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SUMMARY
Understanding tumor microenvironment (TME) reprogramming in gastric adenocarcinoma (GAC) progres-
sionmay uncover novel therapeutic targets. Here, we performed single-cell profiling of precancerous lesions,
localized and metastatic GACs, identifying alterations in TME cell states and compositions as GAC pro-
gresses. Abundant IgA+ plasma cells exist in the premalignant microenvironment, whereas immunosuppres-
sive myeloid and stromal subsets dominate late-stage GACs. We identified six TME ecotypes (EC1-6). EC1 is
exclusive to blood, while EC4, EC5, and EC2 are highly enriched in uninvolved tissues, premalignant lesions,
and metastases, respectively. EC3 and EC6, two distinct ecotypes in primary GACs, associate with histo-
pathological and genomic characteristics, and survival outcomes. Extensive stromal remodeling occurs in
GAC progression. High SDC2 expression in cancer-associated fibroblasts (CAFs) is linked to aggressive phe-
notypes and poor survival, and SDC2 overexpression in CAFs contributes to tumor growth. Our study pro-
vides a high-resolution GAC TME atlas and underscores potential targets for further investigation.
INTRODUCTION

Gastric adenocarcinoma (GAC) remains one of the most lethal

cancers worldwide due to rapid progression, treatment resis-

tance, and a high metastasis rate.1 There is a need for strategies

to treat GAC in its early or premalignant stages, but our under-

standing of the cellular and molecular mechanisms from early

tumorigenesis to metastases is lacking. The evolution from pre-

cancerous conditions like chronic atrophic gastritis (CAG) and

intestinal metaplasia (IM) to primary GAC and then metastases

is not well understood. Peritoneal carcinomatosis (PC), a com-
mon form of metastases, occurs in �45% of patients and ac-

counts for 60% of all recurrences.2–6 Patients with PC experi-

ence progressive symptoms and a rapid clinical decline, with

most succumbing within 6 months.7 HER2-directed therapy

can produce modest improvements in a limited population8,9

and immune checkpoint blockade, combined with chemo-

therapy, has benefited a subset of patients with advanced or

metastatic GAC.10 Therapy development may greatly benefit

from a detailed exploration of the constantly evolving tumor

microenvironment (TME), which might unveil various immune

suppression mechanisms and potential therapeutic targets. It
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is thus critical to understand the complexities of the TME,11–14

and such a research trajectory would be a departure from the

traditional approaches where enormous efforts have mainly

focused on GAC tumor cells.15–20 However, to date, only a hand-

ful of studies, including ours, have explored the immune and

stromal subtypes of GAC. While these studies provided valuable

insights, they either relied on bulk expression level20–23 or were

constrained by their scope, cohort size, or depth of analysis.24–27

A recent single-cell study characterized GAC TME in 31 pa-

tients,28 but primarily focused on primary GACs, with only 3 met-

astatic patients included. The evolution of various immune and

stromal cell subsets during GAC progression remains poorly

understood.

In this study, we obtained single-cell RNA sequencing

(scRNA-seq) data from precancerous lesions, primary, and met-

astatic tissues, along with uninvolved normal and peripheral

blood samples. We characterized diverse immune and stromal

cell populations in the TME across GAC stages, including their

transcriptional states, cellular compositions, developmental tra-

jectories, cell interactions, as well as cellular ecotypes. This

study provides a detailed view of immune and stromal cell evo-

lution within GAC progression and reveals potential targets for

further investigation, while also providing valuable resources

for future research.

RESULTS

Single-cell TME landscapes in Different Stages of GACs
We obtained scRNA-seq data on immune and stromal cells from

68 samples collected from 43 subjects. These included tissues

and cells from patients at various stages of GAC development,

such as precancerous conditions (CAG and IM), localized

GACs, and metastases in the peritoneal cavity, ovary, and liver

(Figure 1A; Table S1). We collected matched, non-neoplastic tu-

mor-adjacent tissue (NAT), normal gastric tissue (NGT), and pe-

ripheral blood monocyte cells (PBMCs) from a subset of pa-

tients. We also included PBMCs collected from two healthy

donors. After rigorous quality filtering, we retained a total of

77,392 high-quality cells for subsequent analyses. We assessed

and corrected batch effects (STARMethods), and performed un-

supervised clustering analyses, which revealed 10 distinct line-

ages split into 3 major cell compartments including lymphoid

(77%, e.g., T, B, NK, and plasma cells), myeloid (13%, e.g.,

pDCs, mast cells, other myeloid cells), and stromal cells (10%,

e.g., fibroblasts, endothelial, and mesothelial cells) (Figure 1B).

Among all TME cells, 1.8% were at the G2M or S phase with a

high expression of cell proliferation markers.29 Down-sampling

analysis suggested that the clustering results were reproducible

and not influenced by the total number of cells from each tissue

type (Figure S1A). Further subclustering analysis identified a total

of 62 cell transcriptional states (Figures 2, 3, and S2–S4;

Table S2).

To better understand the TME landscapes, we examined the

cellular abundances and compositions of major lineages across

different tissue groups (Figures 1C–1E; S1B). We observed sub-

stantial changes in the proportions of plasma cells andmast cells

over GAC progression with a significant increase in precancer-

ous conditions (CAG and IM), followed by a sharp decline in pri-

mary GACs, while both populations were largely absent in me-
2 Cancer Cell 41, 1–20, August 14, 2023
tastases (Figures 1D and 1E). This observation aligns with the

etiology of CAG/IM, which is suggested to result from chronic in-

flammatory injury of the gastric mucosa due to Helicobacter

pylori (H. pylori) infection.30,31 In contrast, the cellular abundance

ofmyeloid andCD4+ T cells showed a distinct pattern, with ama-

jor shift from premalignant lesions to primary GACs and re-

mained at high levels in metastases (Figures 1C–1E). To further

examine changes in cellular compositions during disease pro-

gression, we analyzed matched NAT-primary GACs (n = 9 pairs)

and primary-metastatic GACs (n = 6 pairs) collected from the

same patients (Figure 1F). Although small in sample size, paired

comparisons showed a significant decrease in the fractions of

plasma cells and an increase in myeloid cells as GAC pro-

gressed. These coincided with the patterns that emerged from

analyses using all samples.

Next, we sought to correlate major clinical and histopatholog-

ical features (Table S1) with TME cell characteristics. The CD8+

T cell fractions among all TME (or immune) cells were signifi-

cantly higher in distal compared to proximal GACs in microsatel-

lite-stable tumors (Figure 1G), consistent with the poor prognosis

of patients with proximal GAC. Although TME cell heterogeneity

based on primary GAC location has not been described, our data

will need validation in a larger cohort. Additionally, we observed

that stromal cell fractions were significantly higher in signet-ring

cell carcinoma (SRC) compared to non-signet ring cell carci-

noma (NOS), and plasma cells tended to be more abundant in

poorly versus moderately differentiated GACs (Figure 1H). While

CD8+ T cell fractions significantly decreased and myeloid cell

fractions increased in primary GACs compared to NAT tissues,

no difference was observed between GACs with and without mi-

crosatellite instability (MSI, Figure S1C), likely due to the small

cohort size.

Changes in T cell states as GAC progresses
Unsupervised clustering analyses of T/NK cells (Figure S2) iden-

tified 7 major cell types including CD4+ T, CD8+ T, NK, double-

negative T (DNT), gamma delta T (gdT), NKT, and proliferating

cells (Figure S2A; Table S2). Further subclustering analyses

revealed 7 CD4+ T cell states and 10 CD8+ T cell states

(Figures 2A, 2B, S2B, and S2C; Table S2). Among CD4+

T cells, we identified naive (TN, C0), regulatory (TREG, C3), follic-

ular helper (TFH, C6), memory (TMEM, C1),
32,33 Th17-like (C5),34

stress response (TSTR, C2), and notably the understudied cyto-

toxic T cells (CTL, C4).35 Among them, the TFH, TREG, Th17-like,

CTL, and TSTR subpopulations were more abundant in tissue

samples, and TREG was specifically enriched in primary GACs

(Figures 2D–2F and S2C–S2E).

Among CD8+ T cells (Figures 2B, 2C, S2B, and S2C; Table S2),

we identified naive (TN, C3), cytotoxic (CTL, C6), memory (TMEM,

C1), central memory (TCM, C9), and stress response (TSTR, C4)

CD8+ T cells.35 We also identified a CD8+ subset displaying

high expression of interferon-stimulated genes (ISGs) (TISG, C7)

and a cluster of transitional effector CD8+ T cells (TTE, C0) that

showed high expression of GZMK,36 MHC class II genes, and

KLRG1, similar to the previously described GZMK+ CD8+

T cells37,38; a plastic exhaustion state (TPEX, C2) and a terminal

exhaustion state (TEX, C8) characterized by the highest expres-

sion of exhaustion related markers39–43 (Figure 2C). In addition,

cells of C5 demonstrated high expression of the semi-variable



Figure 1. Single-Cell Landscape of Immune and Stromal Cells at Different Stages of GACs

(A) Schematic depicting the study design, created with BioRender.com.

(B) UMAP view of major cell lineages.

(C) UMAP plots, as in (B), showing TME cell clusters (upper panels) and cell density (lower panels) across tissue groups.

(D) Compositions of total TME cells (upper panels) and immune cells (lower panels) across tissue groups. Only samples withR200 TME cells and groups withR2

samples were included. T_Pri, primary GAC; T_Met, metastatic GAC; PBMC_P, PBMCs from patients; PBMC_H, PBMCs from healthy donors.

(E) The proportions of four representative cell types across tissue groups. Only samples with R200 TME cells were included.

(F) Paired comparisons of cell proportions of plasma cells andmyeloid cells among paired samples from the same patients (linked by gray lines). Triangle denotes

ovarian metastasis and open circle denotes liver metastasis. p values were calculated by paired two-sided Wilcoxon rank-sum test.

(G) Boxplots comparing the proportions of CD8+ T cells across defined sample groups.

(H) The proportions of representative cell types among all TME (left) or immune cells (right) between defined sample groups.

Box, median +/� interquartile range. Whiskers, minimum and maximum. For (E, G, H), p values were calculated by two-sided Wilcoxon rank-sum test. See also

Figure S1 and Table S1.

ll
Article

Please cite this article in press as: Wang et al., Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression,
Cancer Cell (2023), https://doi.org/10.1016/j.ccell.2023.06.005
T cell receptor (TCR) gene TRAV1-2, SLC4A10, and KLRB1,

matching the phenotypes of CD8+ mucosal-associated invariant

T (MAIT) cells.44 Among these CD8+ states, the TSTR, TPEX, and

TEX subsets were nearly exclusive to tissues or PC samples

and rarely seen in PBMCs. The TMEM, TISG, and CTL subpopula-
tions were also highly abundant in tissues or PC samples

(Figures 2D and S2C–S2E). The C8 TEX and C6 CTL, although

small subsets, showed high enrichment in primary GACs. The

C0 TTE and C2 TPEX subsets gradually increased as GACs pro-

gressed and were most abundant in metastatic GACs, which
Cancer Cell 41, 1–20, August 14, 2023 3
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Figure 2. Characterization of T cell States

(A) UMAP view of 7 CD4+ T cell clusters.

(B) UMAP view of 10 CD8+ T cell clusters.

(C) Expression levels and frequencies of selected markers across CD8+ T cell clusters.

(D) Heatmap showing tissue prevalence estimated by the ratio of observed to expected cell numbers with the chi-square test (Ro/e) for each CD4+ (upper panels)

and CD8+ (lower panels) T cell subsets. Top bar plot showing cell composition and right bar plot showing tissue composition.

(E) The cellular proportions of representative CD4+/CD8+ T cell subsets across tissue groups for this study. Only samples with R50 total CD4+ or CD8+ T cells

were included.

(F) Same as in (E) showing the single-cell cohort from Kumar et al.

(G) Monocle trajectory inference of CD8+ T cells, colored by their corresponding pseudotime.

(legend continued on next page)
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was corroborated using scRNA-seq data from an independent

cohort28 (Figures 2D–2F).

Next, we applied Monocle 345–47 to infer the differentiation tra-

jectory of CD8+ T cells (Figures 2G–2J). This analysis showed a

trajectory that started with CD8+ TN, which then segregated

into two major branches (Figures 2B and 2G). Branch 1 con-

nected with C0 TTE, followed by C6 CTL, C1 TMEM, and ended

in C4 TSTR. Branch 2 passed through C0 TTE, followed by C2

TPEX, and reached C8 TEX. Intriguingly, CD8
+ T cells from NAT

samples were mainly aligned along branch 1, while CD8+

T cells from metastatic GACs were mostly aligned along branch

2, and CD8+ T cells from the primary GACs spread on both

branches (Figure 2H), indicating diverse CD8+ T cell differentia-

tion trajectories that were possibly shaped by local contexts.

We further examined the expression dynamics of immune regu-

latory genes along the pseudotime axis. Expression of transcrip-

tion factors associated with T cell exhaustion (e.g., BATF, TOX)

gradually increased along the pseudotime axis during the transi-

tion from CD8+ TTE to TPEX mainly in the primary GACs, and

expression of inhibitory immune checkpoint genes (e.g.,

CTLA4, HAVCR2, and LAYN) upregulated subsequently and

peaked in the primary GACs (Figures 2I and 2J). Expression dy-

namics of ENTPD1 (CD39), TNFRSF9 (4-1BB), and CXCL13

showed a similar pattern, suggesting that these exhausted

CD8+ T cells were likely TME-specific.

Immunosuppressive myeloid subsets dominated in
tumors at advanced stages
We then characterized the heterogeneous myeloid cell subsets.

In addition to pDCs and mast cells (Figure 1B), we identified 11

other myeloid cell states, including 3 clusters for monocytes, 4

clusters for tumor-associated macrophages (TAMs), and 4 clus-

ters for DCs (Figures 3A and S3A; Table S2). Overall, TAM and

DC cluster cells showed high expression of phagocytosis gene

signature (Figures 3B, 3C, and S3B). TAM clusters highly ex-

pressed M2-like, angiogenesis-related gene signatures, and

inhibitory immune checkpoint genes (Figures 3B, 3C, S3B, and

S3C), suggesting an immunosuppressive phenotype. TAMs

and DCs were predominantly present in tissue and PC samples,

while monocytes mainly originated from PBMCs (Figures 3D,

S3D, and S3E).

Within the TAM clusters, TAM_C0, which displayed the most

substantial expression of M2-like gene signature and immuno-

suppressive genes (e.g., HAVCR2, SIRPA, and LAIR1), was

abundant in precancerous lesions, primary, and metastatic

GACs (Figures 3B, 3C, S3C, and S3D). TAM_C3, characterized

by the highest expression of IL1B,MMP19, CCL20, and VEGFA,

was most prevalent in primary GACs (Figures 3B, 3D, and S3C–

S3E). TAM_C7, specifically enriched in metastatic GACs, ex-

hibited the highest expression of genes involved in angiogen-

esis48 and FN1, which encodes fibronectin, a core component

of the tumor matrisome that sustains proliferative signaling and

promotes metastatic spread of malignant cells,49 alongside

high expression of immunosuppressive genes such as SPP1,50
(H) Same as in (G) but displayed by tissue origins.

(I) Cell density plots for CD8+ T cell subsets along the pseudotime.

(J) Expression dynamics of representative genes in different tissues (color coded

Wallis rank-sum test. Box, median +/� interquartile range. Whiskers, minimum a
LAIR1, SIRPA, HAVCR2, TGFB1, and MARCO (Figures 3B–3D,

S3B, and S3E).

In addition, we identified four DC subsets, including the clas-

sical CLEC9A+ cDC1 (C14), CD1C+ cDC2 (C5), MKI67+ prolifer-

ating DC (C9), and a LAMP3+ mature cDC subset (C13)48,51

(Figures 3A and S3A; Table S2). Among them, cDC1, exhibiting

the highest expression of the antigen-presenting cell (APC)

gene signature and the lowest expression of M2-like gene signa-

ture, was dominant in NAT and IM but less abundant in primary

and metastatic GACs (Figures 3B, 3C, S3B, and S3D). Similarly,

proliferating DCs were highly enriched in the precancerous le-

sions but their fractions decreased in primary and metastatic

GACs (Figures S3D and S3E). Conversely, LAMP3+ DCs, dis-

playing the highest expression of CD274 (PD-L1), IDO1, and

TIGIT signaling genes (e.g., NECTIN2 and PVR), were enriched

in IM and most abundant in primary GACs (Figures S3C–S3E).

When inferring the likely origins of these myeloid cells in PC (Fig-

ure 3E), we found that LAMP3+ DCs and M2-like TAM_C0 were

more closely related to myeloid cells from primary GACs, while

the three monocyte clusters were transcriptomically similar to

myeloid cells from PBMCs. Together, myeloid cells were abun-

dant in the TME with diverse lineages, transcriptional states,

and altered cell compositions, transitioning from immune-stimu-

lating to immunosuppressive states as GAC progressed.

Highly enriched IgA+ plasma cells in precancerous
lesions
To better delineate the tumor-infiltrating B and plasma cells, we

performed subclustering analysis and identified B cell clusters

(C2, C3), IgG+ (C4), and IgA+ plasma cells (C0, C1) (Figure 3F,

Table S2). C3 B cells were CD20+CD38�CD27-IgD+ with high-

expression levels of IRF4 and markers associated with B cell

activation such as CD69, CD83,52 and DUSP2,53 thus aligning

with the phenotype of antigen-activated B cells. Both C2 and

C3 displayed TGFB1 expression, a marker of regulatory B cells

(Bregs).54 However, we could not detect other Breg-related

markers such as IL10,CD274, FASL, IL35, andHAVCR1 (TIM-1).

The absolute abundance of B and plasma cells varied across

tissues and the relative B/plasma cell proportions also showed

significant differences, with plasma cells of various isotypes pre-

sent in specific tissues. In CAG/IM, B cells were nearly elimi-

nated, while the relative proportions of IgA+ plasma cells were

the highest (Figures 3G and S4A). IgG+ plasma cells were

most prevalent in primary GACs but had low frequencies in other

tissues. The proportions of B cell subsets were high in both met-

astatic GACs and PBMCs (Figures 3G and S4A). In our study, we

had access to the H. pylori status for 30 samples from 22 pa-

tients. We compared the proportions of plasma cells between

H. pylori-negative and positive samples and observed a trend

of increased IgA+ plasma cell in H. pylori-positive (versus H. py-

lori-negative) samples, both in CAG/IM (median: 50.5% vs.

25.8%) and primary GACs (median: 11.5% vs. 4.7%) (Figure 3H).

However, these differences did not reach statistical significance,

likely due to the small cohort size.
), along the pseudotime. (E, F) p values were calculated by one-way Kruskal-

nd maximum. See also Figure S2 and Table S2.
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Stromal cell remodeling in GAC progression
We identified 4 major stromal cell lineages and 13 clusters,

comprising 5 fibroblast, 4 endothelial cell, 2 vascular smooth

muscle cell (VSMCs), and 2 mesothelial cell clusters (Figures 3I

and S4B; Table S2). These fibroblasts displayed distinct tissue

distribution (Figure 3J). To better characterize the heteroge-

neous states of cancer-associated fibroblasts (CAFs), we

quantified the expression of gene signatures of inflammatory

CAF (iCAF) and myofibroblastic CAF (myCAF).55 Fibroblast C6

showed high IFNg-iCAF signature expression, while clusters

C2 and C9 displayed dominant myCAF signatures (Figure S4C).

C2/C9 cells also highly expressed INHBA (Figure S4E), linked

with CAFs and poor prognosis.28 C9 fibroblasts were enriched

in IM, and C2 fibroblasts were abundant in primary GACs in

both this study and the scRNA-seq cohort from Kumar et al.28

(Figures 3J and S4D). Notably, a combined C2/C9 gene signa-

ture was associated with unfavorable survival outcomes in 4

large cohorts of localized GACs, encompassing over 1,300 pa-

tients (Figure S4F), with expression levels strongly linked to

the risk of developing local recurrences and metastases

(Figure S4G).

Endothelial cluster C7, expressing ESM1 and VWF that regu-

late angiogenesis,56 and C13, expressing RGS5, abundant in

endothelial cells of tumor vessels,57,58 were enriched in primary

GACs (Figures 3J, S4B, and S4H). VSCM C14 was prevalent in

IM, and both mesothelial clusters, C12 and C8, were highly

abundant in metastatic GACs corresponding to PC (Figure 3J).

Additionally, we found that endothelial C7 population frequency

negatively correlated with proportions of CD4/CD8/NK cell sub-

sets, and positively correlated with proportions of other stromal,

TAMs, and plasma cell subsets (Figure 3K). Further validation in

large cohorts and mechanistic studies are necessary to better

understand the complex interplay between stromal cells and

T/NK cell infiltration in the TME.

We next examined the expression of 67 functionally character-

ized inhibitory immune checkpoint genes (Table S3)59,60 and

found 10 genes expressed inR20% of cells in at least 1 stromal

cell subset (Figure S4I). Among them, NECTIN2,CD276 (B7-H3),

CD200, and SIRPA were expressed by stromal cells, especially
Figure 3. Characterization of Myeloid, B, and stromal cell populations

(A) UMAP view of myeloid cell clusters.

(B) Expression levels and frequencies of genes composing the M1-like, M2-like,

cell clusters. Only genes (expressed in R20% cells in at least one of the myeloid

(C) Expression levels of 4 gene signatures across myeloid cell clusters.

(D) The proportions of 2 myeloid cell subsets across tissue groups. Only samples

by one-way Kruskal-Wallis rank-sum test and p values between T_pri and T_Me

(E) The odds ratios and p values based on transcriptome similarity with their corres

of myeloid cells in PC ascites samples. p values were calculated by two-sided F

(F) UMAP view of B and plasma cell clusters.

(G) Heatmap showing tissue prevalence estimated by Ro/e score for each B/pla

showing tissue compositions.

(H) The cellular proportions of IgA+ plasma cells across tissue groups with avai

Number of samples (from left to right): 3, 7, 4, 3, respectively.

(I) UMAP view of stromal cell clusters.

(J) Tissue prevalence estimated by Ro/e score for each stromal cell subset.

(K) Correlation coefficient between cell proportions of Endo_C7 and other TME c

Only statistically significant (p < 0.05) positive (red) and negative (green) corre

Spearman’s correlation test.

(L) Expression of 4 representative immune checkpoint genes across tissue group

Box, median +/� interquartile range. Whiskers, minimum and maximum. See als
endothelial andmesothelial subsets, with the highest expression

in metastatic GACs (Figure 3L). Together, our results highlight

considerable stromal changes along GAC progression, poten-

tially driving tumor angiogenesis and immunosuppressive

signaling pathways. Upregulated inhibitory immune checkpoint

genes could be potential therapeutic targets, requiring further

validation studies.

Phenotypic relationships and population abundance of
62 TME cell subsets
After individually exploring the distinct cell types/states for each

major TME compartment (Figures 2, 3, and S2–S34), we next

investigated the relative abundance and phenotypic relation-

ships of these 62 TME cell subsets (STAR Methods). We quanti-

fied their transcriptomic similarity by conducting unsupervised

hierarchical clustering, which revealed two primary groups

(Figure 4A, top): one mainly composed of lymphoid cells, which

was further divided into 5 branches dominated by proliferating,

B/plasma, NK/NKT, CD8+ T, and CD4+ T cells; the other

composed of myeloid and stromal cells in two distinct branches.

Overall, different cell populations of the same major lineages

clustered together with a few exceptions. Within the lymphoid

compartment cluster, as expected, plasmacytoid dendritic cells

(pDCs) that resemble plasma cells61 grouped with B/plasma

cells; CD8+ TN cells weremore similar to CD4+ TN cells than other

CD8+ subsets; and proliferating cells, regardless of their origins,

clustered together, possibly due to their unique expression of

cell proliferative markers. Mast cells and DNT cells clustered

together within the lymphoid branch, possibly due to their

expression of inflammation-related genes. VSMCs were more

closely related to fibroblasts, likely due to their joint role in

angiogenesis.62

We then compared global trends in cluster enrichment (Fig-

ure 4A, middle). As expected, stromal, plasma, and mast cell

subsets were mainly in tissue samples, highly abundant in

CAG/IM, while monocytes clusters were enriched in PBMCs

and PC samples. DC and TAM clusters, showing high inflamma-

tory and cytokine signature expression, tended to be enriched in

IM, primary, and metastatic GACs. Primary GACs showed
angiogenesis, phagocytosis signatures, and checkpoint genes across myeloid

cell subsets) are shown.

withR50 cells were included. p values across different tissues were calculated

t were calculated by two-sided Wilcoxon rank-sum test.

ponding cell subsets from primary GACs or PBMCs, indicating the likely origins

isher’s exact test.

sma cell subsets. Top bar plots showing cell compositions and right bar plot

lable H. pylori status. Only samples with R50 total TME cells were included.

ell subsets.

lations are shown. Correlation coefficient and p values were calculated by

s.

o Figures S3 and S4 and Tables S2 and S3.
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enrichment of proliferative lymphoid cells, CD4+ TREG, CD4/

CD8+ TSTR, and CD8+ TEX, while metastatic GACs had increased

levels of innate immune cells (e.g., NK/NKT, MAIT, gdT), CD4+/

CD8+ TN and CTL, demonstrating distinct TME landscapes be-

tween primary and metastatic niches. We next examined

whether the presence of a particular cell subset in the TME of pri-

mary GACs was associated with prognosis by deconvoluting the

bulk expression data using our single-cell-derived gene signa-

tures. We found the abundance of stromal cell subsets to be

the most strongly associated with shorter patient survival (Fig-

ure 4A, bottom).

We also examined sample-level correlation between the pop-

ulation frequencies of these 62 subpopulations (Figure 4B). We

observed negative correlations between fibroblasts, endothelial

cells, TAMs, and plasma cells with CD4+/CD8+ T, NK, and B cell

subsets, and a positive correlation between stromal and plasma

subsets. Consistent with this, previous studies have shown that

stromal cells recruit plasma cells in other cancer types63–65 and

influence the ability of TILs to infiltrate tumor beds.66–68 Collec-

tively, our results revealed evolving TME landscapes as GAC

progressed and suggested potential interactions between tu-

mor-associated stromal and immune cells.

Ecotypes of TME cells and their clinical significance
To understand how these phenotypically diverse immune and

stromal cell subsets form cohesive cellular ‘‘ecosystems’’ in

the TME and how these ecosystems change across GAC pro-

gression, we quantified the cellular compositions of 58 samples

(R150 cells). Using unsupervised clustering analysis based on

relative cellular abundance (Tables S4 and S5), we inferred

cellular relationships and co-association patterns (STAR

Methods). Our analysis identified 3 distinct cellular ecosystems

(i.e., EC1/2, EC3/4, and EC5/6) and 6 ecotypes (hereafter

referred to as EC1-6) (Figures 5A and 5B), which were

confirmed through independent approaches, including the Jac-

card similarity index of cell population co-existence (Figure 5B;

Table S6).

Each ecosystem/ecotype was dominated by specific cell

types/states, showing unique cellular compositions and co-

habitation patterns. This supports the notion that the discovered

ecosystems/ecotypes can collectively capture the landscape of

TME transcriptional heterogeneity across these tissue types.

Intriguingly, the ecotypes appeared to be context-dependent

(Figures 5A–5C), with EC1 comprising all PBMC samples and

dominated by monocytes, NK cells, and CD4+/CD8+ TN cells,

EC2 enriched in metastatic GACs, EC4 prevalent in NAT, EC5

most common in premalignant lesions, and primary GACs domi-

nated by EC3 and EC6 with drastically different cellular compo-

sitions (Figures 5A, 5B, and 5D). EC3 was mainly composed of

CD4+ and CD8+ T cells, NK/MAIT, and DCs, whereas EC6 was

comprised mostly of stromal cell subsets, proliferative B cells,

and IgG+ plasma cells.
Figure 4. Phenotypic relationships and population abundance of 62 TM

(A) Unsupervised hierarchical clustering of 62 TME cell subsets. The heatmap sho

tissue prevalence estimated by Ro/e score (middle panels), and their prognostic sig

Cox regression analysis.

(B) Correlation among 62 TME cell subsets in 58 samples based on their relati

Spearman correlation test with Benjamini-Hochberg correction for multiple comp
We then examined the clinical relevance of EC3 and EC6 in pri-

mary GACs (n = 13). No statistically significant difference was

observed, likely due to the small sample size. We then employed

a deconvolution approach (STARMethods) to infer the presence

of EC3-like and EC6-like ecotypes in three large-scale primary

GAC cohorts with available gene expression and clinical

data.69–71 Both EC3-like and EC6-like ecotypes were present

in all cohorts (Figures 5E, 5F, and S5A). Notably, the EC6-like

gene signature outperformed the previously described fibrotic

microenvironment subtype (subtype F) signature72 in identifying

stromal-enriched tumors (Figures S5B and S5C). Moreover,

analysis of the inferred ecotypes revealed significant correlations

with previously defined histology, genomics, molecular sub-

types, and clinical outcomes (Figures 5E, 5F, and S5B). Consis-

tently across all three cohorts, the EC3-like ecotype was highly

enriched in intestinal-type GACs, whereas the EC6-like ecotype

was dominant in the aggressive diffuse-type GACs (Figures 5E,

5F, and S5B). In the TCGA primary GAC cohort (Figure 5E), the

EC3-like ecotype was prevalent in Epstein-Barr virus (EBV)-pos-

itive tumors (two-sided Fisher’s exact test, p = 0.038), and the

genomically stable (GS) tumors were primarily EC6-like ecotype

(two-sided Fisher’s exact test, p = 1.1e-11). Patients with tumors

harboring the EC6-like ecotype showed significantly shorter

survival when compared to those with the EC3-like ecotype

(p = 0.017). The most frequent chromosomal instability (CIN)

subtype was composed of both EC3-like and EC6-like ecotypes

at a similar frequency, but interestingly, survival analysis within

tumors of the CIN subtype demonstrated that patients with

EC6-like ecotype had shorter overall survival than those with

EC3-like ecotype (p = 0.0062). Within the CIN group, compared

to the EC3 subtype, tumors of the EC6 subtype exhibited a

significantly increased stromal cell fraction, elevated TGF-b

response score, a lower fraction of genome altered, and

decreased proliferation score (Figure S5D). Moreover, survival

analysis within the diffuse-subtype GACs showed that the sur-

vival of patients with EC6-like ecotype appeared to be worse

than those with EC3-like ecotype (p = 0.077).

Consistently, in the other primary GACcohort69 (Figure 5F), the

EC3-like ecotype was significantly associated with the prolifera-

tive molecular subtype (p = 2.6e-15), and the EC6-like ecotype

was enriched in the invasive molecular subtype (p = 7.6e-21)

defined by the original study. Again, patients with the EC6-like

ecotype had significantly shorter survival when compared to

those with the EC3-like ecotype (p = 0.015); and the significance

was retained with stratified analysis performed within GACs of

the metabolic subtype. In the third primary GAC cohort70 (Fig-

ure S5B), the EC6-like ecotype was significantly enriched in

the MSS/TP53- tumors (p = 0.04) and tumors with epithelial-to-

mesenchymal transition (EMT) features (p = 1.2e-4). Overall,

we did not observe a significant correlation between the eco-

types and tumor stage in these cohorts (Figure S5E). Inhibitory

immune checkpoints such as PDCD1LG2 (PD-L2), LILRB2,
E cell subpopulations

ws the expression of inflammation and cytokine gene signatures (top panels),

nificance in 4 primary GAC cohorts (bottom panels) as evaluated by univariable

ve population abundance among all TME cells. p values were calculated by

arisons.
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HAVCR2, and LAIR1 had higher expression levels in EC6-like tu-

mors compared to EC3-like tumors in all three cohorts (Fig-

ure S5F). In conclusion, the non-genetic, cellular ecotype-based

classification of primary GACs correlatedwith their genomic, his-

topathological, and clinical features.

SDC2 upregulation in tumor stroma associates with
aggressive phenotype and poor survival
To identify potential targets in the immune and stromal TME

components, we performed integrative analysis on a curated

list of 157 genes, including immune checkpoint genes and other

known/emerging viable immunomodulatory targets (Table S3).

We screened for genes expressed in at least 20% of cells in

one or more TME cell subsets, identifying 50 genes (Figure S6).

Among them, 45 genes were highly expressed in tumor versus

NAT samples, and 21 genes showed a significant association

with survival outcomes in public GAC cohorts (Figure 6A).

Among them, SDC2 (Syndecan 2), ITGB1, and TGFB1 showed

a significant association with survival in R3 GAC cohorts.

SDC2 and ITGB1 exhibited the highest expression in cancer-

associated stromal cells, whereas TGFB1 was most abundant

in myeloid cells (Figure 6A). Dysregulated TGF-b signaling has

been extensively studied in GAC and other cancer types. How-

ever, little is known about SDC2 or ITGB1 overexpression in stro-

mal cells in GAC, and their roles in oncoprogression of GAC

remain elusive.

Subsequent analysis of 3 scRNA-seq datasets, including

both cancer and TME cells, confirmed SDC2 enrichment in

stromal cells (Figure 6B). Consistently across all 3 datasets,

SDC2 showed the highest expression in stromal cell popula-

tions, but its expression in epithelial or immune cells was low

or undetectable. Within the fibroblast subsets, SDC2 was highly

expressed in clusters C9 and C2, both displaying the highest

expression of myCAF signatures (Figures 6C and S7A). This

observation was further validated in an independent scRNA-

seq cohort28 (Figure 6D). Consistently, the fractions of SDC2+

cells among fibroblasts showed a negative correlation with

normal-like fibroblast signatures and a strong positive correla-

tion with myCAF signatures (Figure 6E). In addition, SDC2

expression in stromal cells of premalignant and malignant tis-

sues were significantly higher than that of NAT samples

(Figures 6F and 6G), supporting our discovery that SDC2 was

predominantly expressed in CAFs. ITGB1 was highly abundant

in all stromal cell populations across 3 datasets, and it was also

expressed at lower levels in immune or tumor cells (Data not

shown). However, unlike SDC2, NAT stromal cells also showed

considerable levels of ITGB1 expression (Figure S7B), leading

us to focus on SDC2.
Figure 5. Ecotypes of TME cells and their clinical relevance

(A) Six ecotypes (EC1-6) inferred based on TME cell compositions in the 58 sam

(B) Network plots based on the Jaccard similarity index of cell population co-exi

(C) Representative histology images for various tissue groups.

(D) The composition of detected ecotypes in primary GACs.

(E) Deconvolution analysis of TCGA STAD cohort. Heatmap on the left shows the

depict relationships between the two cellular ecotypes and Lauren’s histology typ

on the right display survival correlations of the two cellular ecotypes in all GACs,

(F) The same as in (E), showing deconvolution analyses of another primary GAC

See also Figure S5 and Tables S4, S5, and S6.
To validate SDC2 expression at the protein level, we next per-

formed double-immunofluorescence staining of primary GAC

tissues, which demonstrated intense SDC2 positivity in stromal

cells (vimentin+) (Figure 6H). High SDC2 protein expression in

GAC stromal cells was also confirmed by the SDC2 IHC staining

data from the Human Protein Atlas (Figure S7C). In the TCGA pri-

mary GAC cohort, SDC2 expression was significantly higher in

EC6-like compared to EC3-like GACs (Figure 6I). Notably,

SDC2 expression was significantly higher in diffuse-type

GACs, known for poor prognosis, compared to intestinal-type

GACs (Figure 6J). We also validated this observation using

scRNA-seq data from Kumar et al.28 (Figure 6K). Together,

SDC2 expression in fibroblasts correlated with the aggressive

phenotype of the disease.

We further evaluated the clinical significance of SDC2 upregu-

lation in GAC cohorts. SDC2 upregulation correlated with signif-

icantly shorter survival in all four primaryGACcohorts (Figure 7A).

To validate its clinical relevance at the protein level, we conduct-

ed additional analyses in an independent large-scale primary

GAC cohort consisting of 359 patients. Tissue microarrays

(TMAs) were used to analyze SDC2 protein expression (Fig-

ure 7B). SDC2 was mainly localized in the cytoplasm and mem-

brane of stromal and tumor cells (Figure S7D). SDC2 expression

was detected in 270 (75.2%) of 359 GAC tumor tissues, which

was significantly higher than in normal stomach tissues

(30.9%, two-sided Fisher’s exact test, p < 2.2e-16) (Figure 7C,

left). SDC2 expression was significantly correlated with tumor

stage. Compared to early stage GACs (stage I/II, 45/84,

53.6%), the frequency of SDC2 positivity significantly increased

in GACs at advanced stages (stage III/IV, 186/261, 71.3%) (two-

sided Fisher’s exact test, p = 0.0034) (Figure 7C, right). Consis-

tently, high SDC2 expression in GAC tissues was associated

with significantly shorter survival (p = 0.01) (Figure 7D), and the

prognostic significance was retained after adjusting for other po-

tential covariates (e.g., tumor stage) in a multivariable Cox

regression model (Figure 7E). In conclusion, SDC2 expression

was upregulated at both gene and protein levels in tumor stroma,

and its upregulation was significantly associated with tumor pro-

gression and poor survival, independent of other clinical or histo-

pathological variables.

Finally, to assess SDC2 expression in stromal cells across

various cancer types, we examined 7 additional scRNA-seq co-

horts spanning 5 cancer types: pancreatic,73,74 colorectal,75

bladder, breast cancer,76,77 and clear cell renal cell carcinoma

(ccRCC). Our analysis consistently revealed that SDC2 expres-

sion was predominantly elevated in stromal cell subsets (Fig-

ure S7E), with negligible or undetectable levels in epithelial and

immune cells. Consistent with our observations in GACs, in 3
ples.

stence.

identification of EC3-like and EC6-like ecotypes. The alluvial plots in the middle

es, as well as previously defined molecular subtypes. The Kaplan–Meier plots

CIN subtype GACs, and diffuse type GACs, respectively.

cohort. p values were calculated by log-rank test.
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Figure 6. SDC2 Upregulation in Tumor Stromal Cells

(A) Bubble plots (upper panel) show expression levels and proportions of immunomodulatory genes across TME cell clusters. The heatmap (lower panel) depict

their prognostic significance in 4 primary GAC cohorts using univariable Cox regression model.

(B) SDC2 expression levels across different cell subsets in 3 independent single-cell cohorts.

(C and D) SDC2 expression levels across fibroblast subsets in this study (C) and the Kumar et al. cohort (D).

(E) Correlations between the proportions of SDC2+ fibroblasts and expression levels of CAF signature scores. p values were calculated by Spearman correla-

tion tests.

(legend continued on next page)
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datasets with matched normal tissues,73,75,77 we observed

significantly higher SDC2 expression levels in stromal cells

from tumor samples compared to adjacent normal tissues. In

breast cancer patients,77 SDC2 expression in fibroblasts ex-

hibited a progressive increase from precancerous lesions to pri-

mary tumors (Figure S7E). In summary, SDC2 expression is

consistently elevated in stromal cells across various cancer

types, indicating its potential role in tumor progression.

SDC2 upregulation in CAFs contributes to tumor growth
in vivo in xenograft models
Lastly, we sought to assess the functional effect of SDC2

expression in CAFs on tumor growth in vivo. We first estab-

lished an SDC2-overexpressing CAF cell line (GF0818-SDC2)

by transfecting patient-derived CAFs (GF0818) with the

plasmid pcDNA3.1-SDC2. We successfully validated SDC2

overexpression in GF0818-SDC2 cells using q-PCR. A signifi-

cant increase was observed in SDC2 expression in GF0818-

SDC2 cells compared to the corresponding vector control

(GF0818-EV) (Figure S7F). Next, we examined the in vivo

tumorigenesis of GF0818-SDC2 in SCID mouse xenograft

models by subcutaneously co-injecting PC patient-derived

cancer cells (GA0518)78 mixed with GF0818-SDC2 or

GF0818-EV, respectively (STAR Methods). As shown in

Figures 7F–7H, the growth rate of tumors co-implanted with

patient-derived tumor cells with GF0818-SDC2 was signifi-

cantly higher than those co-implanted with GA0518 and

GF0818-EV, as evidenced by bioluminescence imaging. We

resected the subcutaneous tumors at the endpoint (Figure 7I)

and measured their weights. The final weights of the tumors

also demonstrated that tumors co-injected with GF0818-

SDC2 were significantly heavier than those with GF0818-EV

(Figure 7J). These in vivo data suggest that upregulation of

SDC2 expression in CAFs promotes tumor growth under

immunodeficient conditions.

DISCUSSION

GAC has long been considered a disease characterized by

genomic/epigenetic alterations and chromosomal instability.71

However, the role of immune and stromal cells within the TME

is now increasingly recognized.21,22,25,26,28 In this study, we con-

ducted a comprehensive characterization of the complex TME

landscapes along the evolutionary trajectory of GAC, demon-

strating the TME features and properties associated with

GAC’s phenotypic progression. We discovered unique TME

ecotypes linked to GAC progression and outcomes, and pin-

pointed potential biomarkers and therapeutic targets. Our find-

ings were orthogonally validated using both bulk RNA-seq and

scRNA-seq datasets and functionally confirmed in mouse
(F) Expression of SDC2 in fibroblasts and VSMCs across tissue groups in this st

(G) SDC2 expression in fibroblasts of normal and primary tumor samples in the s

(H) Dual immunofluorescent staining of SDC2 and Vimentin. Representative imag

(I) SDC2 expression in EC3-like (n = 232) and EC6-like (n = 177) groups identifie

maximum.

(J and K) Increased SDC2 expression in diffuse (vs. intestinal) type of GAC tissue

(L) SDC2 expression in fibroblasts between matched peritoneal metastases (imp

(C-D, G, I, J-K) p values were calculated by two-sided Wilcoxon rank-sum test.
models. Our data can serve as a valuable resource to spur future

novel discoveries.

A recent single-cell study described GAC premalignant le-

sions, but the analysis was limited to epithelial cells within a small

cohort.79 In our study, we found a striking prevalence of primarily

IgA+ plasma cells in CAG/IM, with a trend toward increased pres-

ence in H. pylori-positive premalignant lesions. These observa-

tions align well with existing knowledge. Firstly,H. pylori infection

stimulates strong H. pylori-specific IgA antibody production in

gastric mucosa.80,81 Documented evidence shows that IgA

competes with IgG for bacteria binding,82 facilitating bacterial

adherence to evade immune recognition.83,84 Additionally, IgA

actively contributes to the initiation of inflammation.54,85,86 Sec-

ondly, IgA+ plasma cells have been reported to exert inhibitory

effects on T cells, DCs, and other immune subsets through FcaRI

receptor activation, induction of IL-10 production, and regulation

of proinflammatory cytokines,54 fostering a ‘‘permissive’’ micro-

environment promoting malignant transformation. Consistent

with this, we found that IgA+ plasma cells express high levels

of LGALS3 (Galectin-3) and VISTA, known for their contributions

to immunosuppression.87,88 We also showed that the propor-

tions of IgA+ plasma cells negatively correlated with CD4+/

CD8+ T cells, pDCs, and NK cells, while positively correlated

stromal cells. Moreover, our cell ecotype analysis discovered

EC5, a unique ecotype primarily observed in tissues composed

of IgA+ plasma cells and stromal cells, suggesting their co-exis-

tence and interaction in premalignant TME. Collectively, our ob-

servations suggest an immunopathological role for IgA+ plasma

cells in early tumorigenesis. Future studies should consider inte-

grating B cell receptor (BCR) sequencing to enhance our under-

standing of the BCR repertoire and plasma cell clonal expansion.

Investigating cytokines known to induce IgA class switching and

provide survival signal for IgA+ plasma cells, along with con-

ducting functional studies, is crucial for gaining a mechanistic

understanding of the factors influencing plasma cell differentia-

tion and antibody production in the premalignant microenviron-

ment and GAC TME.

This study highlights extensive TME remodeling during GAC

progression. We observed increased proportions of immuno-

suppressive CD4+ Tregs, LAMP3+ cDCs,48 TGFB1+ B cells,54

CD8+ TEX cells, as well as pro-angiogenic TAMs,48 myCAFs,55

and endothelial cells. These findings suggest progressive

immunosuppression and tumor stroma remodeling favoring

angiogenesis and tumor cell adaptations. Moreover, we demon-

strated that the TME in patients with PC represents a distinct

microenvironment characterized by a higher proportion (vs. pri-

mary GACs) of naive CD4+/CD8+ T, CD8+ TPEX, NK/NKT cells,

monocytes, DCs, and TAMs. This is accompanied by diminished

fractions of CD4+ TFH, Th17-like cells, B/plasma cells, and

decreased or absent co-stimulatory signals involved in T cell
udy. p values were calculated by one-way Kruskal-Wallis rank-sum test.

cRNA-seq data from Kumar et al.

es of intestinal and diffuse type of GAC tissues are shown.

d in Figure 6E. Box, median +/� interquartile range. Whiskers, minimum and

s in this study (J) and the Kumar et al. cohort (K).

lants) and ascites cells obtained from the same GAC patients (n = 13).

See also Figures S6 and S7, and Table S3.
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Figure 7. Prognostic Significance of SDC2Upregulation in GACCohorts and the Effect of SDC2Overexpression in CAFs on Tumor Growth in

Mouse Models

(A) Kaplan–Meier plots illustrating prognostic significance of SDC2 upregulation across 4 primary GAC cohorts. p values were calculated by log rank test.

(B) Schematic depicting the study design of an independent primary GAC cohort to validate clinical relevance of SDC2 overexpression at protein level.

(C) Composition of patients with SDC2-positive or SDC2-negative statuses as determined by IHC staining of normal and tumor tissues (left), and early (stage I or II)

or late stages (stage III or IV) (right). p values were calculated by two-sided Fisher’s exact tests.

(D) The prognostic significance of SDC2 staining positivity in this cohort. p values were calculated by log rank test.

(E) Univariate and multivariate Cox proportional regression outcomes for this validation cohort, with age, gender, differentiation status, Lauren’s type, tumor

stage, and SDC2 IHC included. CI, confidence interval; TNM, tumor, node, metastases.

(F–J) Effect of SDC2-overexpressed CAF in the xenografted mice. In vivo tumor growth of co-subcutaneous injection of patient-derived PC tumor cells (GA0518)

and cancer-associated fibroblasts (CAFs) with SDC2-overexpression (OE) as GF0818-SDC2 is shown. GA0518 cells labeled with mCherry-Luciferase (GA0518-

mCh2) as tumor cells plus GF0818-SDC2 or corresponding empty vector transfected GF0818 cells (GF0818-EV) as CAFs were subcutaneously co-injected into

five female SCID mice with two injection sites per mice. (F) Bioluminescent images by luciferase in representative mice at three time points post-injection. (G)

Quantification of tumor size expressed as total bioluminescence intensity of injection sites at each time points. Box, median +/� interquartile range. Whiskers,

(legend continued on next page)
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activation/function, implying a skewed TME and unfavorable

microenvironment that hampers the host’s capacity to mount

an effective anti-tumor immune response. Our computational

lineage tracing analysis revealed that some cell subsets in pri-

mary GACs, such as M2-like TAMs, tended to accumulate in

the ascites. This finding suggests that the TME of primary GAC

may possess the potential to shape the immune response of

metastatic niches, as previously described in hepatocellular car-

cinoma.51 However, further investigation into the migration

behavior and routes of TME cells in paired primary-metastatic

tumors would be of significant interest.

Utilizing unbiased approaches, we detailed the cellular

heterogeneity within the TME and uncovered 3 major TME ‘‘eco-

systems’’ and 6 ecotypes present at various stages of GAC pro-

gression. Genomically independent, ecotype-based clustering

effectively segregated samples, highlighting the evolutionary re-

modeling of TME compositions during GAC development and

progression. Notably, two primary ecotypes—the immune-en-

riched EC3 and stroma-enriched EC6—were recurrently

observed in primary GACs across multiple cohorts.69–71 Our

analysis revealed that the EC6-like ecotype was significantly

associated with more aggressive histological, genomic, andmo-

lecular subtypes and worse prognosis compared with the EC3-

like ecotype. While many published single-cell studies have

focused on characterizing the heterogeneity of each individual

cell compartment, our study integrates divergent cell ecotypes

to elucidate their population relationships, cohabitation patterns,

and cell interaction networks. This approach offers a valuable

methodology that could potentially be applied to other cancer

studies.

Interestingly, our fundings revealed that the EC3 and EC6 eco-

types strongly correlated with the two primary histological sub-

types of GAC—the intestinal and diffuse types, supporting the

notion that TME phenotypes may closely tie into GAC pathogen-

esis. Additionally, the robust correlation between the EC3/EC6

ecotypes and the GAC genotypes,89 as well as the molecular

subtypes70 combined with oncogenic attributes,69 underscores

the complexity of GAC carcinogenesis and progression is reliant

on the intricate interplay between preneoplastic/neoplastic cells

and the TME. To our knowledge, this study is the first to charac-

terize cellular ecosystems and ecotypes, and their genomic cor-

relates at single-cell resolution, across GAC devlopment and

progression. This has advanced our understanding of TME het-

erogeneity and dynamics with greater granularity, and with

further research, may facilitate potential therapeutic exploita-

tions. As such, innovative technologies like spatially resolved

transcriptomics, bioimaging, and approaches for characterizing

physically interacting cells would complement and expand on

the insights we have described.

Stromal components within the TME play crucial roles in tumor

initiation, progression, and metastases.90 Our study found that

the prevalence of stromal cells negatively correlated with im-

mune cells such as CD4+/CD8+ T and NK cells. In particular,
minimum and maximum. (H) Tumor growth measured twice a week with a digita

upon sacrifice. No tumors were observed in four injection sites of the EV control g

group was euthanized because of tumor ulceration before endpoint. (J) Tumor w

mean ± SD from five mice. *, p < 0.05; **, p < 0.01; ***, p < 0.001 vs. empty vect

See also Figure S7.
GACs with stroma-rich EC6 ecotype often exhibited a paucity

of these immune cells. Previous studies have demonstrated

that CAFs can release immunosuppressive factors, like TGFb,

leading to T cell exclusion from the tumor core.91,92 Our identifi-

cation of numerous immune-regulatory genes within stromal

cells, including TIGIT ligands NECTIN2 and PVR (CD155),

SIRPA, NT5E (CD73), CD276 (B7-H3), CD200, and SDC2, might

indicate the activation of multiple distinct immunosuppressive

signaling pathways in the tumor stroma. To date, cancer treat-

ment strategies have rarely focused onmodulating stromal com-

ponents, especially in GAC patients. Some of these genes have

already been characterized as immune checkpoints or are

emerging immunomodulatory therapeutic targets.59,60 Impor-

tantly, our study has identified SDC2 as a potential target worthy

of further investigation.

SDC2 overexpression in mesenchymal/cancer cells has been

observed in epithelial origin-tumors, including breast, lung,

pancreatic, colorectal, and gastric cancers, where SDC2 ap-

pears to promote the invasiveness and migration of cancer cells

by activating and regulating various oncogenic signaling path-

ways.93 However, the landscape of SDC2 expression across

various TME cell types/states, along with their cellular interac-

tions remains to be explored. Additionally, previous studies on

GAC were limited by small cohort sizes94 and did not assess

its prognostic significance. In this study, we discovered that

SDC2 is primarily abundant in CAFs in both premalignant and

malignant tissues. We confirmed this finding in independent co-

horts across various solid tumor types at single-cell resolution.

SDC2 overexpression was also validated at the protein level in

tumor-associated stromal cells using several methods. Given

our observations of high SDC2 expression in aggressive GAC

phenotypes, advanced stages, and its strong association with

unfavorable survival outcomes, it suggests a role in driving dis-

ease progression and serves as a potential biomarker of poor

prognosis.

There is mounting evidence demonstrating that stromal and

immune cells actively engage in crosstalk within the TME.90

However, the impact of SDC2 upregulation on TME remains

poorly understood. Previous studies have reported an upregula-

tion of SDC2 in human CD4+ T cells during in vitro activation,

where it inhibits T cell activation.95 Our cell-cell interaction ana-

lyses shed light on its potential immunomodulatory roles. We

noted increased crosstalk between SDC2+ stromal cell popula-

tions (vs. their SDC2- counterparts) and CD4+/CD8+ T and NK

cells via TIGIT-NECTIN3, TGFB1-TGFBR3, EGFR-TGFB1,

LGALS9-HAVCR2, and FAS-FASLG ligand-receptor interac-

tions. These interactions are associated with various immuno-

suppressive signaling pathways.96–99 Further in vivo functional

studies using SCID models validated our hypothesis that SDC2

overexpression in CAFs promotes tumor growth. Collectively,

these findings suggest that therapeutic targeting SDC2-overex-

pressing CAFs could be beneficial in GAC, with potential for

broad application in solid tumors. However, our current results
l caliper over time. (I) Macro images of the excised subcutaneous tumor mass

roup and one injection site of SDC2 group at endpoint. One mouse in the SDC2

eights of the extracted subcutaneous tumors at the endpoint. Data represent

or control (two-sided Wilcoxon rank-sum test).
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in the SCID model reflect the impact of SDC2 in the absence of

an immune system. Thus, future research should focus on the

role of SDC2 in immuno-competent models for GAC and other

types of cancer.

Limitations of the study
First, although we collected a subset of the NAT, primary, and

metastatic GAC from the same patients, the precancerous and

cancer specimens were not matched, as they are extremely

challenging to obtain clinically. Second, a comprehensive

assessment of the GAC continuum would ideally require un-

treated samples. However, collecting treatment-naı̈ve primary

GACs from patients with PC is practically infeasible in a clinic

setting. As most stage-IV GACs were exposed to treatment,

the TME cell landscape we observed may be influenced by prior

therapy. Further investigations in more refined patient cohorts

are needed to better understand TME remodeling in various ther-

apeutic contexts. Third, paired single-cell TCR/BCR-seq data

were available for only a small subset of samples, limiting the

integrative analysis of the TCR/BCR repertoire. Fourth, despite

H. pylori infection being widely regarded as the strongest risk

factor for GAC,100–102 its relevance was not deeply explored in

this study due to sample size limitations, and information on

H. pylori treatment was not available. Fifth, our analysis mainly

focused on PC; liver and ovarian metastases were not equally

represented. Additionally, we could not study how genomic al-

terations might contribute to TME reprogramming due to a lack

of genomic data. Lastly, the absence of tumor cells and spatial

data may limit our ability to fully capture the interplay between

cancer cells and the TME.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-Vimentin Santa Cruz Biotechnology Cat# SC6260; RRID: AB_628437

Rabbit polyclonal anti-SDC2 Thermo Fisher Scientific Cat# 710183; RRID: AB_2532608

Rabbit anti-human SDC2 polyclonal antibody Abcam, USA Cat# Ab205884

rabbit antibody Vector Laboratories, Inc Cat# BA5000

Avidin and Biotinylated HRP reagent Vector Laboratories, Inc Cat# ZG0312

Biological samples

GAC primary tumor samples Zhejiang Cancer Hospital See Table S1 for details

GAC metastatic tumor samples MD Anderson Cancer Center See Table S1 for details

Peripheral blood samples from GAC patients Zhejiang Cancer Hospital See Table S1 for details

Non-neoplastic adjacent tissues from

GAC patients

Zhejiang Cancer Hospital See Table S1 for details

Peripheral blood from healthy donors Zhejiang Cancer Hospital See Table S1 for details

Critical commercial assays

JetPRIME Polyplus Cat# 101000046

SYBR Green Master Mix Applied Biosystems Cat# 4367659

LunaScript RT SuperMix Kit New England BioLabs Cat# E3010

TRIzol Reagent Thermo Fisher Scientific Cat# 15596018

QuantStudio 3 Real Time PCR system Thermo Fisher Scientific N/A

Deposited data

Data files for scRNA-seq (Cohort #1) (processed data) This paper GEO: GSE234129

Data files for scRNA-seq (Cohort #2) (raw data) This paper EGA: EGAS00001004443;EGAS00001005019

(healthy PBMCs)

Expression matrix for scRNA-seq (Cohort #3) (processed

data)

Sathe et al.25 https://dna-discovery.stanford.edu

Expression matrix for scRNA-seq (Cohort #4) (raw data) Zhang et al.79 GEO: GSE134520

Expression matrix for scRNA-seq (Validation cohort) (raw

data)

Kumar et al.28 GEO: GSE183904

Expression matrix for bulk RNA sequencing (processed) TCGA https://gdc.cancer.gov

Expression matrix for microarray experiments (processed) Cristescu et al.70 GEO: GSE62254

Expression matrix for microarray experiments (processed) Ooi et al.69 GEO: GSE15459

Expression matrix for microarray experiments (processed) Cheong et al. GEO: GSE84437

Experimental models: Cell lines

HEK293T ATCC CRL-1573

GA0518 Song et al.78 N/A

GF0818 This paper N/A

GF1026 This paper N/A

Experimental models: Organisms/strains

Mouse: NOD.Cg-Prkdcscid/J The Jackson Laboratory Jax:001303

Mouse: Xenogen IVIS200 Perkin Elmer #124262

Oligonucleotides

Primers: hSDC2.mRNA.F: 50 TGGAAACCACGACGC

TGAATA 30

hSDC2.mRNA.R: 50 ATAACTCCACCAGCAATGACAG 30

This paper NM_002998

hGAPDH-5: 50 ACCCAGAAGACTGTGGATGG 30

hGAPDH-3: 50 TCTAGACGGCAGGTCAGGTC 30
Mani et al.109 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

hSDC2.F1.PacI

50 ccTTAATTAAGCCGCGACCGTCATGCGGCG 30

hSDC2.R1.NheI

50 aaGCTAGCCGCATAAAACTCCTTAGTAGG 3’

This paper NM_002998

Recombinant DNA

SDC2-3xFlag fusion protein This paper NM_002998

Plasmid: pLoc.tGFP Horizon Discovery,

Cambridge, UK

N/A

Plasmid: pLoc.tGFP.3Flag.SDC2 This paper N/A

Plasmid: pLoc.tGFP.3Flag.MCS1 This paper N/A

Plasmid: pHIV7-CNPO-Tert Gift from Dr. Jiing-Kuan Yee,

City of Hope

N/A

Plasmid: pHIV7-CNPO-TAg Gift from Dr. Jiing-Kuan Yee,

City of Hope

N/A

Software and algorithms

Cell Ranger 3.1.0 10x Genomics https://10xgenomics.com/

Seurat 3.1.1 Butler et al.103 https://satijalab.org/seurat/articles/get_

started.html

Harmony 1.0 Korsunsky et al.104 https://portals.broadinstitute.org/harmony/

articles/quickstart.html

Monocle3 0.2.0 N/A (http://cole-trapnell-lab.github.io/monocle-

release/monocle3/

Scrublet 0.2.1 Wolock et al.105 https://github.com/swolock/scrublet

kBET B€uttner et al.106 https://github.com/theislab/kBET

GSVA 1.40.1 H€anzelmann et al.107 http://bioconductor.org/packages/release/

bioc/html/GSVA.html

ROUGE Liu et al.108 https://github.com/PaulingLiu/ROGUE

R 4.0.0 N/A https://www.r-project.org

survcomp 1.6.0 N/A https://www.bioconductor.org/packages//

2.10/bioc/html/survcomp.html

Survminer 0.4.9 N/A https://cran.r-project.org/web/packages/

survminer/index.html

Survival 3.2-11 N/A https://cran.r-project.org/web/packages/

survival/index.html

pheatmap 1.0.12 N/A https://cran.r-project.org/web/packages/

pheatmap/

BioRender BioRender.com https://www.biorender.com
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Ling-

hua Wang (LWang22@mdanderson.org).

Materials availability
This study did not generate any new unique reagents or models.

Data and code availability
The scRNA-seq data generated on samples of Cohort #1 can be downloaded from Gene Expression Omnibus database (GEO,

https://www.ncbi.nlm.nih.gov/geo/) under accession number GEO: GSE234129. The scRNA-seq data generated on PC ascites cells

(Cohort #2) can be downloaded from EGA (European Genome-phenome Archive, https://ega-archive.org) via accession number

EGA: EGAS00001004443. The raw scRNA-seq data for healthy PBMCs can be obtained from EGA: EGAS00001005019. The pro-

cessed feature-barcode matrices generated on NAT, CAG, IM, primary GAC, and PBMC samples in the Cohort #325 were available

from https://dna-discovery.stanford.edu. The raw scRNA-seq data generated on NGT, CAG, IM, and primary GAC in the Cohort #479
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were available from GEO: GSE134520. The data can also be accessed through the online Single Cell Data Portal (https://singlecell.

mdanderson.org/GastricTME), an interactive web-based tool we have developed for visualizing our scRNA-seq data. In addition,

four public datasets can be obtained from NCI’s Genomic Data Commons (TCGA-STAD) and https://www.ncbi.nlm.nih.gov/geo/

GEO: GSE62254,25 GSE15459,69 and GSE84437. All codes used for analysis and cell annotation are available from https://github.

com/ruipwang/GastricTME/. The data that support the main findings of this study are provided in Tables S2, S3, S4, S5, and S6,

and additional information are also available from the corresponding author (Dr. Linghua Wang) upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human specimens
This study follows the principles according to the Declaration of Helsinki, with written informed consents obtained from all patients

before sample collection. A total of 68 samples collected from 41 patients and 2 healthy donors were included in this study (Table S1).

Among them, 18 patients (Pt10-27) were enrolled and diagnosed at The University of Texas MD Anderson Cancer Center (MDACC)

(Houston, USA). This study was approved by an Institutional Review Board (IRB) approved protocol (#LAB01-543). Independent re-

view was conducted by experienced pathologists and radiologists to confirm disease diagnosis and samples collection (n = 20) was

conducted under the approved IRB infrastructure as described in our recent study.110 Six patients (Pt1-5, Pt9) were enrolled and

diagnosed at Zhejiang Cancer Hospital (Hangzhou, China) and the study was approved by the ethics committee of the Cancer Hos-

pital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital). Diagnosis was confirmed by experienced gastro-

intestinal pathologists and radiologists and fresh biopsies (primary tumors, ovarian or liver metastases, n = 17) were obtained from

each patient, with adjacent normal tissue or peripheral blood as controls. The primary tumor tissues and adjacent non-neoplastic

tissues were collected by gastroscopy. The ascites samples were collected when patients required a therapeutic paracentesis

and cells were isolated for scRNA-seq. The liver metastatic tissues were collected when patients required needle aspiration biopsy

during the diagnostic procedure and the ovarymetastatic tissues were collected when patients required cytoreductive surgery. None

of these six patients were treated with chemotherapy or radiotherapy prior to sample collection. The remaining 31 samples from 17

patients were from two published studies.25,79 Based on the Lauren’s classification, 6 out of 14 primary tumors were intestinal type, 3

were diffuse type, and 2 were mixed type. Lauren’s classification for the rest 3 primary tumors were not available. The detailed in-

formation is summarized in Table S1.

For the SDC2 validation cohort (n = 388), primary tumor tissues were collected from a total of 388 patients underwent total or sub-

total gastrectomy with lymphadenectomy between January 2009 and December 2014 in the Department of Surgical Oncology of the

first affiliated hospital of China Medical University. None of these patients had received chemotherapy of radiotherapy prior to sur-

gical procedure. We received written informed consent from all patients, and the study was approved by the ethics committee of

China Medical University. The detailed postoperative pathological diagnosis reports were gained and included age, sex, tumor

size, differentiation status, Lauren’s type, invasion depth, lymph node metastasis, distant organ metastasis, TNM stage. We used

the TNM classification system for gastric carcinoma from the 8th AJCC staging manual. All the patients were followed up via tele-

phone inquiry or questionnaires. And the follow-up time ranged from 2 to 80 months (median = 48 months).

Cell lines
The patient ascites cells (IP-039-1 for GF1026, and IP-024-1 for GF0818) were pelleted and washed twice with PBS and then resus-

pended in 80 ml of MACS buffer [1:20 diluted autoMACS rinsing solution (Miltenyi Biotech, Gaithersburg, MD. Cat#130-091-222) with

PBS per 107 total cells. A 20 ml of human anti-fibroblast microbeads (Miltenyi, order no. 130-050-601) per 107 cells was mixed to the

cells and incubated at room temperature for 30min followed bywashing oncewithMACSbuffer. The cells were resuspended in 0.5ml

of MACS buffer and applied to the separation column and magnetic separator. After washing with MACS buffer, the cells from mi-

crobeads were flushed out from the microbeads and cultured with DMEM. Cells were passed twice and followed by immortalization

with lentiviral infection that express hTERT (pHIV7-CNPO-Tert) and SV40 large-T (pHIV7-CNPO-Tag) (a gift from Dr. Jiing-Kuan Yee,

City of Hope). The immortalized CAF cells were authenticated and recharacterized in the cell line core facility of UT MD Anderson

Cancer Center every 6 months. Western blot was used to confirm the expression of the fibroblast marker positives (aSMA and

FAP), while epithelial marker EpCAM negative in these cells every 6 months. Cells were cultured in DMEM supplemented with 7%

fetal bovine serum (FBS) and antibiotics (100 mg/mL streptomycin and 100 IU/mL of penicillin).

Mice
All animal procedures were conducted under a peer-reviewed Institutional Animal Care and Use Committee (IACUC)-approved pro-

tocol (#00000232-RN03). The IACUC at MDACC approved all animal experiments in accordance with NIH guidelines. NOD.Cg-

Prkdcscid/J (severe combined immunodeficient, [SCID]) mice (The Jackson Laboratory, #001303) were bred and maintained in the

North MDACC Mouse Facility in accordance with institutional requirements. Female SCID mice aged nine weeks were used in

this study. The investigators did not perform any experiments blindly. Mice were monitored for signs of morbidity, which included

excessive tumor volume (maximum size permitted by the IACUC), hunched posture, ruffled hair, weight loss, paralysis, dyspnea,

inability to reach food and water, as well as lack of grooming. Mice exhibiting these signs prior to reaching the endpoints were

euthanized.
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METHOD DETAILS

Sample processing
For patients (Pt1-5, Pt9) in cohort #1, the fresh tissues were stored in the tissue storage solution (MACS Media) and dissociated into

single cell suspensions for scRNA-seq. The ascites were spun down for 10 minutes at 1500 rpm, then pelleted cells were collected

and stored in Bambanker (NipponGenetics, no.392014681) for scRNA-seq. PBMCswere separated fromperipheral blood according

to standardized procedure. Red blood cells were lysed and singlets were counted by Trypan Blue Exclusion before loading on 10X

Chromium microfluidic chips. All sample were processed using the same protocol and by the same research assistant. For patients

(Pt10-27) in cohort #2, the details of sample processing were described in our recent study.110

scRNA-seq library preparation and sequencing
For cohort #1 samples, scRNA-seq including single cell separation, complementary DNA (cDNA) amplification, and library construc-

tion was performed on the 103 Genomics Chromium Platform. Briefly, the single cell suspensions were counted using Countstar�
Rigel S2 (Countstar) and loaded on a Chromium Controller to generate single-cell gel bead-in-emulsions (GEMs). The scRNA-seq

libraries were constructed using the Chromium Single Cell 5ʹ Library & Gel Bead Kit (PN: 220112, 103 Genomics). The single-cell

GEMs were used to generate 103 Barcoded cDNA through reverse-transcription PCR and the cDNA was purified using Dynabeads

MyOne SILANE magnetic beads (PN: 2000048, 103 Genomics). The Amplification Master Mix kit (PN: 220125, 103 Genomics) was

used for cDNA amplification, and the Beckman Coulter SPRIselect reagent was used for cDNA purification and target enrichment.

The Agilent Bioanalyzer High Sensitivity kit was used for determination of concentrations of cDNA libraries as well as the quality

control of libraries. 50 ng of each sample library in 20 uL were mixed with 30 uL Fragmentation Mix (PN: 220108, 220107/220130,

103 Genomics) for pooling. The barcoded libraries were sequenced on the NovaSeq 6000 (Illumina) platform using S2 flow cell

(100 cycles) in a 26 (read 1) 3 8 (index) 3 91 (read 2) configuration. For Cohort #2 samples, the details of scRNA-seq library prep-

aration and sequencing were described in our recent study.110 For samples included in cohorts #2, #3, and #4, the Chromium Single

Cell 30 Library & Gel Bead Kit v2 (PN-120237, 10x Genomics) were used to construct the scRNA-seq libraries as descripted in their

original studies.25,79,110

Microsatellite instability (MSI) testing
Four patients in this study were reported as MSI (Table S1). And 18 patients in this study were reported as microsatellite stability

(MSS). For cohort #1, MSI testing was performed for all 6 patients. Among them, 3 patients were found as MSS and one patient

was reported as MSI. Representative sections of the primary GACs from each patient were deparaffinized and dehydrated, washed

in water, pretreated for heat-induced epitope retrieval in citrate buffer (pH = 6.0), and cooled for 10 min. Immunohistochemistry (IHC)

staining with antibodies against hMLH1 (ZM-0154, ZSBG-BIO), hMSH2 (ZM-0622, ZSBG-BIO), hMSH6 (ZA-0541, ZSBG-BIO), and

hPMS2 (ZA-0542, ZSBG-BIO) was performed. To interpret IHC staining, the non-neoplastic gastric mucosa was used as a control for

MLH1, MSH2, MSH6, and PMS2 staining. When tumor nuclei stained positive with the same intensity as the control tissue, staining

was regarded as positive. When more than 10% of tumor cells showed loss of expression or reduced expression of these markers,

the tumor was regarded as negative for expression. Based on the IHC staining results, a negative expression of R1 of 4 mismatch

Repair (MMR) proteins was considered asMSI. Positive expression of all of themwas considered asMSS. For cohort #2, 12 out of 18

patients were accessed for MSI using clinical assay or whole-exome sequencing (WES), and all 12 patients were reported as MSS.

The details of MSI testing and analysis for cohort #2 were described in our recent study.110 Three patients from cohort #3 were

defined as MSS and 4 patients from cohort #3 were defined as MSI as descripted in their original study.25,79

Multi-color immunofluorescence (mIF) staining
Human GAC tissue sections were immunostained overnight with Vimetin (SC6260, Santa Cruz,1:200) and SDC2 (710813, Invitro-

gen,1:200) followed by secondary antibodies. Slideswere thenmountedwith DAPI-containing VectashieldMountingMedium (Vector

Laboratories) and visualized under the confocal laser scanning microscope.

SDC2 Immunohistochemistry (IHC) assay
Formalin-fixed paraffin-embedded (FFPE) tissue microarrays (TMAs) composed of primary GAC tissues from a total of 388 patients

underwent total or subtotal gastrectomy were created. Tissue sections in 5-mm thickness were deparaffinized in xylene, followed by

dehydration in an ethanol series. The slides were incubated in H2O2 for 15 min at room temperature and subjected to high temper-

ature and high pressure for antigen retrieval, Tris-EDTA (PH = 9.0) were used as retrieval buffer. Subjected to dropwise addition of the

corresponding primary antibody followed by incubation at 4�C overnight, rinsed with phosphate buffered saline (PBS), and subjected

to dropwise addition of secondary antibody, Avidin and Biotinylated HRP. A DAB solution was added to visualize the antibody bind-

ing, after which the sections were rinsed with distilled water, counterstained with hematoxylin, dehydrated with an ethanol gradient,

and fixedwith xylene and gelatin. Rabbit anti-human SDC2 polyclonal antibody (Cat. Ab205884) was purchased fromAbcam, USA. A

secondary rabbit antibody (Cat. BA5000) was purchased from Vector Laboratories, Inc. Avidin and Biotinylated HRP reagent (Cat.

ZG0312) were purchased from Vector Laboratories, Inc.
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Evaluation of IHC staining results
Two pathologists were blinded to patients’ outcomes independently interpreted the IHC staining results using a semi-quantitative

scoring system. Immunostaining reactions were evaluated based on staining intensity (0 for no staining, 1 for weak staining, 2 for

moderate staining, 3 for strong staining) and the percentage of the staining cells (0 for <5%, 1 for 6%�25%, 2 for 26%�50%, 3

for 51%�75%, and 4 for >76%). Then the score of staining intensity and the percentage of stained cells were multiplied to generate

the immunoreactivity scores (IS). A cut-off value (0.5) was determined by an ROC curve. IS < 0.5 was defined as SDC2 low and

IS > 0.5 was defined as SDC2 high.

SDC2 cDNA subcloing
Human SDC2 cDNA was amplified from GA0518 with high fidelity enzyme Q5 (New England Biolabs, Ipswich, MA) using primers

hSDC2.F1.PacI and hSDC2.R1.NheI, and the PCR product was subcloned into pLoc.tGFP.3Flag.MCS1, which was modified from

Horizon Discovery’s (Cambridge, UK) pLoc.tGFP vector. The resultant lentiviral plasmid was verified by sequencing, and was called

pLoc.tGFP.3Flag.SDC2, in which SDC2 cDNA (stop codon removed) was fused with 3xFlag, the empty vector (EV) is

pLoc.tGFP.3Flag.MCS1.

Lentiviral vector generation and transfection
HEK293T (ATCC, Manassas, VA) cells were grown in exponential growth condition before lentiviral transformation. Lentivirus of both

SDC2 and EV were generated in HEK293 using 20ul JetPrime (Polyplus, France) together with packaging vector pCMV.Dr8.2 and

envelope vector pCMV.VSV.G in a 5 ug: 5 ug: 0.5 ug ratio in a 10-cm plate, the supernatant was filtrated with 0.22um filter and

then was used to transduce target CAF1026 cell line. The transduced cells were sorted by GFP marker in our institutional flow cy-

tometry core, and the sorted cells were used for experiments and in vivo mouse studies.

Quantitative real-time PCR (qRT-PCR) analysis
Total RNA extraction: When each cell line growing in a 10-cm plate reaches 70-90% confluence, medium was aspired, cells were

harvested using 1 ml Trizol (Ambion, Austin, TX) directly added into plates, after vortexing vigorously and incubation at room temper-

ature for�15 min, 200 ml chloroform was added to each 1 ml Trizol, vortex vigorously again, and the mixture sit at room temperature

for �15 min. Spun the mixture at maximum speed (�15000 rpm) for 10 min, supernatant was transferred to a new tube, the super-

natant was added 2 volumes of ethanol for one volume of clear supernatant, gently vortexed the tube, then the tube was spun at

maximum speed (�15000 rpm) for�10min, a pellet was seen at the bottom, and gently washed with 70% ethanol, spun at maximum

speed for�5min, supernatant was aspired, and air-dried. Re-dissolve the pellet with appropriate volume of 1x TE pH8.0 according to

the size of the pellet. Total RNA concentration was measured in a Nandrop 1000 machine (Thermo Scientific, Wilmington, DE).

Reverse transcription and cDNA synthesis: We used NEB’s (Ipswich, MA) LunaScript RT SuperMix Kit (E3010), followed the man-

ufacturer’s protocol. Briefly, in a 20 ml reaction, LunaScript RT SuperMix (5X) 4 ml was added to a tubewith extracted total RNAs, up to

1mg, the 1st strand cDNA synthesis reaction goes on a PCR machine with primer annealing 25�C for 2 min, then followed by cDNA

Synthesis for 55�C 30 min, and heat inactivation 95�C for 1 min. The reactions are diluted with H2O to 200 ml in total volume.

Quantitative real-time qPCR (qRT-PCR) for mRNA gene expression: For the qPCR reaction, a 20 ml total volume includes 10 ml (2x)

of SYBR Green Supermix from ABI (Applied Biosystems, Carlsbad, CA) with addition of 2.5 ml of the above generated 1st strand

cDNA, and PCR quantitation was performed on the Applied Biosystems’ (ABI, Waltham MA) QuantStudio 3 machine. Thermocycles

are set at 95�C for 2 min, followed by 30 cycles of 95�C 10 sec, and 60�C 30 sec. Analysis of expression uses GAPDH as the house

keeping gene. Data are presented using Microsoft Excel or GraphPad Prism. Reference gene GAPDH primers and the target gene

SDC2 primers109 are listed in the key resources table.

In-vivo tumorigenesis of SDC2-CAFs in mice
Nine-week-old SCIDmicewere randomly divided into 2 groups. Each group received a subcutaneous injection of GA0518-mCh2 and

CAFs, GF0818, suspended in 100 ml PBS into both lateral flanks of themice. The ratio of tumor cells to CAFswas 2:1, and the number

of GA0518-mCh2 cells in each injection was 13106. Tumor size was measured twice per week using a digital caliper, and tumor vol-

ume was calculated with the formula: volume = (Width2 3Length)/2. Tumor growth was also weekly monitored by bioluminescence

imaging. D-luciferin, a substrate of luciferase (150 mg/kg) was injected via intraperitoneal injection inmice. Tenminutes after injection,

the converted D-luciferin was measured in the value of emitted photons. Mice were sacrificed 4 weeks after injection. All the tumors

were collected and weighted.

QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-seq data processing
The raw scRNA-seq data weas pre-processed (demultiplex cellular barcodes, read alignment, and generation of gene count matrix)

using Cell Ranger Single Cell Software Suite (version 3.1.0) provided by 10x Genomics. Detailed QC metrics were generated and

evaluated, samples and cells were carefully and rigorously filtered to obtain high-quality data for downstream analyses. Multiple fil-

ters were applied using similar approaches as described in our recent studies.110–112 Briefly, for basic quality filtering, cells with low

complexity libraries (in which detected transcripts are aligned to less than 200 genes) were filtered out and excluded from subsequent
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analyses. This step aimed to remove cell debris, empty drops, and low-quality cells. Likely dying or apoptotic cells where >15% of

transcripts derived from the mitochondria were also excluded. We further removed the outliers, cells with >6,500 genes expressed

(the top 1%) in the distribution of gene detected per cell. Following the initial clustering, we removed likely cell doublets andmultiplets

(see doublet detection and removal). In addition, genes expression in fewer than 3 cells were removed from the expression matrix.

Library size normalization was then performed in Seurat103 on the filtered gene-cell matrix to obtain the normalized UMI count.

Batch effect evaluation and correction
Statistical assessment of possible batch effects was performed using the R package k-BET (a robust and sensitive k-nearest

neighbor batch-effect test).106 k-BET was run on cells from all samples, and on major lymphoid cell types including CD4+ T cells,

CD8+ T cells, myeloid cells, B cells, and stromal cells separately with default parameters. Each cell type was down sampled to

500 cells, and the k input value was chosen ranging from 1% to 100% of the sample size. In each run, the number of tested neighbor-

hoods was 10% of the sample size. The mean and maximum rejection rates were then calculated based on a total of 100 repeated

k-BET runs. Following estimation of sample processing- or sequencing-related batch effects using k-BET, we employed Harmony104

for actual batch effect correction. Harmony was run with default parameters to remove batch effects in the PCA space when clus-

tering of major cell lineages (e.g., CD4+ T, CD8+ T, myeloid, B cells, plasma cells, and stromal cells) before any clustering analysis or

cell type identification/annotation was performed. We carefully evaluated the performance of Harmony in terms of its ability to inte-

grate batches while maintaining cell type separation. Harmony was run on all cells to firstly identify major cell types. It was also run on

each of the three major cell types (i.e., T cells, myeloid cells, stromal cells) for subclustering analysis to further identify different cell

states. Harmony results showed a clear separation of major cell lineages and known T cell subsets such as CD4+ TREG, CD4
+ TFH,

CD4+/CD8+ TN, CD4
+/CD8+ TMEM, CD8

+ TEX, pDC, cDC2 and 3 additional rare DC subpopulations including cDC1, LAMP3+ DC,

proliferating DC, as well as the 4 types of stromal cell lineages indicates an excellent performance of batch effect correction in

this study. To quantify the performance of Harmony, we further used k-BET and compared the rejection rate (reflecting batch effect)

before and after Harmony. The data after Harmony showed a low rejection rate, indicating an excellent performance of batch effect

correction in this study.

Moreover, we also applied the local inverse Simpson’s Index (LISI) to assess the performance of Harmony. As descried previ-

ously,104 the ‘integration LISI’ (iLISI) measures the degree of mixing among datasets (batches), ranging from 1 in an unmixed space

to the number of datasets (batches) in a well-mixed space. And the ‘cell-type LISI’ (cLISI) measures integration accuracy using the

same formulation but computed on cell-type labels instead. An accurate embedding has a cLISI close to 1 for every neighborhood,

reflecting separation of different cell types. Before batch correction with Harmony, cells were mainly grouped by dataset (iLISI is

around 1) and cells from different cell types were mixed (cLISI is far from 1). After batch correction with Harmony, iLISI and cLISI

were re-computed in the Harmony embedding. iLISI is around 3, indicating a high degree of mixing among different datasets, and

cLISI is very close to 1, reflecting excellent separation of different cell types while remain the well-mixed space.

Unsupervised clustering
Seurat (version 3.1.0)103 was applied to the normalized gene-cell matrix to identify highly variable genes (HVGs) for unsupervised cell

clustering. Principal component analysis (PCA) was performed on the top 2000 HVGs. The elbow plot was generated with the

ElbowPlot function of Seurat and based on which, the number of significant principal components (PCs) were determined. The

FindNeighbors function of Seurat was used to construct the Shared Nearest Neighbor (SNN) Graph, based on unsupervised clus-

tering performed with Seurat function FindClusters. Different resolution parameters for unsupervised clustering were then examined,

and cluster marker genes were checked to determine the optimal number of clusters with distinct transcriptional profiles. For visu-

alization, the dimensionality was further reduced using Uniform Manifold Approximation and Projection (UMAP) method113 with

Seurat function RunUMAP. The PCs used to calculate the embedding were the same as those used for clustering.

We performed sub-clustering analysis of CD4+ T cells and CD8+ T cells with and without TCR genes and compared the results. We

computed Ro/e (See quantification of tissue enrichment) to quantify the correlation between without-TCR-clustering and with-TCR-

clustering derived cell clusters. If Ro/e > 1, it suggested that cells of a without-TCR clustering were more frequently observed than

random expectations in a specific with-TCR cluster, i.e., enriched. If Ro/e < 1, it suggested that cells of a without-TCR-clustering

were observed with less frequency than random expectations in a specific with-TCR clustering. Overall, we observed a high degree

of consistency between the two clustering approaches (Table S7).

Doublet detection and removal
Likely doublets or multiplets were identified and carefully removed through a multi-step approach as described in our recent

studies.110–112 Briefly, doublets or multiplets were identified by the following methods: 1) library complexity: cells with high-

complexity libraries in which detected transcripts are aligned to > 6500 genes (the top 1% outliers) were removed. 2) Cluster distri-

bution and marker gene expression: some doublets or multiplets can form distinct clusters with hybrid expression features and

exhibit an aberrantly high gene count. We carefully reviewed cluster marker genes, and also checked the expression levels and pro-

portions of canonical lineage-related marker genes in each Seurat identified cluster. Clusters co-expressing discrepant lineage

markers (e.g., cells in the T-cell cluster showed expression of epithelial cell markers; cells in the B cell cluster showed expression

of T or myeloid cell lineage markers) were identified and removed. 3) Doublet detection algorithms: we applied Scrublet,105 an algo-

rithm to predict doublets in scRNA-seq data, to further clean doublets. The proportion of expected doublets were based on the
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number of cells used for scRNA-seq library construction. Scrublet predicted doublets were carefully checked before they were

removed. 4) Cluster marker gene expression: some doublets or multiplets do not form separate cell clusters, instead they can spread

all over the place on the UMAP plots. To further identify and clean doublets that could have been missed in the above steps, we

generated UMAP plots and carefully reviewed canonical marker genes expression in defined cell clusters. Cells co-expressing

discrepant lineage-specific markers were further cleaned. The above steps 2) and 4) were repeated to ensure that we have filtered

out majority of barcodes associated with cell doublets. After doublets removal, a total of 77,392 cells were retained for downstream

analyses.

Differential gene expression (DEG) analysis
Differentially expressed genes (DEGs) were identified for each cluster using the FindMarkers function in Seurat R package103 and

DEGs were filtered with the following criteria: the gene should expressed in 20% or more cells in the more abundant group; expres-

sion fold change >1.5; and FDR q-value <0.05. The top 30DEGs for each cluster of themajor cell type/lineage including CD4+ T, CD8+

T, B/plasma, myeloid, and stromal cells were provided in Table S2.

Cell type and state identification
Cell type identification was performed on Harmony-defined clusters following batch effect correction. Two rounds of unsupervised

clustering analysis (clustering and subclustering) were performed to first identify major cell types (e.g., CD4+ T cells, CD8+ T cells,

innate T cells), and then distinguish cell transcriptional states within CD4+ T cells, CD8+ T cells, innate T cells, respectively. In

both rounds, 30-nearest neighbors of each cell were determined based on 30 PCs to construct shared nearest neighbor (SNN)

graphs. To annotate the cell type and state, differentially expressed genes (DEGs) were identified for each cell cluster using the

FindAllMarkers function in the Seurat R package, and the top 30 most significant DEGs were reviewed. In parallel, feature plots

and bubble plots were generated for the top 30 DEGs as well as a curated list of canonical immune cell markers and gene signatures,

as described in previous reports,38,48,55,112 and these results were carefully reviewed by our team including two T-cell immunologists

(Y.L. and C.Y.). T cell states were then inferred, and annotations were added to each cluster based on integrated information from the

top-ranked DEGs, the expression of canonical marker genes and signatures. To determine whether cells are overclustered, we

checked for each cell type if multiple subclusters represent the same cell state without showing any unique features. To determine

whether cells are underclustered, we quantified the cellular transcriptional heterogeneity of each cluster using ROUGE,108 an en-

tropy-based metric for assessing the purity of single cell populations and subclustering analysis was performed for low-purity clus-

ters suggested by ROUGE.We employed an independent scRNA-seq cohort GSE183904 28 to validate the cell types we identified in

our datasets by FindTransferAnchors and MapQuery functions in Seurat.

Signature score analysis
To infer the functional states of myeloid and fibroblast cell subsets, we collected a list of curated gene signatures including the M1,

M2, angiogenesis, and phagocytosis-associated gene signatures obtained from a recent study by Cheng et al,48 as well as the

normal-like, iCAF, IFNg-iCAF, myCAF, wound healing-myCAF, ecm-myCAF, and TGFb-myCAF gene signatures defined by Kieffer

et al.55 In addition, we also included the cancer hallmark gene sets for glycolysis, oxidative phosphorylation (OXPHOS), antigen pre-

senting (APC) pathways downloaded from the Molecular Signature Database (MSigDB, http://software.broadinstitute.org/gsea/

msigdb/index.jsp). The signature scores of these genes signatures and pathways in cells of each myeloid and fibroblast cell subsets

were calculated using the ssgsea method in GSVA software package,107 similarly as described in our recent studies.110,112

Quantification of tissue enrichment
The immune and stromal cell subsets exhibited different tissue preferences. To quantify the tissue enrichment of each TME cell sub-

sets and determine whether cells of a certain cluster are enriched or depleted in a specific tissue, we calculated the ratio of observed

to expected cell numbers in each cluster across different tissues using the same approach as described in recent studies.110,114 For a

given cell cluster, Ro/e > 1 suggests that cells of this cluster are more frequently observed than random expectations in a specific

tissue (i.e., enriched), and Ro/e < 1 indicates that cells of this cluster are observed with less frequency than random expectations

in a specific tissue (i.e., depleted).

Single-cell trajectory inference
To interrogate and constrict the differentiation trajectory of identified CD8+ T cell subsets, we applied the Monocle3 (version 0.2.0)

algorithm47 to 9 CD8+ T cell subsets. We excluded the unconventional CD8+ T cell subset, MAIT cells (C5), from trajectory analysis.

The filtered gene-cell count matrix was normalized and preprocessed using preprocess_cds. Batch effects were corrected using

function align_cds. UMAP dimensionality reduction was performed on the ‘aligned’ matrix using function reduce_dimension with

default parameters. The function cluster_cells and plot_cells were used for unsupervised clustering and visualization of the Monocle

clustering results. The function learn_graphwas run with default parameters and the CD8+ TN cell cluster was designed as the root to

build the CD8+ T cell trajectory.
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Quantification of cell similarities
For cells of a certain cell type/state found in PC samples, to infer their likely origins, i.e., whether they were transcriptomically more

similar to the corresponding cell type/state of the PBMCs or primary GACs, we performed transcriptome similarity analysis to quan-

tify their transcriptome similarities across different tissues, using same approach as previously described in single-cell analysis of

hepatocellular carcinoma.51 Briefly, in this study, transcriptome similarity analysis was focused on T and myeloid cell subsets that

were abundant in PC samples and their similarities with corresponding cell types/states from primary GACs and PBMCs were exam-

ined. First, we obtained the low-dimensional PC space using function Embeddings with parameter reduction = ‘harmony’. For each

cell detected in the PC samples, we queried for its nearest neighbor using the R function queryKNN() among cells of primary GACs

and PBMCs in the low-dimensional space spanned by the top 50 PCs. The potential origin of each cell was then inferred by the tissue

origin of its nearest neighbor cell. To determine the statistical significance of tissue origin for each cell type in PC samples, we per-

formed permutation test by randomly shuffling the tissue labels (primary GACs or PBMCs) for all the nearest neighbor cells 1,000

times as previously described.51

Hierarchical relationships among TME subsets
To examine the transcriptome similarity and phenotypic relationships among these 62 TME subsets identified in this study, we per-

formed unsupervised hierarchical cluster analysis. The dendrogram was drawn based on computed Pearson correlation coefficients

with average PCA space (Seurat function RunPCA) for each subset using the R package denextend.

Identification of cell ecotypes
To examine how these different immune and stromal cell subpopulations in the TME form cohesive cellular ‘‘ecosystems’’, we

perform unsupervised analysis to infer cellular relationships and their co-association patterns. First, we calculated the cellular frac-

tions of these 61 TME cell populations (except one ambiguous cell state ‘‘DNT’’) in each of the 58 samples that hadR 150 cells and

quantified their cellular compositions. We then computed the relative cellular abundance of these TME subsets by scaling the sam-

ple-cell proportion matrix by cell type/state (Tables S4 and S5). Unsupervised hierarchical clustering analysis was then performed on

the scaled sample-cell proportion matrix to infer their co-existence patterns across these 58 samples from 5 different tissue groups.

The 3 unique cellular ecosystems (i.e., EC1/EC2, EC3/EC4, EC5/EC6) were 3 major branches of the dendrogram from hierarchical

clustering analysis, and the 3 cell ecosystems were further split into 6 distinct cellular ecotypes (i.e., EC1-6) based on their tissue

distribution. To validate the cellular co-habitation patterns of each defined cellular ecotype using independent approaches, we em-

ployed Jaccard similarity index, which is a measure of set (here refers to cell subset) co-existence. It defines two sets (cell subsets A

and B) as the ratio of the size of their intersection (samples had both subsets A and B >0.5 in terms of the relative cellular abundance)

over the size of their union (all samples had either subset A or B >0.5) (see the equation below):

JðA;BÞ =
jAXBj
jAWBj

For each cellular subset, sample with its relative cellular abundance > 0.5 was represented as the set Pi = {c1, c2,.cn}. The Jac-

card index was computed between a pair of cellular subsets A and B as J(A, B).

Bulk RNA-seq data analysis
To validate the presence of EC3-like and EC6-like ecotypes in primary GACs in large-scale primary GAC cohorts with available

expression and clinical data, we performed ecotypes deconvolution analysis using bulk RNA sequencing (RNA-seq) datasets. We

downloaded the normalized bulk RNA-seq data generated by The Cancer Genome Atlas (TCGA) on primary stomach adenocarci-

noma (STAD) from NCI Cancer Genomic Data Commons (NCI-GDC: https://gdc.cancer.gov). The RNA-seq data was processed

and normalized by the NCI-GDC bioinformatics team using their transcriptome analysis pipeline. The clinical annotation of TCGA-

STAD cohort and molecular subtypes defined by TCGA analysis working groups were downloaded from a recent PanCanAtlas

study.89 In addition, we downloaded 3 additional large-scale primary GAC datasets (GSE62254, GSE15459 GSE84437) from the

Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/) (see key resources table and data and code avail-

ability). The raw gene expression values from microarray experiments were preprocessed (background corrected and log2 trans-

formed) and quantile normalized using the Robust Multi-array Average (RMA) algorithm.115 For each sample, the expression mea-

surements of all probes corresponding to the same Gene ID were averaged to obtain a single measurement. For datasets

GSE62254 and GSE15459, the clinical, histopathological and survival data as well as molecular subtypes defined by their original

studies69,70,116 were downloaded and used for correlation analysis.

In order to assign phenotypes, we first constructed a cell type-specific gene expression signature matrix for TME cell populations

using the CIBERSORTx web portal (https://cibersortx.stanford.edu/runcibersortx.php)117 selecting the ‘‘Create Signature Matrix’’

module. The top 30 DEGs for each scRNA-seq defined cell cluster were used as the input. Next, we employed the ‘‘Impute Cell

Fractions’’ module of CIBERSORTx to infer the abundance of TME cell populations in bulk RNA-seq data with default parameters

(B-mode batch correction). We finally performed unsupervised hierarchical clustering analysis to identify EC3-like and EC6-like

groups. The cutoff was determined by silhouette score.
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Statistical analyses
In addition to the algorithms described above, all other basic statistical analysis was performed in the R statistical environment

(v4.0.0). One-way Kruskal-Wallis rank sum test was used to compare the cell proportions across different tissue groups. The two-

sided Wilcoxon rank sum test was used to compare the cell proportions of a certain cell type (among all TME cells or cells of a major

compartment) between two tissue groups and paired two-sided Wilcoxon rank sum test was used for paired comparisons among

matched samples from the same patients. Wilcoxon rank sum test was also used to compare other continuous variables such as

gene expression levels. When comparing the cellular proportions of major cell types (Figure 1), samples with R 200 cells were

included in the analyses, andwhen comparing the cellular proportions of cell subtypes/states, samples withR 50 cells were included

in the analyses. The Spearman’s correlation coefficient was calculated to assess the association between two continuous variables

(e.g., the cellular proportions) at sample level. The correlation matrix in Figure 4B was computed using the cor function from the R

package ‘spearman’. Samples with R 200 cells were included in the analysis. Two-sided Fisher’s exact test was used to examine

the relationships between the two cellular ecotypes and the Lauren’s histology types as well as previously defined molecular

subtypes.

For survival analysis including overall survival (OS), we used the log-rank test to calculate P values between groups, and the

Kaplan-Meier method to plot survival curves. For the TCGA dataset, the clinical annotation and the times calculated for OS were

downloaded from the PanCanAtlas study.89 For other large-scale primary GAC datasets downloaded from GEO, the OS was down-

loaded from their corresponding published studies. The hazard ratios were calculated using the multivariate Cox proportional haz-

ards model. The prognostic significance of clinical and pathologic characteristics was determined using univariate Cox regression

analysis. To assess the presence of possible confounding variables, a Cox regression model for multivariate analysis was applied for

factors that achieved significance in univariate analysis.

All statistical significance testing in this study was two sided. To control for multiple hypothesis testing, we applied the Benjamini-

Hochberg method to correct P values and the false discovery rates (FDR q-values) were calculated. Results were considered sta-

tistically significant at P value or FDR q-value < 0.05.
Cancer Cell 41, 1–20.e1–e9, August 14, 2023 e9


	CCELL3640_proof.pdf
	Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression
	Introduction
	Results
	Single-cell TME landscapes in Different Stages of GACs
	Changes in T cell states as GAC progresses
	Immunosuppressive myeloid subsets dominated in tumors at advanced stages
	Highly enriched IgA+ plasma cells in precancerous lesions
	Stromal cell remodeling in GAC progression
	Phenotypic relationships and population abundance of 62 TME cell subsets
	Ecotypes of TME cells and their clinical significance
	SDC2 upregulation in tumor stroma associates with aggressive phenotype and poor survival
	SDC2 upregulation in CAFs contributes to tumor growth in vivo in xenograft models

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Human specimens
	Cell lines
	Mice

	Method details
	Sample processing
	scRNA-seq library preparation and sequencing
	Microsatellite instability (MSI) testing
	Multi-color immunofluorescence (mIF) staining
	SDC2 Immunohistochemistry (IHC) assay
	Evaluation of IHC staining results
	SDC2 cDNA subcloing
	Lentiviral vector generation and transfection
	Quantitative real-time PCR (qRT-PCR) analysis
	In-vivo tumorigenesis of SDC2-CAFs in mice

	Quantification and statistical analysis
	scRNA-seq data processing
	Batch effect evaluation and correction
	Unsupervised clustering
	Doublet detection and removal
	Differential gene expression (DEG) analysis
	Cell type and state identification
	Signature score analysis
	Quantification of tissue enrichment
	Single-cell trajectory inference
	Quantification of cell similarities
	Hierarchical relationships among TME subsets
	Identification of cell ecotypes
	Bulk RNA-seq data analysis
	Statistical analyses





