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INTRODUCTION: The human gut microbiome is
a complex ecosystem specific to each individual
that comprises hundreds of microbial species.
Different strains of the same species can im-
pact health disparately in important ways,
such as through antibiotic resistance and
host-microbiome interactions. Consequently,
consideration of microbes only at the species
level without identifying their strains obscures
important distinctions. The strain-level genomic
structure of the gut microbiome has yet to be
elucidated fully, even within a single person.
Shotgun metagenomics broadly surveys the
genomic content of microbial communities
but in general cannot capture strain-level var-
iations. Conversely, culture-based approaches
and titer plate-based single-cell sequencing can
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yield strain-resolved genomes, but access only a
limited number of microbial strains.

RATIONALE: We develop and validate Microbe-
seq—a high-throughput single-cell sequencing
method with strain resolution—and apply it
to the human gut microbiome. Using an inte-
grated microfluidic workflow, we encapsulate
tens of thousands of microbes individually
into droplets. Within each droplet, we lyse the
microbe, perform whole-genome amplifica-
tion, and tag the DNA with droplet-specific bar-
codes; we then pool the DNA from all droplets
and sequence.

In mammalian systems—the focus of most
single-cell studies—high-quality reference ge-
nomes are available for the small number of

Single-cell library preparation Pooled sequencing

Co-assembly into
species-level genomes

f

Host-phage associations

-
Jo il
o @, .....
Strain1 ools.(‘ Strain 3

Strain 2

Microbe-seq overview. Cells encapsulated individually at high throughput into droplets are lysed and
resulting DNA amplified and barcoded. Pooled DNA sequencing yields single amplified genomes, which are
clustered and coassembled into reference genomes of ~100 species. For multistrain species, assigning
SAGs to constituent strains through SNPs enables coassembly of strain-resolved genomes, used to elucidate
the HGT network and host-phage associations.
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species under investigation; by contrast, in
complex communities of 100 or more microbial
species—such as the human gut microbiome—
reference genomes are a priori unknown.
Therefore, we develop a generalizable com-
putational framework that combines sequenc-
ing reads from multiple microbes of the same
species to generate a comprehensive list of
reference genomes. By comparing individual
microbes from the same species, we identify
whether multiple strains coexist and coassem-
ble their strain-resolved genomes. The result-
ing collection of high-quality strain-resolved
genomes from a broad range of microbial taxa
enables the ability to probe, in unprecedented
detail, the genomic structure of the microbial
community.

RESULTS: We apply Microbe-seq to seven gut
microbiome samples collected from one hu-
man subject and acquire 21,914 single-amplified
genomes (SAGs), which we coassemble into
76 species-level genomes, many from species
that are difficult to culture. Ten of these
species include multiple strains whose genomes
we coassemble. We use these strain-resolved
genomes to reconstruct the horizontal gene
transfer (HGT) network of this microbiome; we
find frequent exchange among Bacteroidetes
species related to a mobile element carrying
aType-VI secretion system, which mediates inter-
strain competition. Our droplet-based encap-
sulation also provides the opportunity to probe
physical associations between individual mi-
crobes and colocalized bacteriophages. We find
a significant host-phage association between
crAssphage, the most abundant bacteriophage
known in the human gut microbiome, and
one particular strain of Bacteroides vulgatus.

CONCLUSION: We use Microbe-seq, combining
microfluidic-droplet operation with tailored
bioinformatic analysis, to achieve a strain-
resolved survey of the genomic structure of a
single person’s gut microbiome. Our meth-
odology is general and immediately applicable
to other complex microbial communities, such
as the microbiomes in the soil and ocean.
Applying our method to a broader human
population and integrating Microbe-seq with
other techniques, including functional screen-
ing, sorting, and long-read sequencing, could
significantly enhance the understanding of
the gut microbiome and its interaction with
human health.
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Characterizing complex microbial communities with single-cell resolution has been a long-standing goal of
microbiology. We present Microbe-seq, a high-throughput method that yields the genomes of individual
microbes from complex microbial communities. We encapsulate individual microbes in droplets with
microfluidics and liberate their DNA, which we then amplify, tag with droplet-specific barcodes, and
sequence. We explore the human gut microbiome, sequencing more than 20,000 microbial single-amplified
genomes (SAGs) from a single human donor and coassembling genomes of almost 100 bacterial

species, including several with multiple subspecies strains. We use these genomes to probe microbial
interactions, reconstructing the horizontal gene transfer (HGT) network and observing HGT between

92 species pairs; we also identify a significant in vivo host-phage association between crAssphage and
one strain of Bacteroides vulgatus. Microbe-seq contributes high-throughput culture-free capabilities to
investigate genomic blueprints of complex microbial communities with single-microbe resolution.

icrobial communities inhabit many

natural ecosystems, including the

ocean, soil, and the digestive tracts of

animals (7-4). One such community is

the human gut microbiome. Compris-
ing trillions of microbes in the gastrointestinal
tract (5), this microbiome has substantial as-
sociations with human health and disease,
including metabolic syndromes, cognitive
disorders, and autoimmune diseases (6, 7).
The behavior and biological effects of a mi-
crobial community depend not only on its
composition (8, 9) but also on the biochem-
ical processes that occur within each microbe
and the interplays between them (10, I1); these
processes are strongly affected by the ge-
nomes of each individual microbe living in
that community.

The composition of the gut microbiome is
specific to each individual person; although
people often carry similar sets of microbial
species, different individuals have distinct sub-
species strains (hereafter referred to simply as
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“strains”), which exhibit substantial genomic
differences, including point mutations and
structural variations (2, 12-14). These genomic
variations between strains can lead to differ-
ences in important traits such as antibiotic
resistance, metabolic capabilities, and interac-
tions with the host immune system (15, 16),
which can have serious consequences to human
health. For example, Escherichia coli are com-
mon in healthy human gut microbiomes but
certain E. coli strains have been responsible
for several lethal foodborne outbreaks (17).
Microbial behavior in the gut microbiome is
influenced not only by the presence of partic-
ular strains but also by the interactions among
them, such as cooperation and competition for
food sources (11), phage modulation of bacte-
rial composition (18, 19), and transfer of ge-
nomic materials between individual microbial
cells (20, 21). Improving our fundamental
understanding of these behaviors depends on
detailed knowledge of the genes and pathways
specific to particular microbes (22); however,
elucidating this information can present con-
siderable challenges where taxa are only known
at the species level, obscuring strain-level dif-
ferences. Individual microbes from the same
strain from a single microbiome largely share
the same genome (12, 23); therefore, a sub-
stantial improvement in understanding would
be provided by high-quality genomes resolved
to the strain level from a broad range of mi-
crobial taxa within a given community.
Several approaches are used to explore the
genomics of the human gut microbiome. One
widely used general technique is shotgun
metagenomics, in which a large number of
microbes are lysed and their DNA sequenced
to yield a broad survey of genomic content
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from the microbial community (22, 24, 25).
Metagenomics-derived sequences have been
assigned to individual species and have been
used to construct genomes; however, meta-
genomics is generally not effective in assigning
DNA sequences that are common to multiple
taxa in a single sample, such as when one spe-
cies has multiple strains or when homologous
sequences occur in the genomes of multiple
taxa (26, 27). Consequently, shotgun metage-
nomics generally cannot resolve genomes with
strain resolution, though recent technolog-
ical advances such as long-read sequencing
(28, 29), read-cloud sequencing (30), and Hi-C
(31, 32) are beginning to contribute strain-
level information for some species. By con-
trast, high-quality strain-resolved genomes
of taxa from the human gut microbiome have
been assembled from colonies cultured from
individual microbes (12, 14, 33, 34); however,
culturing colonies can be labor-intensive and
biased toward microbes that are easy to cul-
ture. Alternatively, single-cell genomics or mini-
metagenomics rely upon isolation and lysing
of individual or around a dozen microbes in
wells on a titer plate, and subsequently am-
plifying their whole genomes for sequencing
(35-40). Such approaches might yield strain-
resolved genomes and have been used to probe
the association between phages and bacteria
(41, 42). For all of these metagenomic, culture,
and well-plate approaches, however, available
resources severely limit the number of strain-
resolved genomes that originate from the same
community (72, 33), thereby constraining
our knowledge of the genomic structure and
dynamics of the human gut microbiome of a
given person.

One practical way to overcome this through-
put limitation is droplet microfluidics (43),
in which individual cells are encapsulated in
nanoliter to picoliter droplets. These techniques
have been used to analyze the transcriptomics
of thousands of individual mammalian cells;
more specifically, each cell is encapsulated in a
single microfluidic step, and its genetic mate-
rial liberated and labeled (44, 45). By contrast,
lysing, whole-genome amplification, and labeling
of bacterial DNA require multiple microfluidic
steps; consequently, although each of these
steps has been performed individually in drop-
lets they have not thus far been combined
into a unified droplet-based workflow that
takes in bacteria and outputs whole genomes
in which each DNA sequence can be traced
back to its single host microbe (35, 46, 47).
Thus, substantial improvement in our under-
standing of the human gut microbiome re-
quires a new, practical, high-throughput method
to obtain single-microbe genomic information
at the level of detail given by culture-based
or single-cell genomics, while simultaneously
sampling the broad spectrum of microbes typ-
ically accessed by shotgun metagenomics.
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‘We introduce Microbe-seq, a high-throughput
method for obtaining the genomes of large
numbers of individual microbes. We use mi-
crofluidic devices to encapsulate individual
microbes into droplets, and within these
droplets we lyse, amplify whole genomes, and
barcode the DNA. Consequently, we achieve
substantially higher throughput than what is
practically accessible with titer plates. We in-
vestigate the human gut microbiome, analyz-
ing seven longitudinal stool samples collected
from one healthy human subject, and acquire
21,914 single-amplified genomes (SAGs). Com-
paring with metagenomes from the same sam-
ples, we find that these SAGs capture a similar
level of diversity. We group SAGs from the same
species and coassemble them to obtain the
genomes of 76 species; 52 of these genomes
are high quality with more than 90% com-
pleteness and less than 5% contamination. We
achieve single-strain resolution and observe
that ten of these species have multiple strains,
the genomes of which we then coassemble.
With Microbe-seq, we can probe the genomic
signatures of microbial interactions within
the community. For instance, we construct the
network of the horizontal gene transfer (HGT)
of the bacterial strains in a single person’s gut
microbiome and find substantially greater
transfer between strains within the same bac-
terial phylum, relative to those in different
phyla. Unexpectedly, through use of Microbe-
seq we detect association between phages and
bacteria; we find that the most common bac-
teriophage in the human gut microbiome,
crAssphage, has significant in vivo association
with only a single strain of B. vulgatus.

Results

High-throughput sample preparation using
droplet-based microfiuidic devices

We use a microfluidic device to encapsulate
individual microbes into droplets (fig. S1 and
movie S1) containing lysis reagents, as shown
in the schematic in Fig. 1A. We collect the
droplets in a tube and incubate to lyse the
microbes; the DNA from each individual mi-
crobe remains within its own single droplet.
We reinject each droplet into a second micro-
fluidic device (48) that uses an electric field to
merge it with a second droplet containing
amplification reagents (49, 50); we collect the
resulting larger droplets and incubate them
to amplify the DNA. We then use similar pro-
cedures with a third microfluidic device to
merge each droplet with another droplet con-
taining reagents to fragment and add adapters
(Nextera) to the DNA (57). We subsequently
employ a fourth microfluidic device to merge
each droplet with an additional droplet con-
taining a barcoding bead, a hydrogel micro-
sphere with DNA barcode primers attached;
these primers are generated through combi-
natorial barcode extension. Each primer con-
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Fig. 1. Schematic of the Microbe-seq workflow and application in a community of known bacterial
strains. (A) Schematic of the Microbe-seq workflow. Microbes are isolated by encapsulation with lysis
reagents into droplets. Each microbe is lysed to liberate its DNA; after lysis, amplification reagents are added
to each droplet to amplify the single-microbe genome within each. Tagmentation reagents are added

into each droplet to fragment amplified DNA and tag them with adapters. PCR reagents and a bead with
DNA barcodes are added to each droplet. PCR is performed to label the genomic materials with these
primers, and droplets are broken to pool barcoded single-microbe DNA together. (B) Purity distribution of all
SAGs from the mock community sample, which for a large majority of SAGs exceeds 95%, demonstrating
single-microbe origin for the DNA in each of these SAGs. (C) Combined genome coverage of reads as

a function of the number of SAGs from which these reads originate; error bars denote standard deviation.
The dashed horizontal line indicates a coverage of 90%. In all cases, a few dozen SAGs contain essentially all

the information of the microbial genome.

tains two parts: one barcode sequence that is
specific to each droplet and another sequence
that anneals to the previously added adapters.
We attach these barcode primers to the frag-
mented DNA molecules within each droplet
using polymerase chain reaction (PCR). We
then break the droplets, add sequencing adapt-
ers, and sequence (Illumina). We illustrate all
of these steps in the schematic in Fig. 1A and
include schematics for all microfluidic devices
in fig. S1.

The raw data constitutes sequencing reads,
each containing two parts: a barcode sequence
shared among all reads from the same droplet,
and a sequence from the genome of the microbe
originally encapsulated in that droplet. The
collection of microbial sequences associated
with a single barcode represents a SAG (38).

Single-microbe genomics in a community of
known bacterial strains

To characterize the nature of the information
contained within each SAG, we determine

3 June 2022

whether each SAG contains genomes from
one or multiple microbes and how much of a
microbe’s genome is contained in each SAG.
Consequently, we apply our methods to a mock
community sample that we construct from
strains with genomes that are already known
completely, providing an established reference
to check the quality of each SAG. The mock
sample contains four bacterial strains in simi-
lar concentrations, each with a complete, pub-
licly available reference genome: Gram-negative
E. coli and Klebsiella pneumoniae, and Gram-
positive Bacillus subtilis and Staphylococcus
aureus. From the mock sample, we recover
5497 SAGs, each containing an average of
20,000 reads (table S1).

To assess the extent to which each SAG con-
tains genomic information from only a single
microbe, we align each read against each ge-
nome and identify the genome containing
the sequence that most closely matches each
read as the closest-aligned genome (52). If a
SAG includes reads from multiple microbes,
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its constituent reads likely connect with a mix
of different closest-aligned genomes; by con-
trast, if the reads from a SAG originate from
only one microbe, then those reads will con-
nect to the same closest-aligned genome. To
test this, for each SAG we examine all reads
that align successfully to at least one of the
four genomes and determine the percentage
of those reads that share the same closest-
aligned genome; we define the highest of
these four values as the purity of that SAG (47).
Within the mock sample, we find that 84%
(4612) of the SAGs have a purity exceeding
95%, which we designate as high purity; these
data demonstrate that a large majority of SAGs
represent single-microbe genomes, as shown
in the distribution in Fig. 1B.

For each of these high-purity SAGs, we iden-
tify each base in the corresponding reference
genome that has at least one read from that
SAG that aligns successfully to it; we use this
information to calculate genome coverage,
defined as the ratio of these aligned bases
to the total number of bases in the reference
genome for each SAG. We find that genome
coverage is broadly distributed around the
average values of 17 and 25% for B. subtilis and
S. aureus, respectively (fig. S2). The coverage
for these Gram-positive strains is roughly
double that of the coverage for the Gram-
negative strains, which peaks more narrowly
around the average values of 8 and 9% for
E. coli and K. pneumoniae, respectively (fig.
S2 and table S1); the comparatively smaller
genome sizes of the Gram-positive strains
likely contribute to this observed coverage
difference.

The genome coverage of each individual
SAG is incomplete, and one way to overcome
this limitation is to combine the genomic in-
formation from multiple microbes belonging
to the same strain, which are known to share
nearly identical genomes. To explore how the
genomic information contained within a group
of SAGs depends on the number of SAGs in the
group, we randomly select a subpopulation of
SAGs from the group that matches each of the
four reference genomes and determine the
total combined coverage of all of the reads
within that group of SAGs. We calculate the
combined coverage as a function of the num-
ber of SAGs in that group and find that it
increases with SAG group size. Although the
specific number of SAGs needed to reach any
given combined coverage varies between
strains, in all cases the information that would
be needed to reconstruct essentially complete
genomes is, in principle, present within any
randomly selected group of several dozen SAGs,
as shown in Fig. 1C.

Human gut microbiome samples

To explore the utility of single-microbe sequenc-
ing, we apply the droplet-based approach to a
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complex microbial community. We explore the
human gut microbiome, which is expected to
contain on the order of 100 species (22). We
examine seven stool samples collected from
one healthy human donor over a year and a
half, for which both shotgun metagenomic
datasets and cultured isolate genomes have
been reported separately (12). We recover 1000
to 7000 SAGs per sample, for a total of 21,914
SAGs (table S2). Each SAG contains an average
of about 70,000 reads so that each sample
contains several hundred million reads.

Genomes of microbial species in the human
gut microbiome

To explore the data acquired through the
droplet-based methods the contents of each
SAG must be identified, which is best done by
comparison with known genomes. In the case
of the mock sample, we identify each SAG by
comparing its reads to preexisting reference
genomes. By contrast, in the case of the human
gut microbiome samples no complete set of
genomes from all major strains exists, and
certain species may not even appear in public
reference databases; more generally, it is not
possible to identify SAGs from complex micro-
bial communities using comparison with pre-
existing reference genomes. Based on the data
from the mock sample, we expect the coverage
of the SAGs to be far from complete, thereby
precluding an individual SAG from being used
as a reference genome. Consequently, we de-
velop an approach that does not consult ex-
ternal genomes but instead combines the
genomic information from multiple SAGs to
coassemble genomes and thus enable identifi-
cation of individual SAGs.

In this approach, the first task is to identify
SAGs that correspond to the same species.
Within each SAG, we assemble the reads de
novo with overlapping regions into contigs
(563)—longer contiguous sequences of bases—
and the resulting set of contigs forms that
SAG’s partial genome, which we expect from
the mock sample to cover only a few percent
of the total genome, somewhat less than the
coverage of the reads themselves. The overlap
between two genomes from a given species is
expected to be roughly the square of this cov-
erage, generally <1%; consequently, any two
genomes from SAGs of the same species will
likely share only a few or even no direct over-
laps. This low overlap prevents direct sequence
alignment from being a robust method for
determining the similarity of two partial ge-
nomes; instead, for each SAG’s genome, we use
a hash function to extract a signature indicative
of the complete genome (54). We compare
the signatures of all pairs of genomes, using
hierarchical clustering to group SAGs with
similar partial genomes into preliminary data
bins. For all SAGs within each of these bins, we
treat all of the reads equally and coassemble
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them into that bin’s tentative genome. We
then calculate new signatures for the tenta-
tive genomes and recompare their similar-
ity, iterating this process to consolidate bins
that should contain sequences from the same
species.

This initial grouping process may generate
bins containing reads from multiple taxa. In
response, we examine how the reads within
each bin align to the contigs in its tentative
coassembled genome. For each contig, we
examine the reads that align to that contig
successfully; if two different contigs have non-
overlapping subgroups of SAGs with reads that
align successfully, then each of these subgroups
likely correspond to different taxa (40). In these
cases we create new bins from these subgroups
and coassemble their tentative genomes; these
genomes should, in principle, represent only a
single taxon.

After this bin splitting process, multiple bins
may contain genomes that correspond to the
same species, which we may identify by com-
paring their genomes. However, in contrast
to the earlier steps each bin at this stage con-
tains a genome coassembled from many SAGs,
which is large enough to share overlapping
sequences with genomes from other bins that
represent the same species; consequently, we
can compare the sequences of tentative ge-
nomes directly without needing to rely on
comparatively less precise hashes. For all pairs
of these tentative coassembled genomes, we
calculate their average nucleotide identity
(ANTI), a metric that estimates the similarity
of two genomes by comparing their homol-
ogous sequences; we use an ANI value ex-
ceeding 95% to indicate that both genomes
belong to the same species (55). Using this
criterion, we merge all bins corresponding to
the same species and coassemble their con-
stituent reads to yield refined genomes of
individual species.

To evaluate the quality of each of these re-
fined coassembled genomes we count single-
copy marker genes to estimate two metrics:
completeness (the fraction of a taxon’s genome
that we recover) and contamination (the frac-
tion of the genome from other taxa) (56).
We find that 52 of the coassembled genomes
have completeness >0.9 and contamination
<0.05; we thus designate them high quality
(33, 57, 58). We also find that 24 of the other
coassembled genomes have completeness >0.5
and contamination <0.1; we thus designate
them medium quality. More than three-quarters
(16723) of the SAGs belong to one of these
76 species, demonstrating successful recon-
struction of reference genomes for a large ma-
jority of SAGs; out of these 76 species, six have
fewer than 24 SAGs.

To determine whether each genome cor-
responds to a single species known to occur
in the human gut microbiome, we compare
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each coassembled genome against a public
database (GTDB-Tk) (59), using the ANI >95%
criterion to identify matches of the same spe-
cies. We obtain a broad mix of species from di-
verse phyla including Firmicutes, Bacteroidetes,
Actinobacteria, Proteobacteria, and Fusobacteria
(reported with assembly quality information in
table S3). Several species well known in the hu-
man gut microbiome are abundant, includ-
ing Faecalibacterium prausnitzii, Bacteroides
uniformis, and B. vulgatus. For each of these
76 genomes, we list the name (colored accord-
ing to corresponding phylum), illustrate its
phylogenetic relationships with other spe-
cies with a dendrogram, and indicate the num-
ber of SAGs used in its coassembly with the
length of the outer bars, shaded for those of
high quality, in Fig. 2.

Because there exists for these samples a
large number of isolates cultured from the
same human donor (12), we compare the co-
assembled genomes with the “gold standard”
genomes derived from isolates. We find 19 spe-
cies for which the coassembled genomes have
corresponding isolate genomes, which we mark
with an asterisk following each species name
in Fig. 2. The ANI exceeds 99.5% in 17 species;
these data provide strong evidence for the
faithful reconstruction of genomes that closely
match those of the cultured isolates, with low
contamination.

With only a small set of culture-free exper-
iments, we recover a broad set of accurate ref-
erence genomes from more species than those
recovered from any other single gut micro-
biome. These genomes enable us to assign a
large majority of single-microbe SAGs in the
sample to one of these 76 species.

Microbial diversity in the human gut microbiome

Although species-level genomes provide one
approach to assess microbiome diversity, the
diversity of the human gut microbiome is typ-
ically assessed with metagenomics. We follow
the spirit of this metagenomic approach and
repurpose the droplet-based dataset to mimic
that produced in metagenomics, by consid-
ering all reads from all SAGs in each sample.
We classify each read in each sample by com-
paring it with the public database of microbial
genomes (60); we also perform this compar-
ison on each read from the corresponding
metagenomic datasets (12). Each stool sam-
ple contains thousands of cells, in contrast
to metagenomics which typically accumu-
lates genomic data from millions of cells.
Nevertheless, we recover 96.9 to 99.8% of
the genera found by metagenomic analysis
of the seven stool samples (figs. S3 and S4
and table S2).

The large collection of coassembled species-
level genomes, however, provide an additional
way to assess diversity with even greater pre-
cision at the species level. We align all meta-
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Fig. 2. Coassembled genomes of 76 bacterial species in the human gut microbiome of a single
human donor. These 76 bacterial species have high- or medium-quality coassembled genomes. A phylogeny
constructed from ribosomal protein sequences is represented by the dendrogram in the center of the circle.
The phylum of each species is indicated by the background color behind each listed species name (GTDB-Tk
database); the 19 species with genomes from isolates cultured from the same human donor are marked

with an asterisk. The number of SAGs used for coassembly (abundance) is indicated by the bars in the outermost
ring, shaded in gray for the 52 high-quality genomes and unshaded for the 24 medium-quality genomes.

genomic reads to the combined genome of all
coassembled species irrespective of quality
and find that 96 to 98% of these reads align,
thereby providing further evidence that the
droplet-based method does not miss any no-
ticeable number of abundant taxa. For the
76 species with high- or medium-quality ge-
nome coassemblies, we estimate the relative
abundance of each species in both meta-
genomics and the droplet-based approach.
In metagenomics, the number of cells from a
given species is proportional to the average
read coverage over its genome; by contrast, in
the droplet-based method we infer relative cell
number by counting SAGs corresponding to
the given species. We find that both abundance
estimates are well correlated for the 76 spe-
cies (fig. S5), though with one notable trend:
In general, Gram-negative species—particularly
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those from Bacteroidetes and Proteobacteria—
are underrepresented in the droplet-based
method; by contrast, Gram-positive species,
including Firmicutes and Actinobacteria,
are overrepresented—albeit with a few excep-
tions (fig. S6). These trends may result from
differences in lysis methods: for the meta-
genomics samples, we follow standard lysing
protocols that use mechanical bead beating;
because such mechanical methods have not
been demonstrated in droplets, we use purely
enzymatic methods known to favor Gram-
positive species.

Strain-resolved genomes in the human
gut microbiome

Many species in the human gut microbiome
are represented by multiple strains (67); dif-
ferent strains may play distinct roles within
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complex microbial communities and express
different sets of genes to carry out these roles
(62). Linking specific genes and consequently
their functionality to the strains which con-
tain them requires knowledge of the genomes
from those individual strains. Moreover, be-
cause each microbe inherently represents
only a single strain, definitive identification
of each SAG requires strain-resolved refer-
ence genomes.

To explore the possibility that the coassem-
bled genomes contain contributions from more
than a single strain, we further examine the
comparison between the 19 coassembled ge-
nomes and cultured isolates of the same spe-
cies; each of these isolates represents only a
single strain. In general, the coassembled ge-
nome of a species with multiple strains con-
tains some contigs specific to each strain;
not all of these contigs appear in the single-
strain genomes of the corresponding iso-
lates. Consequently, we determine the shared
genome fraction—the percentage of bases in
each coassembled genome that are shared
with isolate genomes from the same species.
We find that for the comparison in 16 spe-
cies, the shared genome fraction is above
96% and the ANI value exceeds 99.9%; these
data suggest that each of these 16 coassem-
bled genomes represents a single strain. By
contrast, for the remaining three species,
Blautia obeum, B. vulgatus , and Parasutterella
excrementihominis, the shared genome frac-
tion is far lower (between 70 and 90%) and
ANTI are all <99.6% (fig. S7). These lower values
suggest that the genomes of these three spe-
cies may include multiple strains or strains
that do not appear among the cultured isolates.
In principle, directly comparing all pairs of
SAGs to estimate the fraction of their shared
genomes could distinguish strains. However,
the coverage of each SAG is expected to be <25%
on average, for example 7% of the genome for
B. vulgatus. This coverage suggests that such
pairwise comparisons will not be reliable and
instead motivates a different approach.

of the SNP coverage. Microbes of the same
strain have nearly identical genomes (12, 14)
such that two SAGs representing the same
strain almost always have the same base at
each SNP location shared by both SAGs; con-
versely, SAGs representing different strains
show considerably lower similarity (61). In-
ferring the similarity of the bases at shared
SNP locations in each pair of SAGs is gov-
erned by a binomial process; therefore, the
average of 80 SNPs in each SAG pair should
be sufficient for a robust inference, with an
uncertainty of 6% or less. Consequently, the
comparison of SNPs provides a promising ap-
proach to determine strains.

To test this possibility, in all pairs of SAGs,
we examine the bases at all shared SNP loca-
tions and determine the fraction of locations
where both SAGs have the same base. To probe
whether these SAGs fall into any distinct
groups, we visualize the SNP similarity be-
tween all pairs of SAGs with dimensional re-
duction (63). Notably, we find that the SAGs
fall into four clearly distinct clusters as shown

A

. Strain D o
Strain B
an Strain A

UMAP dimension 2

B
Strain C
UMAP dimension 1

o

=]

S
T

#0of sAGs 99
N
&
T

|

?

095~

0.90

010

s | @ S 4

Fraction of SNPs shared with genotype B

@ StrainB

I Lo o1 I I
)

0.00
0.00 0.05 0.10 0.90 0.95

e . . 1.00 0 250

To dlStll’lgulSh strains, we develop amethod Fraction of SNPs shared with genotype A # of SAGs
that leverages the differences among homolo-

. c Strain C
gous sequences between SAGs, specifically the L
single-nucleotide polymorphisms (SNPs). To e !
illustrate this method we examine ~900 SAGs V”””’""”g"é"a‘" ’
of B. vulgatus—the most abundant of the _‘—g_[‘ o
three species—and align reads from each SAG ‘ \ jlsoate 52
. 99.0 99.5 100.0

against the coassembled B. vulgatus genome, Genome similarity: ANI (%)
then identify ~12000 total SNP locations. For D
each SAG, we determine the SNP coverage, the OStainA @ StainB B StranC ¥ StrainD \
fraction of all SNP locations in the genome nr e e ¢ 7]
that occur among the reads of that SAG; this . le o ¢
SNP coverage is 8% on average, comparable g5 \/\\ ]
to the average genome coverage. For each pair “g; & \'\\\\A\‘
of SAGs, we measure the fraction of total SNP 5r s 8 /,/"
locations that occur in both and find this frac- v T A
tion to be ~0.7%, corresponding to ~80 SNPs, T T T
which is consistent with roughly the square Time (days)
Zheng et al., Science 376, eabm1483 (2022) 3 June 2022

in Fig. 3A. We independently validate the
presence of these SAG groups with hierarchical
clustering, which yields the same groupings
with 99.8% overlap (fig. S8).

To test whether these clusters correlate with
different strains, we examine the bases at SNP
locations within each SAG cluster. We deter-
mine which base occurs most frequently at
each SNP location; the set of these bases at
each SNP location forms the consensus geno-
type of each SAG cluster. Then, for each SAG,
we calculate the fraction of its SNPs that have
the same base at the corresponding location in
the consensus genotype of each of the four SAG
clusters. Within each SAG cluster, we find that
constituent SAGs share extremely high SNP
similarity with the corresponding consensus
genotype. For example, in the two clusters with
the highest number of SAGs, almost all have
the same base in >99% of the SNP locations
as shown in the scatterplot and histograms in
Fig. 3B. By contrast, SAG clusters show much
lower overlap with the consensus genotypes
of other clusters; for the two clusters with the

Fig. 3. Strain-resolved genomes of B. vulgatus

in the human gut microbiome. (A) Dimension-
reduction (UMAP) visualization of B. vulgatus

SAGs, based on comparison of their sequences at
SNP locations. SAGs fall into four distinct, widely
separated clusters; the symbol for each SAG is
colored according to the cluster in which it is
grouped. (B) Scatterplot and histograms illustrating
the fraction of SNPs from each SAG that match
consensus genotypes for SAGs in the two most
abundant clusters, A and B. In almost all cases, each
SAG shares the same base in more than 99% of
the SNP locations in its corresponding consensus
genotype; by contrast, the SNP overlap with the
consensus genotype of the other cluster is much
lower, typically 5% or less. The symbols in each
cluster are colored as in (A). (C) Phylogeny of the
coassembled high- and medium-quality genomes of
B. vulgatus strains and comparison with the
corresponding genomes of strains of isolates
cultured from the same human donor. The horizontal
axis of the dendrogram represents the ANI values
between these strain-resolved genomes, demon-
strating that coassembled strain C and isolate S1 are
the same strain; similarly, coassembled strain A
and isolate S2 are the same strain. By contrast, the
second most-abundant strain, B, does not appear
among the isolates cultured from the same human
donor. (D) Relative abundance of the four B. vulgatus
strains in the seven longitudinal samples.
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highest number of SAGs, all SAGs in each
cluster share fewer than 10% of the bases at
SNP locations with the consensus genotype
of the other cluster, as shown in the figure.
These trends persist among the other clusters
(fig. S8). Together, these results provide strong
evidence that SAGs within these clusters rep-
resent the same strain.

To further examine whether these four clus-
ters correspond to actual B. vulgatus strains,
we coassemble the reads within each SAG
cluster. We obtain high-quality genomes for
the two groups with the most SAGs, which we
label candidate strains A and B; one medium-
quality genome, C; and one additional genome
of lower quality, D (table S4). We compare
these coassembled genomes with the genomes
of two distinct B. vulgatus isolate strains cul-
tured from the same human donor (12). We
find that both isolate genomes have closely
matching coassembled counterparts (A and C)
with ANI values and shared genome fractions
exceeding 99.9 and 97%, respectively, as shown
in Fig. 3C. These high values are consistent
with those that occur between genomes of the
same strain, thereby providing strong evidence
that these coassembled genomes each repre-
sent a single, genuine strain of B. vulgatus.
Notably, the second-most populous cluster—
candidate strain B, with several hundred
SAGs—does not appear among the nearly one
hundred isolates of B. vulgatus cultured from
the same human donor (72). Together these re-
sults demonstrate the capabilities of this SNP-
based approach to correctly identify both the
major known strains of B. vulgatus and po-
tential new strains that have not been cul-
tured, while at the same time enabling the
accurate coassembly of their genomes.

We further apply this SNP-based analysis to
the remaining species with high- or medium-
quality species-level genomes. We find nine
additional species with multiple strains and
coassemble their genomes (fig. S9 and table
S4). We compare the genotype of each SAG
to its corresponding strain-resolved consen-
sus genotype and observe that <1% of the
SAGs have <95% similarity with the con-
sensus genotype (fig. S10); these results are
similar to those from B. vulgatus and provide
strong confirmation that the separation of
SAGs from different strains are robust. In
total, we obtain 86 high- and medium-quality
strain-resolved genomes from 76 species—from
just one set of experiments—and compare to
corresponding isolate genomes cultured from
the same human donor. We find excellent agree-
ment for B. obeum, with an ANI of 99.9% and
shared genome fraction of 95%; this again
confirms—just as in the case for B. vulgatus—
that the coassembled genome represents a
single, genuine strain (for the remaining multi-
strain species, we have no isolate genomes of
the same strains with which to compare).
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Notably, we are able to achieve this accurate
identification of strains and the coassembly
of their genomes even with a level of coverage
that yields an average of <100 shared SNP lo-
cations between all pairs of SAGs.

The capability to identify the strain of each
individual SAG also enables us to follow the
relative abundances of these strains over time
in the human donor, giving insight on bac-
terial population dynamics. The abundances
of these strains appear to shift only gradually
throughout the year and a half over which
samples were collected; for instance, we ob-
serve quite similar abundances in B. vulgatus
in the two samples collected on successive days
around day 400, as shown in Fig. 3D. These ob-
servations are consistent with previous studies
showing that different Bacteroidetes species can
colonize the human gut for decades stably, and
that different strains of the same Bacteroidetes
species can coexist with stable relative abun-
dance (64).

The results demonstrate the capability of
this approach to resolve subspecies strains
and reconstruct their strain-resolved genomes,
even when the SAGs have coverage of only
~10% of the genome. Furthermore, the droplet-
based approach can obtain strain-resolved
genomes from strains which have not been cul-
tured; this is of particular importance in the
human gut microbiome, where many strains
are difficult to culture. Consequently, this
method contributes a new way to examine
the strain-resolved structure and dynamics
of the genomic information within the hu-
man gut microbiome independent of the bias
imposed by what has been cultured. These
high-quality, strained-resolved genomes from
a broad range of strains from the gut micro-
biome of a single human donor not only allow
greater precision in the identification of a
large majority of SAGs, but further enable the
probing of broader genomic aspects of the
microbial community, particularly those in-
volving microbes of different strains.

HGT within the human gut microbiome

One particularly notable genomic aspect of
microbial communities is how microbes ex-
change genetic information; one of the most
well-known mechanisms is HGT, which is
frequently observed within the human gut
microbiome (20, 21, 65, 66). In general, the
genomes of different bacterial species will
differ considerably; however, one of the major
indicators of HGT is a nearly identical sequence
shared between genomes from different species
(21, 67). The large number of strain-resolved
genomes originating from the gut microbiome
of a single human donor offers the potential to
detect HGT by identifying the common se-
quences shared between specific microbial taxa.

To explore this sequence matching approach,
we designate an HGT event between genomes
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from two species as the presence of a common
sequence of at least 5 Kb with 99.98% similarity.
We apply these criteria to all 57 high-quality
strain-resolved genomes, filter out potential
contamination due to SAG merging (fig. S11),
and observe 265 HGT sequences between 90
pairs of strains from different species, which
are all HGT events within the same phylum:
65 strain pairs are within Firmicutes and 25
are within Bacteroidetes.

To evaluate whether these events might be
false positives caused by contamination, we
align the reads from all SAGs of each species
pair against each HGT sequence, and deter-
mine the fraction of all SAGs that have ade-
quate coverage; under a null hypothesis that
if an observed HGT event were in fact a re-
sult of contamination and the sequence was
absent from one of the species, then only a
small fraction of its corresponding SAGs would
align to the HGT sequence with sufficient
coverage. Instead, we find that all of the ob-
served HGT sequences align to a number
of SAGs considerably greater than that ex-
pected under the null hypothesis in both spe-
cies of each pair, thereby confirming that
there are no false positives (fig. S12). Further-
more, we examine the HGT sequences from
the pairs of species with corresponding cul-
tured isolates and find that 100% of the HGT
sequences determined from the coassembled
genomes occur in the isolate genomes of both
species.

The HGT sequences we observe encode
genes involved in a variety of metabolic, cel-
lular, and informational functions (table S5);
genes indicative of phage, plasmid, and other
forms of mobile genetic elements exist in
~80% of the observed HGT sequences. Among
the 49 species with a single high-quality strain,
we observe 66 HGT events, as shown in Fig. 4A.
Notably, among the species with multiple high-
quality strains we observe that individual
strains of Agathobacter faecis, Faecalicatena
faecis, and Anaerostipes hadrus exchange
genes with different Firmicutes species where-
as both strains of B. vulgatus exchange genes
only with the same six other Bacteroides spe-
cies, as shown in Fig. 4B. Together, these data
demonstrate the ability to resolve HGT to the
level of individual strains.

To determine whether any of these HGT
events involve more than two strains, we iden-
tify all of the genes that occur within HGT
regions and count the number of strains whose
HGT sequences contain each gene. We observe
that approximately half of the genes are shared
among three or more species, providing strong
evidence that these HGT events emerged with-
in this single human donor. Within Bacte-
roidetes, genes detected from HGT sequences
are shared by an average of 3.2 strain-resolved
genomes versus 2.6 strains within Firmi-
cutes, as shown in Fig. 4C (table S6).

6 of 13

£202 ‘TZ Joquisides Uo B10°90Us 195 MMM//:SANY WO PaPe0 JUMO(



RESEARCH | RESEARCH ARTICLE

A

Faecalicatena faecis (14)

strain A|
strain B

strain A|

A I v
A T T E T T]
N I v
swans| [ [ [ T T T[T ]
I I Y
[TTE T T
I I v
N Y

Agathobacter faecis (16)

strain A|
sirain B

Anaerostipes hadrus (34)

strain A

Bacteroides vulgatus (65) stran 8|
2A 5 9 10 12 22 24A 29 60 61 62 63 64 66

= 0.6+ Bacteroidetes
.g [ Firmicutes
IS
E 041
@
o
S
— 0.2
S
2 | N

0.0 ] Is

2 3 4 5 6 7

Number of species

Fig. 4. HGT among bacterial strains within the
human gut microbiome of a single donor.

(A) HGT among the 49 species with a single
high-quality strain-resolved genome, following the
order, numbers, and colors of Fig. 2. Detected

HGT between two genomes indicated with a curve
whose color matches that of the phylum of each
species pair. (B) HGT between species with multiple
high-quality strain-resolved genomes and species
with single high-quality strain-resolved genomes,
following the numbering in (A). For the bacteria in
phylum Firmicutes (Agathobacter faecis, Faecalicatena
faecis, and Anaerostipes hadrus), each strain has
HGT with different sets of species. For the phylum
Bacteroidetes, the only multistrain species is

B. vulgatus, which has HGT between both of its
strains and all other species in this phylum.

(C) Distribution of the number of species in which
HGT genes are shared. Approximately half of

the genes in these HGT sequences are shared
among more than two species; several genes occur
in six or seven bacterial strains.

Notably, we find several genes that occur in
the HGT sequences of six or seven Bacteroi-
detes strains. We examine the HGT sequences
containing these particular genes and find
that these sequences are connected with an
integrative conjugative element containing a

Zheng et al., Science 376, eabm1483 (2022)

type VI secretion system (T6SS), consistent
with previous analysis using cultured isolates
of Bacteroides from the same human donor
(14); T6SS is one of the most-studied sys-
tems in Bacteroides that mediates interstrain
competition between Bacteroides strains and
has been shown to transfer between members
of the same microbiome. In Firmicutes, we
also observe genes shared among HGT se-
quences of six different strains; these HGT
sequences contain genes annotated as recom-
binase, suggestive of an integrative mobile
element or prophage.

Together, these data provide strong evi-
dence that our methodology detects HGT
widely and robustly, among strains of many
species from multiple phyla within the gut
microbiome of a single human donor. The
detection of HGT among six or more species
within this single microbiome suggests that
HGT may have important functional conse-
quences to the recipient strains. These meth-
ods provide new tools to investigate the
interactions of multiple microbes within the
human gut microbiome.

Host-phage association in the human
gut microbiome

The ability to investigate microbial interac-
tions within the human gut microbiome is
not limited to only bacteria, but also includes
other types of microbes. Indeed, the diver-
sity analysis reveals the presence of viruses—
specifically crAssphage, the most abundant
bacteriophage recognized at present from
the human gut microbiome (68, 69). The gen-
eral regulatory role of bacteriophages, thought
to modulate the abundance and behavior of
bacteria, is only beginning to be understood
within complex microbial communities (70, 71).
The droplet-based method encapsulates not
only an individual bacterium but also any
bacteriophages physically colocated with it,
providing a direct means to probe host-phage
association. To explore this association, we com-
pare the reads in each SAG to the crAssphage
genome; we find that a few dozen SAGs contain
a substantial fraction of crAssphage-aligned
reads. Moreover, many of these SAGs also
contain a significant fraction of reads which
do not align to the crAssphage genome but
instead to bacterial taxa; we align these reads
against the coassembled genomes of 76 species
to identify which, if any, bacterial species
might associate with crAssphage strain in this
particular human donor.

Significantly, we find that 14 SAGs are as-
sociated with only one species, B. vulgatus
(P value = 4 x 1079, Fisher’s exact test) (table
S7) and that no other species associates sig-
nificantly with crAssphage, as shown in Fig. 5A.
These data strongly suggest B. vulgatus as
the in vivo host species for crAssphage in
this human donor, consistent with previous
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Fig. 5. Host-phage association with strain specific-
ity in the human gut microbiome. (A) Association
between the bacteriophage crAssphage and bacterial
species with high- or medium-quality genomes,
with species numbers as in Fig. 2. All P values are
calculated with one-sided Fisher's exact test. The
only bacterial species that is significantly associated
with crAssphage is B. vulgatus. (B) Association
between the four strains of B. vulgatus and
crAssphage. Only one specific strain of B. vulgatus—
the most abundant strain, A—is significantly asso-
ciated with crAssphage.

evidence that crAssphage is likely to be as-
sociated with Bacteroides species (68, 72). The
statistical significance of the association indi-
cates that this is not a result of simple random
coencapsulation.

Furthermore, the unambiguous assignment
of each SAG to one of the multiple strains of
B. vulgatus enables even more precise char-
acterization of in vivo host-phage association
to the level of specific bacterial strains. We find
that 13 SAGs represent the single B. vulgatus
strain A, the most abundant (P value = 3 x 10’“),
as shown in Fig. 5B.

These data demonstrate the unique ad-
vantages of the droplet-based approach to
establish accurate in vivo host-phage associ-
ation not only for an individual species but
even more precisely to a specific strain. We
identify which bacterial strains interact with
bacteriophages and which strains do not; the
genomic differences between these strains
provide preliminary data that may contribute
to understanding of the molecular mecha-
nisms underlying these host-phage interac-
tions and their longitudinal dynamics in the
human gut microbiome.

Discussion

Using Microbe-seq, a high-throughput meth-
od combining experiment and computation
for single-microbe genomics, we obtain—
without culturing—the genomic information of
tens of thousands of individual microbes and
de novo coassemble the strain-resolved ge-
nomes from 76 species, a large fraction of which
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have not been cultured. This high-throughput
microfluidics-based approach allows for more
practical individual examination of a sufficient
number of microbes to achieve these results,
even with an average coverage of less than a
quarter of the genome. The close agreement
with strains for which we have corresponding
cultured isolates confirms the accuracy of
this approach. These strain-resolved genomes
enable the reconstruction of an HGT network
within a single human; when sampled over
time, these data may allow the monitoring
of microbe response, at the level of specific
genes in specific strains, to selective pressures
unique to that person, such as disease, diet, or
antibiotic treatment. In addition, the in vivo
association between specific strains of bac-
teriophages and bacteria could provide spe-
cific starting points to investigate how phages
modulate microbial composition and possi-
bly guide subsequent development of phage-
based therapeutics.

Scaling up the analysis to examine an order
of magnitude (or more) microbes from com-
plex microbial communities would shed light
on important questions without requiring any
other qualitative changes to the existing proce-
dures. In the human gut microbiome, sequenc-
ing hundreds of thousands of cells would likely
allow for identification of nearly all of the
present species and strains, thereby enabling
far more accurate surveys of diversity and
abundance. Moreover, expanding the present
investigation to a larger population of humans
could allow direct exploration of the effects on
human health of key microbial pathways and
genes, opening up potential directions for
future therapeutic developments.

We envision several routes for further tech-
nical improvement. Integrating long-read se-
quencing technologies are likely to lengthen
the coassembled contigs considerably, im-
proving the quality and completeness of re-
sulting genome assemblies (28). Exploring
additional lysis conditions would improve
the evenness and efficiency of lysis, poten-
tially allowing investigation of microbes in
other phyla or even other kingdoms such as
fungi. Combining these methods with func-
tional sorting, such as IgA bind-and-sort,
would correlate functional outcomes with
strain-level genomic information and single-
cell resolution.

Microbe-seq provides a particularly effective
and practical approach in a single laboratory-
scale experiment to identify and sequence
fully all of the major strains in microbial com-
munities beyond the human gut microbiome,
without any a priori knowledge of constituent
microbes. The practical improvements pro-
vided by our methodology may make feasible
the investigation of microbial communities
that affect the environments, lives and health
of human communities that otherwise lack
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access to the resources to even begin to in-
vestigate these effects.

Materials and methods
Experimental model and subject details

We obtain stool samples from OpenBiome, a
nonprofit stool bank, under a protocol ap-
proved by the institutional review boards at
MIT and the Broad Institute (IRB protocol
ID # 1603506899). The subject is a healthy
male, 28 years old at initial sampling, screened
by OpenBiome to minimize the potential of
carrying pathogens and de-identified before
receipt of samples. We homogenize stool sam-
ples from this donor, mix with 25% glycerol,
and freeze at —80°C. For each experiment, we
wash 1-3 uL of stool sample in 1 mL 1X PBS
three to five times and resuspend it in 1X PBS
with 15% (v/v) Optiprep density gradient me-
dium (Sigma-Aldrich D1556) as the microbial
suspension.

Mock community

We culture four bacteria strains, Bacillus subtilis
ATCC 6051-U, Escherichia coli ATCC 25922,
Klebsiella pneumoniae ATCC 35657, and
Staphylococcus aureus ATCC 6538 in 1 mL LB
liquid medium (L3522 Sigma Aldrich) over-
night. We wash each bacterial culture with
1 mL 1X PBS three to five times and resuspend
bacteria in 1X PBS with 15% (v/v) Optiprep den-
sity gradient medium (Sigma-Aldrich D1556).
We combine approximately the same volume
of these four bacterial strains and dilute to a fi-
nal concentration of 5-50 million microbes/mL.

Microfluidic device fabrication

We print the device designs (fig. S1) as photo-
masks (CAD/Art Services, Inc.), and fabricate
devices according to well-established soft-
lithography procedures (73). We use photo-
lithography and the photomasks to transfer
each device design to a silicon wafer with SU8
photoresist. We cast polydimethylsiloxane
(PDMS) (Sylgard 184) on the SUS8 structure,
where the SU8 structure on silicon wafer
serves as a master for replica molding. We
bake at 65°C for at least 2 hours to cure the
PDMS and delaminate the resulting PDMS
replicas off the master. We seal with glass
slides (Corning, 294%7) to create the microfluidic
devices and make their surfaces hydrophobic
by flowing Aquapel (PGW Auto Glass, LLC)
through the channels. We remove excess re-
sidual Aquapel by flowing compressed air in
the channels of microfluidic devices and bake
the devices at 65°C overnight.

Isolation and lysis

We isolate microbes by encapsulating them
into droplets with lysis reagents using a mi-
crofluidic device (fig. SIA and movie S1). We put
the microbial suspension in a 1 mL syringe (BD
Luer-Lok 1-mL syringe, 309628) and connect
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the syringe to the microbial suspension device
inlet via a needle (BD Precisionglide syringe
needles, Z192384-100EA, Sigma Aldrich) and
polyethylene tubing (BB31695-PE/2, Scientific
Commodities, Inc.). We connect similarly the
lysis reagents and oil, 2% (w/v) surfactant
(RAN biotechnologies, 008-FluoroSurfactant)
in HFE 7500 (3M), to the device. We use flow
rates of 30 pL/h for the microbial suspension,
120 uL/h for lysis reagents, and 300 uL/h for
the oil. We collect droplets from the device
outlet into a PCR tube and replace the oil from
the bottom with 100 pL of 5% (w/v) oil. We
add 100 uL mineral oil (MI1499, Spectrum
Chemical MFG Corp.) on top of the emulsion
to avoid the evaporation of the aqueous phase
in the droplets. We remove most of the oil
from the bottom of the tube and incubate to
lyse the microbes inside droplets.

We prepare an 80 uL lysis reagent mix
for each experiment: 10 uL green buffer
(prepGEM Bacteria, PBA 0100), 1 uL lyso-
zyme (prepGEM Bacteria, PBA 0100), 1 uL.
prepgem (prepGEM Bacteria, PBA 0100),
1 uL lysostaphin (1 mg/ml in 20 mM sodium
acetate, pH 4.5, Sigma, 1.7386), 2 uL. 20 mg/mL
bovine serum albumin (BSA, B14, Thermo-
fisher), 2 uL. 10% tween-20 (diluted from
Tween-20, Sigma-Aldrich, P9416-50mL), 1 uL.
100 uM random hexamer with the last two
3" end bases phosphorothioated (IDT), and
62 ul, water.

The incubation program for lysis is: 37°C for
30 min, 75°C for 15 min, 95°C for 5 min and
sample storage at 4°C.

Whole-genome amplification

We transfer the droplet emulsion to a syringe
and reinject droplets into a microfluidic merger
device (48) (fig. S1B and movies S2 and S3). In
the same device, we use a separate droplet
maker to form droplets that encapsulate
multiple displacement amplification (MDA)
reagents. We synchronize the frequency of sam-
ple droplet re-injection and reagent droplet-
making to form droplet pairs. Applying electric
fields of 50-200 V at a frequency of 25 KHz
through a pair of electrodes, we merge each
droplet pair to add MDA reagents. We use
flow rates of 60 uL/h for sample droplets,
100 uL/h for 2% (w/v) oil (fig. S1B, label 2),
75 uL/h for MDA reagents, and 250 pL/h for
2% (w/v) oil (fig. S1B, label 4). We incubate to
amplify microbial genomes.

We prepare a 100 uL. MDA mix for each
experiment: 16 uL. 10X phi29 DNA Polymerase
Buffer (Lucigen, 30221-1), 0.5-2 uL. 100 uM
random hexamer with last two 3’ end bases
phosphorothioated (IDT), 0.8-3.2 uL. 25 mM
dNTPs (Thermo Fisher, R1121), 8 uL phi29
DNA Polymerase (Lucigen, 30221-1), 2 uL.
20 mg/mL bovine serum albumin (BSA, B14,
Thermofisher), and we add water to make the
total volume to 100 uL.
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The incubation program for MDA is: 30°C
for 6-8 hours, 65°C for 10 min and sample
storage at 4°C.

Tagmentation

We merge sample droplets with droplets con-
taining commercially available tagmentation
reagents (Nextera), utilizing a different drop-
let merger device (fig. S1C and movies S4 and
S5). We use flow rates of 25 uL/h for sample
droplets, 100 uL/h for 2% (w/v) oil (fig. S1C,
label 2), 75 uL/h for tagmentation reagents,
and 300 uL/h for 2% (w/v) oil (fig. S1C, label 4:).
We incubate to tagment these DNA products.

We prepare a 90 uL. Nextera mix for each
experiment: 60 uL. TD Tagment DNA Buffer
(lumina, 15027866), 12 uL. TDE1 Tagment
DNA Enzyme (Illumina, 15027865), 1.8 uL
20 mg/mL bovine serum albumin (BSA, B14,
Thermofisher), 1.8 uL. 10% tween-20 (diluted in
water from Tween-20, Sigma-Aldrich, P9416-
50mL), and 14.4: pL water.

The incubation program for tagmentation is:
55°C for 10 min, and sample storage at 10°C.

Bead synthesis

We synthesize beads used for combinatorial
barcoding by adopting a previously reported
method (44, 74). In brief, we make droplets
containing acrydite-modified DNA oligos using
a photo-cleavable linker (table S8, Hydrogel
DNA primer, IDT) and acrylamide:bisacrylamide
solution. We keep these droplets at 65°C over-
night to polymerize them into uniform soft
gel beads covalently bonded to the DNA oligos
by photo-cleavable linkers. We extend DNA
oligos on beads enzymatically with a two-step
split-and-pool synthesis protocol to prepare
beads with a diverse barcode sequence library.
At the first split-and-pool synthesis step, we
evenly split beads into a 96-well plate where
each well contains a unique barcode-1 oligo
(table S8, IDT). We anneal these oligos with
hydrogel oligos and extend them with Bst 2.0
DNA polymerase (M0537L, NEB). After the
first split-and-pool synthesis step, we pool
beads, wash them and evenly split them into
a 384-well plate where each well contains a
unique barcode-2 oligo (table S8, IDT). We
perform the second barcode strand synthe-
sis in the same way as we extend the first
barcode strand. We avoid exposing beads to
strong light.

Each soft gel bead has millions of primers
with the same sequence. Each full sequence
contains two barcode regions: the first region
has a diversity of 96; the second region, 384.
Overall, the barcoding bead library has 36864
(96x384) possible sequences.

Bead preparation for barcoding

We wash 200 pL of beads with 1 mL bead
wash buffer (10 mM pH 8.0 Tris-HCI, 0.1 mM
EDTA and 0.1% (v/v) Tween-20), three times
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in a tube. We withdraw supernatant from the
top, leaving 500 uL in the tube. We add 300 uL.
water and 200 pL 5X Phusion HF detergent-
free buffer (F520L, Thermo Fisher) to the tube.
We vortex the beads and keep them at room
temperature for 1 min. We centrifuge beads,
remove supernatants, and use these beads
for barcoding.

Barcoding

‘We merge sample droplets with droplets con-
taining PCR reagents and a barcoding bead,
using a droplet-merger microfluidic device
(fig. S1D and movies S6 to S8). We use flow
rates of 50 uL/h for sample droplets, 100 uL/h
for 2% (w/v) oil (fig. S1D, label 2), 15-25 uL/h
for beads, 140 uL/h for PCR reagents, and
400 uL/h for 2% (w/v) oil (fig. S1D, label 5). We
release barcode oligos from beads by exposing
droplets to UV light (365 nm at ~10 mW/cm2,
BlackRay Xenon Lamp) for 10 min. We per-
form PCR to barcode the DNA in the droplets.

We prepare a 240 uL. PCR mix for each ex-
periment: 136 uL water, 68 puL 5X Phusion HF
detergent-free Buffer (F520L, Thermo Fisher),
8 ul 10 mM dNTPs (diluted from 25 mM dNTP
mix, Thermo Fisher, R1121), 16 ul 10 uyM RNS
primer (table S8, IDT), 4 ul Phusion high-
fidelity DNA polymerase (F530L, Thermo
Fisher), 4 ul 20 mg/mL bovine serum albu-
min (BSA, B14, Thermofisher), 4 ul 10% tween-
20 (diluted from Tween-20, Sigma-Aldrich,
P9416-50mL).

The incubation program for barcoding is:
72°C for 4 min, 98°C for 30 s; 10 cycles of 98°C
for 7 s, 60°C for 30 s and 72°C for 40 s; 72°C
for 5 min, and sample storage at 4°C. We use
slow ramping of 2°C/s at this step.

We observe the merger of some droplets
after PCR, possibly during the high-temperature
stage of PCR; such larger droplets may contain
DNA from multiple microbes. We remove most
of these droplets with droplet-size filter micro-
fluidic device (75) (fig. S1E, movies S9 and S10)
with flow rates of 120 uL/h for sample droplets
and 2 mL/h for 2% (w/v) oil.

Droplet pooling and sequencing library preparation

We break the emulsion of droplets by adding
200 uL 20% (v/v) PFO (1H,1H,2H,2H-Perfluoro-
T-octanol, 370533 Sigma Aldrich) in HFE 7500
(83M) into each sample after PCR. We purify
the aqueous phase with 1.1X volume AMPure
beads (A63881, Beckman Coulter) and re-
suspend into 32 uL. DNA suspension buffer
(10 mM pH 8.0 Tris-HCl and 0.1 mM EDTA).
We use PCR to add sequencing adapters for
sequencing (Illumina) and a sample index
(Nextera index) to each purified DNA sample
so we can sequence multiple samples in one
sequencing run.

We prepare a 50 uL. PCR mix for each ex-
periment: 2.5 uL water, 10 uL 5X Phusion HF
detergent-free Buffer (F520L, Thermo Fisher),
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1ul 10 mM dNTPs (diluted from 25 mM dNTP
mix, Thermo Fisher, R1121), 2 uL. 10 uM P5PE1
primer (table S8, IDT), 2 uL. Nextera i7 primer
(Mlumina), 0.5 ul Phusion high-fidelity DNA
polymerase (F530L, Thermo Fisher), and 32 uL
DNA sample in DNA suspension buffer.

The incubation program for PCR is: 98°C for
30 s; 5-10 cycles of 98°C for 7 s, 60°C for 30 s,
and 72°C for 40 s; in the end, 72°C for 5 min
and sample storage at 4°C.

We purify samples with 0.8X volume AMPure
beads (A63881, Beckman Coulter) and re-
suspend DNA products into 20 uL. DNA sus-
pension buffer (10 mM pH 8.0 Tris-HCl and
0.1 mM EDTA). We store these products at
-20°C before sequencing.

lllumina sequencing

We sequence at depths ranging between
ten thousand and two hundred thousand reads
for each microbe. A custom read-1 primer (table
S8, IDT) is required for the sample to be se-
quenced. For a 100 base-pair (bp) sequencing
run, we use the following sequencing length
configurations: read-1 sequence: 45 bp, which
contains the barcode sequence; index-1 se-
quence: 8 bp; read-2 sequence: remainder,
which contains the microbial sequence. For
a 300 bp sequencing run, we use the follow-
ing sequencing length configurations: read-
1 sequence: 150 bp, the first 45 bp are barcode
sequences, the last 75 bp are microbial se-
quences, and those in the middle are adapter
sequences; index-1 sequence: 8 bp; read-2
sequence: remainder, which contains the mi-
crobial sequence.

Preprocessing of raw sequencing data

We group raw sequencing reads based on the
36864 barcodes, excluding barcodes associated
with too few reads (~15% of total reads) and
those with significantly more reads than other
barcodes likely due to droplet merging (~5% of
total reads). For the remaining barcodes, we
designate the collection of microbial sequences
associated with a single barcode as a single am-
plified genome (SAG). We use Trimmomatic
(76) (version 0.36, LEADING:25 TRAILING:3
SLIDINGWINDOW:4:20 MINLEN:30) to re-
move low-quality reads and adapter sequences
from each SAG for following analysis.

Mock sample alignment, quality assessment,
and coverage

We use Bowtie2 (52) (version 2.2.6, default
parameters) to align reads from each SAG
to the combined genome of the four reference
genomes (RefSeq: GCF_002055965.1, GCF_
004151095.1, GCF_001936035.1, GCF_002025145.1),
which reports the best hit of each read. We use
SAMtools (77) (version 1.9) to check the num-
ber of reads that align to each of the four ge-
nomes and to calculate the purity of each SAG.
For each SAG with high purity (>0.95), we align
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its reads to the most-aligned reference genome
to determine its genome coverage.

Genome coassembly of microbial species in the
human gut microbiome

‘We use SPAdes (53) (version 3.13.0,-sc-careful)
to de novo assemble genomes from the reads
of each of the 21914 SAGs. We compute and
compare signatures of these assembled ge-
nomes using sourmash (78) (version 2.0,
k-mer 51, default setting), which produces
a matrix of estimated similarities between
genomes. We use a hierarchical clustering
method (SciPy version 1.1.0, method: complete,
metric: Euclidean, criterion: “inconsistent”,
and threshold: 0.95) to group SAGs into bins.
We verify 0.95 as a threshold using mock
samples. This set of parameters groups bins
conservatively, minimizing the improper group-
ing of SAGs from different species. We use all
the reads within each bin to coassemble a
tentative genome, compare tentative genome
similarities, and cluster the bins. We iterate
this process until more than 10% of the as-
sembled genomes have more than 10% con-
tamination (estimated by CheckM version 1.0.13,
default parameters) (56), which implies false
clustering of SAGs; through four rounds, we
group the 21914 SAGs into 364 bins.

To split bins that might contain SAGs from
multiple species, we examine contig align-
ment patterns. Within each of the 364 bins,
we align reads from each SAG to the de novo
coassembled genome from that bin using
bowtie2 (52) (default parameters). For each
contig in the tentative genome with more than
1000 bp, we construct a vector for each contig
with the number of reads aligned to the con-
tigs from each SAG. We use a hierarchical
clustering method (method: ward, default
parameters) to group vectors of contigs into
two groups. For each SAG, if >95% aligned
reads are aligned to one of the two groups of
contigs, it is designated as a SAG associated
with that group of contigs. We assume that the
remaining SAGs are a mixture of multiple
species and exclude them from further analy-
sis. We iterate this binary splitting process
until we exclude more than 60% of the SAGs
in the current bin, or both resulting new bins
have fewer than 10 SAGs, or the change be-
tween the resulting new bin and the current
bin is fewer than three SAGs. Using this pro-
cess, we obtain 400 bins whose constituent
SAGs we expect to represent a single species,
with minimal contamination.

To combine bins of the same species for ge-
nome assembly, we use fastANI (55) (version 1.2,
default parameters) to calculate average nucle-
otide identity (ANI) between all pairs of these
400 bins. Applying the commonly used ANI >
95% threshold, above which two genomes
are considered to represent the same spe-
cies, we generate 234 new species-level bins.
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We de novo assemble reads from all SAGs
within each of these 234 bins and remove con-
tigs shorter than 500 bp. To further eliminate
contigs that may originate from other species
within each genome, e.g., as a result of ran-
dom contamination in individual SAGs, we
fit a normal distribution with the coverage of
contigs on a log scale and remove those con-
tigs with coverages that are more than two
standard deviations away from the mean of
the distribution.

Among these 234 genomes, 76 genomes
are of high-quality (>90% completeness and
<5% contamination) or medium-quality (>50%
completeness and <10% contamination), as
assessed by CheckM (56) (default parameters).
‘We use fastANI (55) (default parameters) to com-
pare the genomes of these 76 bins to all micro-
bial genomes (RefSeq as of September 2019),
and to the published collection of more than a
thousand cultured-isolate whole genomes (12).
We identify the closest corresponding species-
level genomes with ANI > 95% in both data-
bases. The closest genomes in RefSeq to species
Alistipes onderdonkii, Bacteroides fragilis, and
Bacteroides ovatus are cultured isolate whole
genomes from the same donor, reported pre-
viously (79); we exclude these three genome
pairs from the ANI and shared genome frac-
tion analysis (fig. S7). We use BLASTn (BLAST+,
version 2.10.0) (80) (default parameters) to
compare overlapping sequences between ge-
nome pairs.

The names of the species-level genomes in
RefSeq are not always labeled consistently; for
example, we have four species that are named
as Blautia obeum in RefSeq, though their ANI
values are less than 95%. We use both GTDB-Tk
(59) (version 1.0.2, reference data version r89)
and comparison to RefSeq genomes (as of
September 2019) to assign taxonomies to all
species. In the main text, we use taxonomies
classified with GTDB-Tk and remove sub-
genus names, such as “A”.

Phylogeny analysis of genomes

To construct the phylogeny of the 76 species
with high-quality or medium-quality genomes,
we extract amino acid sequences of six ribo-
somal proteins (Ribosomal_L1, Ribosomal_1.2,
Ribosomal_L3, Ribosomal_IL4, Ribosomal_L5,
and Ribosomal_L6), concatenate and align
them with Anvi’o (version 6.1) (81). We con-
struct a maximum likelihood tree with RaxML
(82) (version 8.2.12, standard LG model, 100 rap-
id bootstrapping). We use iTOL (version 5.5)
(83) to visualize and annotate the resulting
dendrograms.

Diversity of the human gut microbiome samples

For each of the seven samples, we temporarily
ignore the barcode information and combine
all reads from all SAGs from the sample. We use
Kraken2 (84) (version 2.0.8, default parameters)
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to classify reads from each Microbe-seq dataset
and corresponding metagenomic dataset (12)
(standard Kraken database as of April 2019).
For the analysis shown in fig. S4, we keep only
the reads classified to a specific genus and use
only this genus-level information for the com-
parison; similar analyses using all operational
taxonomic units (OTUs) show similar results
(table S2). For each metagenomic dataset,
we align reads to the combined genome co-
assemblies from the 364 bins, irrespective of
whether the bin is species level. Metagenom-
ic reads are first quality filtered with fastp
(version 0.12.4, parameters: -f15 -t 15 -q 36 -u 10)
and then aligned to the combined genomes
using bowtie2 (parameter:-very-sensitive-local).
‘We obtained overall alignment rates of 98.26%,
98.74%, 98.63%, 96.65%, 96.63%, 96.11%, and
98.64% for each of the seven metagenomic
samples.

Abundance bias between Microbe-seq
and metagenomics

We compare relative abundance from the
76 species with high- or medium-quality ge-
nome coassemblies. We estimate the cell num-
ber for each species in the metagenomic dataset
by aligning metagenomic reads to each species-
level reference genome and computing the
average sequencing depth between the 20th
and 80th percentiles in genome-wide sequenc-
ing depth. We infer cell number in the Microbe-
seq dataset by counting the number of SAGs
that we assign to each species; we normalize
this cell-number inference across all these spe-
cies and average across the seven longitudinal
samples to obtain a single relative abundance
inference for all species.

Differentiating strains of the same species

We use B. vulgatus as an example in the main
text to illustrate the strain differentiation work-
flow; we use the same computational pipeline
for all other species, without changing param-
eters, to resolve their constituent strains. The
uncertainty in similarity of the bases at shared
SNP locations in each pair of SAGs is the
standard deviation of the normal approxima-
tion of the binomial distribution: uncertainty =
sqrt[p(1-p)/n], where p is the probability of
the event and n is the number of events. In
the case of B. vulgatus, n=80 and the uncer-
tainty is <6%.

Within each of the species with high- or
medium-quality species-level genomes, we
align (52) each SAG to the assembled genome.
‘We use beftools (77) (mpileup, filters: snps and
%QUAL>30) to identify high-quality single-
nucleotide polymorphism (SNP) mutations.
We designate a SAG with fewer than 2 reads
aligned to a SNP, as well as fewer than 99% of
its reads being the same at a SNP as unknown/
unaligned at this location. We remove SNPs
with fewer than 5% of SAGs aligned to the
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location, and SNPs with fewer than two SAGs
being the reference allele or fewer than two SAGs
being the mutation allele. We also remove any
SNP with fewer than 1% SAGs being the reference
allele or fewer than 1% SAGs being the mutation
allele. We remove any SAG that covers less than
1% or fewer than 10 of the kept SNP locations.

We identify thousands of SNP locations and
remove up to 6% of SAGs. We construct a SNP
vector to represent the base identity sequence
of each SAG at each SNP location. To identify
the number of strains of the species in the
samples, we build a dendrogram of SAGs with
hierarchical clustering (method: “ward”) using
the SNP vectors of all SAGs. Although the
number of clusters is not obvious from the
dendrogram, we obtain a sequence of SAGs;
in this sequence, SAGs with similar SNP se-
quences are closer. We compare similarities
of SNP vectors between SAGs at their shared
SNP locations and construct a similarity heat-
map with SAGs ordered in the same sequence
as the corresponding dendrogram. We observe
block-diagonal squares in the heatmap, which
indicates that SAGs within each square are
closer to each other than to SAGs in other
squares. Using the block-diagonal squares
in the heatmap, we determine the number of
strains, though this number is challenging to
determine accurately for species with rela-
tively few SAGS (<200) and for species with
potentially more than two strains. For Blautia
obeum, it is unclear whether there are 3 or
4 strains in the sample; for Parasutterella
excrementihominis, it is unclear whether
there are 2 or 3 strains. We apply UMAP (63)
(default parameters) to the SNP data to create
dimensional-reduction plots (fig. S9).

To remove SAGs that have reads from mi-
crobes of multiple strains, we construct the
consensus genotype of each strain by com-
paring the SNP vectors of SAGs of the same
strain. If more than 90% of the values at a SNP
location from all SAGs within the strain are
the same, we use the value for this SNP in the
consensus genotype for the strain; otherwise
we drop this SNP location for this strain. We
compare the SNP vector of each SAG to the
consensus genotype of each strain and assign
strains to those SAGs that match more than
95% locations at the consensus genotype of
only one strain, which excludes fewer than
about 1% of the SAGs from each species. We
coassemble strain-resolved genomes with reads
from all SAGs in each of these assigned strains
with SPAdes (53) using default parameters.

Horizontal gene transfer analysis

We detect HGT events by searching for blocks
of DNA sequences shared by a pair of strain-
resolved genomes that are longer than 5000 bp
and more than 99.98% identical (14, 67). Assum-
ing that species from the gut microbiome evolve
with a molecular clock of 1 SNP/genome/year

Zheng et al., Science 376, eabm1483 (2022)

and that typical genome size is 5,000,000 bp,
this set of criterion detects sequences that
diverged within the past 1000 years and the
HGT events likely emerged within the human
host, based on known mutation rates (14).
To filter out HGT sequences resulting from
contaminated SAGs, we select all SAGs from
each strain-resolved genome, and align reads
from each SAG to the corresponding strain-
resolved genome. We remove SAGs with an
overall sequence alignment ratio below 90%,
which eliminates three HGT sequences from
two genome pairs, as no SAGs from one of
the strain-resolved genomes have reads that
cover the HGT sequences.

To further validate the remaining detected
HGT sequences, we align reads from all the
filtered SAGs from both HGT-associated spe-
cies. We calculate the number of SAGs belong-
ing to each strain-resolved genome with more
than 500 bp coverage over the HGT sequence.
We explore the statistical likelihood of the ob-
served fraction of SAGs containing reads cover-
ing the HGT sequence. We build a null model
that if we detect an artifactual HGT event be-
tween species A and B, that sequence actually
only exists in the genome of species B, but
appears in the SAGs of species A as a result of
contamination. We assume a worse-than-real
scenario that if a SAG from species A is con-
taminated by species B, this SAG will contain
reads covering the false HGT sequence. We
also assume a worse-than-real contamination
rate of 20% SAGs for any strain and species.
Under these assumptions, the upper limit for
the probability that any SAG from species A is
contaminated by B is: 20% x (relative abun-
dance of B) = 0.2 x Nb / N, where Nb is the
number of SAGs from species B, and N is the
total number of SAGs. If the observed SAG
number for species A is Na, and the observed
number of SAGs contaminated by B is up to x,
then the probability that equal or more than x
of the SAGs from species A are contaminated
by species B is 1-binom.cdf(x, Na, 0.2xNb/N);
this calculated quantity represents the upper
limit of the P value for the observed fraction of
SAGs containing reads from the HGT sequences.

To explore whether these HGT events either
emerged within this human subject or before
both strains colonized the host, we compare
our results to the baseline detectable HGT from
strains that are not from the same human host.
For 39 species that we find a corresponding
high-quality genome assembly from the NCBI
database, we select the single genome that most
closely matches the strain-resolved genome
from Microbe-seq using ANI. We apply our
exact HGT criteria to this collection of 39 ge-
nomes from the NCBI database, and compare
with the corresponding 39 strain-resolved
genomes from Microbe-seq in fig. S13.

We predict genes (open reading frames,
ORFs) from the HGT sequences using prokka
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(85), (version 1.12, default parameters). We
annotate ORFs using eggnog-mapper (86)
(version 3.0, parameter: -m diamond-tax_
scope auto-go_evidence nonelectronic-target_
orthologs all-seed_ortholog_evalue 0.001-
seed_ortholog_score 60-query-cover 20-subject-
cover 0). For each HGT sequence, we assign
the sequence to a certain type of mobile ele-
ment if ORF annotations contain signatures
of mobile elements (detailed information in
table S5). To examine how many species share
the same HGT sequences, we cluster all the
ORFs from all HGT sequences using CD-HIT
(87) (version 4.7, 100% similarity). For each
gene cluster, we count the number of species
whose HGT sequences contain genes within
the gene cluster (Fig. 4C and table S6). We
cluster genes from only the HGT regions and
the HGT sequences detected via our method,
which are likely incomplete fragments of the
original HGT events; therefore, the number
of species we report for each gene is likely an
underestimation.

Host-phage association analysis

To identify SAGs that are associated with both
crAssphage and a bacterial cell, we use bowtie2
(52) (default parameters) to align reads in each
SAG to the crAssphage genome (Refseq: GCF_
000922395.1). We designate SAGs with more
than 5% reads aligned to the crAssphage ge-
nome as containing significant crAssphage reads
(raising this threshold to 10% of reads yields
the same result); we align the non-crAssphage
reads of these SAGs to each of the 76 high- or
medium-quality genomes, as well as the com-
bined genome of these 76 genomes. We define
purity of these SAGs as the maximum number
of reads aligned to individual genomes divided
by the number of reads aligned to the combined
genome. We identify SAGs with more than 50%
of reads aligned to one of these 76 genomes, and
with purity of more than 95%. We designate the
species of the SAG as the species of the most
aligned genome. We count the number of
SAGs assigned to each species and perform
the “one species versus remaining species”
one-sided Fisher’s exact test.
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Strain specific single-cell sequencing

Single-cell methods are the state of the art in biological research. Zheng et al. developed a high-throughput technique
called Microbe-seq designed to analyze single bacterial cells from a microbiota. Microbe-seq uses microfluidics to
separate individual bacterial cells within droplets and then extract, amplify, and barcode their DNA, which is then
subject to pooled lllumina sequencing. The technique was tested by sequencing multiple human fecal samples

to generate barcoded reads for thousands of single amplified genomes (SAGs) per sample. Pooling the SAGs
corresponding to the same bacterial species allowed consensus assemblies of these genomes to provide insights
into strain-level diversity and revealed a phage association and the limits on horizontal gene-transfer events between
strains. —CA
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