can be modified by the user.

Finally, every segment is assigned to the state gain, loss, or normal
copy number. To do that, epiAneufinder calculates the trimmed-
average number of reads per identified segment, defined as the aver-
age number of reads per bin in every segment without the lowest 0.1
andhighest 0.1 quantile bins (these values canbe adjustedby the user).
The segments with a trimmed-average number of reads with z-score
between [−1, 1] are assigned to the genome-widemean. Then, for every
segment, the algorithmcalculates its rounded integer fold changeover
the genome-wide average number of reads. For a value of 0 the seg-
ment is assigned to the state “loss”, for a value of 1 to the state “normal”
and for a value >=2 to the state “gain” (Fig. 1c). Precise quantification of
copy numbers beyond “gains” and “losses” is not possible due to the
sparsity of scATAC-seq data; and full genome duplications and dele-
tions cannot be identified, because they change the genome-wide
mean openness value. For visual representation and to identify CNA
clones, the single cells are clustered based on their copy number
profiles using Euclidean distance and Ward Clustering.

In summary, epiAneufinder takes scATAC-seq BAM files or 10x
fragment files as input, and outputs a RDS file and a TSV file with the
identified copy number states for each bin per cell, labeled as “loss”
(0), “normal” (1) or “gain” (2). Other intermediate result files are also
provided, such as the (GC corrected) binned number of reads per cell
(RDS file), and the identified breakpoints per cell and per chromosome
with their associated AD distance (RDS file). Moreover, plotting func-
tions are available via epiAneufinder, to plot the resulting single-cell
karyotypes and the clustering results. Run times are available in Sup-
plementary Table S1.

epiAneufinder CNAs are concordant with the ones obtained
from (sc)WGS
To demonstrate the performance of epiAneufinder, we analyzed sev-
eral scATAC-seq datasets. First, we analyzed a recent scATAC-seq
dataset for a gastric cancer cell line. This dataset contains ~3500
aneuploid single-cells from the gastric adenocarcinoma cell line
SNU601 with a mean coverage of 75,013 fragments per cell. The
SNU601 cell line is known to contain a complex subclonal structure
with multiple clones that harbor different copy number calls23. The
same cell linewasprofiled using scWGS23, ameasurementwhich canbe
used as an independent ground truth for comparing the identified
scATAC-seq CNA calls to.

We segmented the SNU601 genome into 100,000-bp windows
and we quantified the number of reads per cell in every window.
EpiAneufinder was applied to every cell in the population with stan-
dard parameters, breakpoints were identified, and every segment was
assigned to the state “gain”, “loss”or “normal” (Supplementary Fig. 2a).
The smallest CNA identified was 100 kb (1 bin), the largest gain was
266,700 kb and the largest loss was 361,900 kb (Supplementary
Fig. 2b). Varying the total number of breakpoints called per

chromosome did not substantially change the CNA results (Supple-
mentary Fig. 2c, d and Supplementary Table 1). We identified several
karyotype clusters in the dataset (Fig. 2a and Supplementary Fig. 2a).
Nearly all cells presented a gain in chromosome 19, and the main
source of variation was the absence (cluster 1) or presence (all other
clusters) of CNAs in the remaining part of the genome. Cluster 2 was
further split into two groups, mainly differentiated by the presence or
absence of a whole chromosome gain in chromosome 11. Cluster 1 was
found tobenearlydisomic.Cluster 3 couldbesplit intodifferentminor
groups, themajor source of variation being the presence of a longer or
shorter gain in chromosomes 3 and 6, as well as the presence of losses
in chromosome 18.

To validate our results, we analyzed a scWGS dataset for the same
cell line, with 1531 cells (average coverage of 707,188 reads per cell)23.
Copy number gains and losses were called using the package aneu-
finder, designed to work with single-cell DNA sequencing data24, using
the same 100,000-bp window size as for the scATAC-seq. Despite the
fact that the two datasets were produced by different laboratories
using different techniques, the scWGS data presented a very similar
CNA profile as the scATAC-seq dataset (Fig. 2b and Supplemen-
tary Fig. 3a).

To quantify the similarities between the two copy number pro-
files, we constructed the in-silico pseudo-bulk copy number profiles,
calculated as the mean of the gains and losses in every bin in the
population. In general, the same pseudo-bulk gain and loss profile was
observed for both modalities (Fig. 2c), and the pseudo-bulk DNA-seq
and ATAC-seq profiles were highly similar, with a maximum F1 score
for the loss, gain andnormal states of0.88, 0.93, and0.85, respectively
(Supplementary Fig. 3b, c). Considering the DNA-seq profile as the
observed (true) value, and the scATAC-seq profile as the predicted
one, the mean square error (MSE) of the detected scATAC-seq CNAs
was computed, which was as low as 0.09 genome-wide (Supplemen-
tary Table S2).

Generally, the pseudo-bulk scATAC-seq copy number profile
tended to be less penetrant than the scWGS one, an effect that was
observed both for gains and for losses (Fig. 2c). The scWGS dataset
presented some sharp singularities around the centromeres/pericen-
tromeres that were not detected on the scATAC-seq dataset; while a
very penetrant gain on chromosome 5 observed on the scWGS dataset
was not recovered in the scATAC-seq dataset (Fig. 2c). These dis-
crepancies could be due to the stark differences in experimental pro-
tocols between scWGS and scATAC-seq measurements, combined
with the fact that the DNA and ATAC experiments were performed
independently by different laboratories (Wu et al.19 and Andor et al.23),
and it has been documented that despite its assumed homogeneity,
cell lines can be highly variable25.

Apart from the SNU601 cell line, we used epiAneufinder to analyze
scATAC-seq data for two further aneuploid cell lines (HCT11626 and
colo32027), as well as for a primary glioblastoma sample28. As a ground
truth dataset, scWGS data was also available for the HCT116 cell line29,
whileWGS was available for the colo320 cell line30 and for the primary
glioblastoma31. In all three cases, epiAneufinder CNAs were highly
similar to the ones called using DNA information (epiAneufinder was
used with standard parameters and comparison to the whole-genome
sequencing results was done using pseudo-bulk aggregates) (Supple-
mentary Figs. 4–6 and Supplementary Tables 2 and 3).

Finally, epiAneufinder was also applied to multiple scATAC-seq
datasets from diploid samples, consisting of seven human brain
samples32 (four scATAC-seq datasets and threemulti-ome datasets),
one PBMC sample, and one bone marrow sample18. Comparing the
epiAneufinder results (using standard parameters) to an euploid
baseline, we found minimal deviations from diploidy, showing that
epiAneufinder recognizes the absence of CNVs and correctly iden-
tifies euploid samples (Supplementary Fig. 7 and Supplementary
Table 4).
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epiAneufinder outperforms other single-cell CNA calling
methods
Multiple algorithmshave beendeveloped to call CNAs from scRNA-seq
data, andone algorithmhaspreviously been developed that calls CNAs
from scATAC-seq data (Copy-scAT)28. We have compared the results
from these algorithms to the ones obtained by epiAneufinder in
datasets that contain multiple data modalities: the SNU601 cell line
(scATAC-seq19, scRNA-seq and scWGS23), the HCT116 cell line (multi-
variate scATAC-seq and scRNA-seq26 and scWGS29) and the colo320 cell
line (multi-ome data (10x)27 and bulk WGS30). For calling CNAs from
scRNA-seq, three methods were used: InferCNV16, CaSpER12 and
copyKat14. A reference euploid dataset33–35 was required in all RNA
methods to normalize the data.

We evaluated the correlation between the genome-wide results
for each RNA method compared to the scWGS or WGS results using
pseudo-bulk aggregates bymapping the gene-basedCNA results to the
genomic bins of the (sc)WGS and epiAneufinder results. Only bins
where results were available for all methods were included in the
comparison.

For the SNU601 cell line, the correlation between the scWGSCNAs
and theCNAs obtainedby all the differentmethods andmodalitieswas
relatively high (Fig. 3a). Both scATAC-seq-based methods (epiAneu-
finder & Copy-scAT) performed better than scRNA-seq-based meth-
ods: the best scRNA-seq method, InferCNV, reached a correlation
of 0.61, compared to epiAneufinder (the best scATAC-seq method)
with a correlation of 0.86. In contrast, all scRNA-seq-based methods

Fig. 2 | SNU601 cell line copy number variations. a CNAs for the SNU601 cell line
obtained from scATAC-seq data. Every row is a cell, and every column is a chro-
mosome. Karyotype clones are indicated in black boxes and numbered.bCNAs for

the SNU601 cell line obtained from scWGS data. Every row is a cell, and every
column is a chromosome. cPseudo-bulk CNAprofiles for theDNAandATACdata (x
axis shows the bin number).
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performed worse on the other two datasets (HCT116 and Colo320 cell
lines) (Supplementary Fig. 8), with correlations in the range of 0.2–0.4
when compared to the DNA-based results. The problems to estimate
CNAs based on scRNA-seq data for all the presented datasets could
also be caused by the choice of a suitable reference sample, which
especially for cell lines is very difficult to obtain.

For the CNAs obtained from scATAC-seq data, epiAneufinder
outperformed Copy-scAT (Supplementary Fig. 8). We quantified more
carefully the results of epiAneufinder and Copy-scAT for the SNU601
cell line. In contrast to the comparison with the scRNA-seqmethods, a
far larger part of the genome could be included in the comparison.
Copy-scAT, per default, only provides chromosome-arm resolution
copy numbers, visible in the very coarse-grain profile in the line plot.
Nevertheless, the estimated CNAs between Copy-scAT and epiAneu-
finder agreed well overall (correlation of 0.76). However, epiAneu-
finder correlated better than Copy-scAT with the WGS results (0.86
vs 0.74).

Overall, the comparison of epiAneufinder to methods for calling
CNAs from scRNA-seq data as well as one method for calling CNAs
from scATAC-seq data shows that epiAneufinder more accurately
reflects the WGS results.

CNA identification is affected by sequencing read depth
To assess the robustness of epiAneufinder’s gain and loss calls to
sequencing depth, we performed a simulation study. The SNU601 cell
line dataset19 was downsampled from 100%coverage toonly 10%of the
initial reads (Supplementary Tables 5 and 6), and we used epiAneu-
finder with standard parameters to identify gains and losses in the
population (Supplementary Fig. 9a). For every downsampled dataset,
cells and bins that did not comply with the quality controls of epiA-
neufinder were removed (Supplementary Table 6). The results of this
simulation showed that, even when only 10% of the original number of

reads were retained, on average over all the cells that passed quality
control, 87% of the total genome remained in the same copy number
state as identified in the fully covered dataset (Fig. 3b). Since the
majority of the genome was in the normal state, we also investigated
the robustness of copy number losses and gains calls separately upon
downsampling. Percentage-wise, the identification of copy number
losses was less affected by the downsampling than the identificationof
copy number gains: when considering only 50% of the initial coverage,
~28% of bins with a copy number loss in the fully covered dataset were
not identified as a loss any more (lost losses), compared to ~30% of
gains that were not identified any longer (lost gains) (Fig. 3d, e). As
expected, the normal calls were the least affected (only 2.1% of the
normal bins changed state at 10% downsampling) (Fig. 3c). For the
lowest downsampling point at 10% however, the data became very
sparse and less than 15% of the cells passed quality control.

Considering the fully covered dataset as the ground truth, we
computed precision, recall, and F1 scores for every state (Supple-
mentary Fig. 9b and Supplementary Table S7). Precision, recall and
F1 scorewasalways >0.89 for all downsamplingdatasets for thenormal
state, indicating that overall, the normal state was very robustly
recovered regardless of sequencing depth. For the “gain” state, the
precision and recall when 50% of the reads were retained were ~0.82
and ~0.65, respectively, meaning that there were fewer false positives
than false negatives. False positives here are defined as new “gain” calls
in the downsampled dataset in bins that were in a state “normal” or
“loss” in the full dataset. Meanwhile, false negatives are bins that have
lost their “gain” state in the downsampled dataset, to become either
“normal” or “loss”. Precision was lower for the “loss” state than for the
“gain” state, while recall values remained similar (precision and recall
were ~0.69 and ~0.65, respectively, at 50% coverage).

Overall, these results indicate that the genome-wide copy number
gains and losses remained fairly stable upon downsampling even at

Fig. 3 | Performance evaluation. a Pearson correlation between pseudo-bulk
profiles for all the methods used to call CNAs in the SNU601 dataset. b Percent of
genome which is unchanged upon downsampling. c Percent of normal calls, d loss
calls, and e gain calls which are lost upon downsampling. The number of cells in
each sub-sampling percentage are in Supplementary Table S6. The boxplots

represent with the vertical line in the middle of the plot the median value and the
triangle the mean value. Lower and upper boundaries represent the first and third
quartile, respectively. Largest and smallest observed values are shown (whisker
lines) and the asterisks denote the outliers.
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lower sequencing depths. The observed changes were mainly driven
by “gain” states which were no longer identified in the low coverage
datasets, as well as higher false positive and false negative “loss” calls
stemming from the lower coverage in the subsampled data.

epiAneufinder uncovers CNA tumor heterogeneity in primary
patient samples
We further applied epiAneufinder to two patient samples of basal cell
carcinoma that were profiled using scATAC-seq18. 2040 and 504 cells
were profiled for two patients (named SU006 and SU008), respec-
tively, with an average number of fragments of 58,055 and 63,060. The
genome of both samples was binned into 100,000-bp bins and epiA-
neufinder was applied with standard parameters to identify break-
points and assign copy number gains and losses per cell.

Several shared large gains and losses were identified in the gen-
omes of both patients (Fig. 4a and Supplementary Figs. 10a and 11a).
Patient SU006 presented one group of cellswith a lownumber of copy
number alterations (labeled cluster 1). Another group of cells was
characterized by losses in chromosomes 2 and/or 9, and gains in
chromosomes 13 and 19 (cluster 2). Another cell cluster showed the
opposite, with losses in chromosome 13 and gains in 2, as well as in 6
(cluster 3.1). Finally, there was a cluster of cells characterized by gains
of different lengths in chromosome 13 (cluster 3.2), and in chromo-
some 6 (cluster 3.2.2) or 19 (cluster 3.2.3). Patient SU008 also pre-
sented a nearly disomic cluster of cells (cluster 1), as well as a clone
mainly characterized by different combinations of gains in chromo-
somes 1, 3, and6 (cluster 2), and a clusterwith combinations of a loss in
chromosome 13 and gains in chromosomes 2, 6, and 19 (cluster 3).

Embedding the same cells based on their genome-wide scATAC-
seq peak profile followed by Leiden clustering identified several clus-
ters in both datasets. Differential gene activity levels for marker genes

allowed us to identify cancer cells (KRT5, KRT15, CXCR4, TERT, TP63),
cancer-associated fibroblasts or CAFs (COL1A2, LUM, FAP, VEGFC,
ANGPT1, PDGFRB, IL6, CXCL8, CXCL12) and endothelial cells (CDH5,
EGFL7) (Fig. 4b and Supplementary Figs. 10b–e and 11b–e). We com-
pared the Leiden clusters and the karyotype clusters (Fig. 4c and
Supplementary Figs. 10f–i and 11f–i). For patients SU006 and SU008,
CAFs corresponded mainly to the karyotype cluster 1.2–3.1 and
1.1–1.2–3.1–3.2, respectively, which shared similar CNA profiles
between samples (Fig. 4a andSupplementary Fig. 11a). CAFs canharbor
CNAs in their genome36, and we identified karyotype clusters 3.1
(SU006) and 3.1–3.2 (SU008) as non-disomic. The cancer cells showed
very different characteristics depending on the patient of origin: for
patient SU006 the cancer was highly heterogeneous at the level of
CNAs (Fig. 4c and Supplementary Fig. 10f–i), but the heterogeneitywas
much lower in patient SU008 (Supplementary Fig. 11f–i). The different
CNA clusters present in each tumor could not have been identified
based on the embedding results, also when the cells were embedded
using the same windows used for CNA calling (Supplementary
Figs. 10f–g and 11f–g), emphasizing the relevance of epiAneufinder for
discovering new sources of variation in the data. In both patients, the
mostly diploid karyotype clusters (cluster 1) contained amixture of all
cell types (Fig. 4c and Supplementary Fig. 11h), however all cancer cells
showed upregulation of cancer markers, regardless of their karyotype
(Supplementary Figs. 10e and 11e). These results highlight the power of
epiAneufinder to identify novel sources of heterogeneity in the
population of cells, based on their copy number profiles.

Discussion
Copy number alterations characterize different human disorders, and
have special relevance in cancer4,37. In particular, tumors often present
CNA heterogeneity, with several clones contained in the same tumor

Fig. 4 | Copy number alterations in a primary patient sample. a CNAs for the
SU006 primary sample obtained from scATAC-seq data. Every row is a cell, and
every column is a chromosome. Karyotype clones are indicated in black boxes and

numbered. Cell types are indicated per cell in the side bar. b UMAP embedding of
the same cells showing cancer cells and cancer-associated fibroblasts.
c Correspondence between karyotype clones from (a) and cell types from (b).
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which may evolve differently during cancer progression and respond
differently to treatment1,38. Measuring and quantifying the levels of
CNAheterogeneity in cellular populations is thereforehighly relevant8.
Here, we present a computational method, epiAneufinder, which uses
scATAC-seq data to faithfully recapitulate CNAs from single cells. This
is achieved via segmenting the genome into equally sized bins and
quantifying the number of reads mapping into every bin; to then test
for significant differences in coverage depth along the genome. This is
done by iteratively calculating the Anderson–Darling (AD) distance
between the read distributions on each side of every bin. The highest
AD distances mark the positions of the most likely copy number
alteration breakpoints, based on which the genome is segmented.
Every segment is then assigned to the state “normal”, “gain” or “loss”
based on its mean read coverage. The cells are finally clustered based
on the similarity of their gain and loss profiles, to identify CNA clusters
in the population.

Using several aneuploid cell lines and primary tumor samples, we
showed how the genome-wide CNA profiles recovered from scATAC-
seq data by epiAneufinder compared to the ones obtained from (sc)
WGS, which can be considered a ground truth gold standard for the
quantification of CNAs. EpiAneufinder was able to discover several
clusters of cells in the populations, harboring different CNA profiles
containing both gains and losses. EpiAneufinder was also applied to
multiple scATAC-seq datasets from euploid samples, to show that it
recognizes the absence of CNAs and correctly identifies euploidy.

Using datasets that contain multiple data modalities (scRNA-seq,
scATAC-seq and (sc)WGS), wehave compared epiAneufinder results to
the ones from other algorithms that recover CNAs from scRNA-seq
data (InferCNV, CaSpER and copyKat) or from scATAC-seq data (Copy-
scAT). In all comparisons, epiAneufinder outperformed the alternative
methods, providing a genome-wide CNA profile most similar to the
one obtained from (sc)WGS data. Finally, we also performed a simu-
lation to study the robustness of epiAneufinder copy number gain and
loss calls to different sequencing depths. As expected, for lower
sequencing depths copy number gain identification becomes more
challenging, while more copy number losses are wrongly called.
However, the overall copy number profiles are recovered across the
genome even at 40% of the initial coverage.

Having established the performance of epiAneufinder compared
to (sc)WGS,we thenmoved tomore physiologically relevant scenarios.
Using two primary human samples of basal cell carcinoma that had
been interrogated using scATAC-seq, we were able to identify distinct
CNA profiles present in each tumor. This variation could not be
revealed by embedding and clustering of the same cells based on their
genome-wide scATAC-seq profiles. These results highlight the rele-
vance of studying single-cell heterogeneity based on individual copy
number profiles, which is otherwise hidden in classical single-cell
ATAC-seq analyses.

In summary, epiAneufinder extracts single-cell copy number
alterations from scATAC-seq data alone, or alternatively from single-
cell multi-ome data, without the need to supplement the data with
other data modalities. The method leverages read depth distribution
along the genome to infer a separate karyotype for every individual
cell, allowing to explore the CNA heterogeneity present in a sample at
the single-cell level. EpiAneufinder unlocks a layer of genomic variation
which is otherwise unexplored with traditional scATAC-seq data ana-
lysis, and its application offers the opportunity to explore relevant
sources of heterogeneity which would otherwise remain hidden.

Methods
scATAC-seq, multi-ome, and (sc)WGS datasets pre-processing
The scATAC data for the gastric cell line SNU601 were aligned to the
human genome hg38 using the 10x Genomics Cell RangerAtac
2.0.0 softwarewith default parameters. The BCC samples aswell as the
PBMC and bone marrow samples (all part of the same study) were

downloaded already aligned to the human genome version hg19. The
COLO320HSR multi-ome dataset was obtained already aligned to the
hg19 human genome version. The euploid brain samples and multi-
ome samples32 were aligned to the hg38 human genome version using
the 10x Genomics Cell RangerAtac 2.0.0 software with default para-
meters for the scATAC and 10x Genomics Cell RangerArc 2.0 for the
scATAC multi-ome set. The HCT116 cell line scATAC part of the multi-
ome samples was aligned to the hg38 reference genome using the
default parameters of STAR39 after adapter trimming. Finally, the
pediatric glioblastoma (pGBM) dataset was downloaded aligned to the
hg38 human genome version.

The WGS dataset for the COLO320HSR cell line30 was first trim-
med in order to remove low-quality reads using the Trimmomatic
software40 (parameters PE, -phred33, ILLUMINACLIP:TruSeq3-
PE.fa:2:30:10, LEADING:5, TRAILING:5, SLIDINGWINDOW:4:15, MIN-
LEN:36). Then the reads were aligned to the hg38 human genome
version, using the BWA-MEM aligner41. The aligned reads were further
processed in order to remove duplicates using the MarkDuplicates
software from the Picard toolkit (https://broadinstitute.github.io/
picard/). The WGS data of the pediatric glioblastoma samples
(pGBM)were downloaded already aligned to the hg38 human genome
version.

The scWGS of the SNU601 and the HCT116 cell lines were down-
loaded already aligned to the hg38 genome.

CNA calling of (sc)WGS data and comparison with scATAC
The scWGS of the SNU601 cell line23 andHCT11642 were analyzed using
aneufinder24 with default parameters and window size 100 kb. For the
SNU601 cell line, aneufinder identified a cluster of cells with very high
ploidy, cluster 2, consisting of 134 cells (Supplementary Fig. 3), which
we excluded from the scWGS data for the comparisons between scA-
TAC and scWGS. Since the cell lines were measured in different
laboratories, clonal variation among them can be expected25.

For the processedWGS datasets, aneufinder was used to calculate
GC-normalized reads per bin. These reads were then normalized using
the median value for the dataset and the resulting signal was used as
the ground truth. For the comparison with the epiAneufinder pseudo-
bulk results, the WGS signal was smoothed using a gaussian filter and
the scATAC andWGS signals were standardized (mean=1 and std=0) in
order for the two signal to be placed in the same scale.

For the comparison between the two different data modalities in
each of the two datasets, first we retained the same windows in both
modalities. Afterward, for the single-cell data, a pseudo-bulk CNA
profile was generated by counting the number of gain/loss/normal
cells identified per window, and multiplying each gain by 3, each loss
by 1 and each normal state by 2:

CNVi =
1

Ncells

X
Nn
2 +

X
Nl
1 +

X
Ng
3

� �
, ð3Þ

where Ncells is the total number of cells, Nn is the number of “normal”
cells, Nl is the number of “loss” cells and Ng is the number of “gain”
cells, at bin i. When comparing scATAC-seq to WGS, we standardized
(mean=1 and std=0) the values in bothmodalities to place them on the
same scale. Pearson correlation was calculated between the ATAC and
the DNA profiles, as well as the Mean Square Error (MSE), with:

MSE = 1=N2
bins *

X
i

CNV
DNA
i � CNV

ATAC
i

� �2

calculated between the scATAC and the scWGS profiles, both genome-
wide and per chromosome. Precision, recall and F1 scores were also
calculated for the comparisonbetween theATACand theDNAprofiles.
For the comparisons of single-cell ATACversus single-cellWGSprofiles
(SNU601 and HCT116 cell lines) two thresholds cwere used to convert
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the data into a classification problem: in each dataset separately, bins
with mean copy number above chigh were called gain, bins with mean
copy number below clow were called loss, and the rest were called
normal. For the comparison between single-cell ATAC results and bulk
WGS, first the WGS dataset was converted into a classification (every
binwas called normal, gain or lossgiven twofixed thresholds) and then
two thresholds were used to generate the ATAC classification as
described above. For every value of chigh and clow, the two classifica-
tions were compared to calculate the precision, recall and F1 scores for
every state.

Embedding of primary samples based on scATAC-seq profile
Peaks were called using MACS243 on the aggregated dataset. The
epiScanpy toolkit44 was used for subsequent analysis. First, we filtered
observations to match the barcodes from the epiAneufinder output,
built a peak matrix, as well as a gene activity matrix. Then the peak
matrix was binarized, variability scores (as defined by epiScanpy) were
calculated per feature and the features were selected based on a
variability score threshold of 0.53. Prior to further analysis the peak
matrix was library size normalized and logarithmized. The gene
activity matrix was library normalized. Principal component analysis
was performed and the most informative PCs were selected using the
elbow method (SU006: 6, SU008: 5). Using these top PCs, we com-
puted a neighborhood graph and an embedding using UMAP. The
Leiden community detection algorithmwas used for clustering andwe
identified the top differentially open peaks between clusters which
were used for enrichment analysis with GREAT45 (Supplementary
Fig. 7).Moreover, severalmarker genes for cancer cells, fibroblasts and
endothelial cellswerequantifiedper cluster18,46 (Supplementary Fig. 7).
After evaluating marker gene activity and GO terms, clusters were
annotated. We finally computed the composition of the cell type
clusters with respect to the karyotypes, and vice versa.

Comparison to other single-cell CNA calling methods
We compared epiAneufinder to three methods developed for CNA
calling from scRNA-seq, inferCNV16, CaSpER12, and CopyKat14, and one
method developed for CNA calling from scATAC-seq, Copy-scAT28. For
all methods, the analysis was performed by running the respective
method on default parameters.

The scRNA-seq-based methods were run on cell lines SNU601,
HCT116, and COLO320 replicate 1. All methods required a matched
reference dataset to call CNAs from scRNA-seq data. We used for the
SNU601 cell line control samples from a gastric cancer study33, for
the HCT116 cell line non-tumor tissue samples from colorectal
cancer patients34 and for the COLO320 cell line healthy adult sam-
ples from the gut cell atlas35. For CopyKat and InferCNV, the count
matrices were taken directly from GEO for the analysis. For CaSpER,
the additionally necessary bam files were generated bymapping the
fastq files with 10x Genomics Cell Ranger 7.0.0 in case of the 10x
datasets (SNU601 and COLO320) or with STAR39 2.7.10b in case of
the Smart-seq2 dataset (HCT116). We evaluated the correlation
between the genome-wide results of each RNAmethod compared to
the (sc)WGS results using pseudo-bulk aggregates. For this, the
gene-based CNA results of the RNA methods were mapped to the
genomic bins of the (sc)WGS and epiAneufinder results, averaging
the CNA scores whenmultiple genes fall into the same bin. Only bins
where results were available for all methods were included in the
comparison, i.e., a far smaller part of the genome is evaluated
compared to using only scATAC-seq data.

The scATAC-seq-based method Copy-scAT was run on cell lines
SNU601 and COLO320 replicate 1. By default, Copy-scAT reports
CNAs on chromosome-arm level, which were transferred onto the
epiAneufinder bins. This allowed us to calculate pseudo-bulk-level
correlations across bins between Copy-scAT, epiAneufinder, and
(sc)WGS.

Downsampling of scATAC dataset and analysis
The SNU601 cell line dataset was downsampled with the 10x
Genomics Cell RangerAtac 2.0.0 software18 using the count com-
mand (subsample rate from 0.1 to 0.9). The results of the down-
sampling process can be viewed in Supplementary Table 3.
EpiAneufinder was run for each percentage of the original dataset,
with the same parameters as for the full set. In the filtering step of
the algorithm, both cells and bins that did not pass the epiAneu-
finder quality controls were removed (Supplementary Table 4). To
compare the downsampled datasets with the full dataset, only
common cells and bins were considered. For these, we quantified
the number of bins that did not change their CNA status and the
number of bins that changed their status from gain/loss/normal to a
different one (Fig. 4).

To further explore the robustness of the algorithm, we calculated
“precision”, “recall” and “F1” scores using as a ground truth the CNA
calls from the fully covered dataset (Supplementary Table 5). For the
gain state, we defined as true positive (tp) the bins with gain state in
both the downsampled and the full set, as false positive (fp) the bins
with gain in the downsampled but not in the full set and false negative
(fn) the bins with gain in the full set but not in the downsampled one.
Similarly, we defined true positives, true negatives, and false negatives
for the loss and disomic states. Then the precision, recall, and F1 scores
were calculated as:

Precision=
tp

tp+ f p
ð4Þ

Recall =
tp

tp+ f n
ð5Þ

F1 = 2*
Precision*Recall
Precision+Recall

ð6Þ

Statistics and reproducibility
No statistical methods were used to determine sample size. No data
were excluded from the analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The following publically available datasets analyzed in this study were
downloaded: The scATAC-seq dataset for the SNU601 cell line19 was
downloaded from the Short Read Archive (SRA) accession
“PRJNA674903” and the scWGS data for the SNU601 cell line23 was
downloaded from SRA accession “PRJNA498809”; the scRNA samples
for the SNU601 cell line23 were downloaded fromGEOunder accession
number “GSE142750” and the control samples33 from “GSE150290”
(only the normal stomach) for the scRNA CNV calling. The two pre-
treatment basal cell carcinoma samples, the PBMC and bone marrow
euploid samples18 were obtained from SRS accession “GSE129785”
(accession number GSM3722057 for SU006, GSM3722064 for SU008,
GSM3722015 for PBMC andGSM3722071 for bonemarrow). Themulti-
ome and scATAC brain samples32 were downloaded from the Gene
Expression Omnibus (GEO) database, series number “GSE162170”
(accession numbers for the multi-ome GSM5584685, GSM5584686,
GSM5584687 and for the scATAC GSM4944156, GSM4944157,
GSM4944158 and GSM4944159). The pediatric glioblastoma28 scATAC
data were downloaded from GEO, under accession numbers
“GSE163655” and “GSE163656”, while the matching WGS data31 were
downloaded from the European Genome-Phenome Archive (ENA),
under accession number “EGAD00001005212”. Themulti-ome dataset
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of the COLO320HSR cell line27 were downloaded from the SRA
accession “PRJNA672109”, while the WGS of the same cell line30 were
downloaded from the SRA accession “PRJNA506071” (sample
SRS4831935) and the control scRNA samples35 from the https://www.
gutcellatlas.org/. The scWGS dataset of the HCT11642 was downloaded
from the EuropeanNucleotide Archive (ENA), under accession number
“PRJEB27084” and the multi-ome dataset26 was downloaded from the
SRA with accession number “SRP167062 [https://trace.ncbi.nlm.nih.
gov/Traces/index.html?view=study&acc=SRP136421]”. For the scRNA
CNV identification, as a control sample was used a set of non-cancer
samples34 downloaded fromGEO under the accession “GSE146771”. All
other data supporting the findings of this study are availablewithin the
article and its supplementary files. Any additional requests for infor-
mation can be directed to, and will be fulfilled by, the lead con-
tact. Source data are provided with this paper.

Code availability
epiAneufinder is available through Github (https://github.com/
colomemaria/epiAneufinder, https://doi.org/10.5281/zenodo.8032096).
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