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SUMMARY
Tumor behavior is intricately dependent on the oncogenic properties of cancer cells and their multi-cellular
interactions. To understand these dependencies within the wider microenvironment, we studied over
270,000 single-cell transcriptomes and 100 microdissected whole exomes from 12 patients with kidney
tumors, prior to validation using spatial transcriptomics. Tissues were sampled from multiple regions of
the tumor core, the tumor-normal interface, normal surrounding tissues, and peripheral blood. We find
that the tissue-type location of CD8+ T cell clonotypes largely defines their exhaustion statewith intra-tumoral
spatial heterogeneity that is not well explained by somatic heterogeneity. De novomutation calling from sin-
gle-cell RNA-sequencing data allows us to broadly infer the clonality of stromal cells and lineage-trace
myeloid cell development. We report six conserved meta-programs that distinguish tumor cell function,
and find an epithelial-mesenchymal transition meta-program highly enriched at the tumor-normal interface
that co-localizes with IL1B-expressing macrophages, offering a potential therapeutic target.
INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is themost common sub-

type of renal cell carcinoma (RCC), accounting for approximately

75% of RCC cases and the majority of deaths from kidney can-

cer.1 Many efforts have characterized the genomic landscape of

ccRCC, revealing important driver events such as biallelic inac-

tivation of VHL, followed by mutations in chromatin remodeling

and histone modification related genes PBRM1, BAP1, and

SETD2.2–6 Intra-tumoral heterogeneity (ITH) of these subsequent

mutational events appears to be a salient feature of ccRCC,

as revealed by previous multi-region exome sequencing

studies.5,7,8 In contrast, the ITH of ccRCC at a transcriptional

level is less well understood, in part due to the complexity of
Cancer Cell 40, 1583–1599, Decemb
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themulti-cellular ecosystem comprising the tumormicroenviron-

ment (TME). In particular, the phenotypic heterogeneity of malig-

nant and non-malignant cells in the TME of ccRCC and how it as-

sociates with geographical localization remain elusive.

ccRCC is a cancer type with heavy infiltration of immune

cells.9,10 Harnessing adaptive immunity through immune check-

point blockade (ICB) therapy is effective in improving the survival

of patients,11,12 highlighting the importance of the immunemicro-

environment of ccRCC. Characterizing this immune landscape

using bulk sequencing is limited by the power to dissect diverse

immune cell populations.9,13 A comprehensive single-cell im-

muneatlas of ccRCCusingmasscytometry shed light on immune

cell diversity in the ccRCC tumor ecosystem.14 Recent advances

in single-cell RNA sequencing (scRNA-seq) and its applications
er 12, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1583
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Figure 1. Sampling strategy and overall tissue distribution of the major cell types in RCC

(A) Sampling strategy for each of 12 patient donors. a, c, d, and e represent four different regions of the tumor core; g, tumor-normal interface; f, perinephric fat; n,

normal kidney; b, peripheral blood; h, normal adrenal gland; i, adrenal metastasis; t, thrombus. a1, a2, a3, and a4 represent LCM biopsies in tumor region a; ST,

spatial transcriptomics.

(legend continued on next page)
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in cancer research have revolutionized our understanding of

phenotypic heterogeneity of tumor cells,15–17 immune landscape

of tumors,18–20 complexity and plasticity of the TME,21,22 and

inter-cellular communications in the TME.23,24 Specifically, in

ccRCC, a recent scRNA-seq study provided evidence to support

its origin from proximal tubular cells.25 Other studies utilized

scRNA-seq to study the immune landscape of ccRCC, mainly

focusing on ICB-therapy-related cohorts26,27 and different dis-

ease stages,28 uncovering key features that are related to thera-

peutic efficacy or disease progression.

When considering heterogeneity of the TME, the geographic

regions of interest extend beyond those relevant to mutational

ITH. The wider regions of interest include circulating blood (as

it is indicative of the systemic response to the local tumor and

has implications for liquid sampling and inference of tumor

behavior), the tumor-normal interface or tumor pseudocapsule

(representing the boundary between tumor and adjacent normal

kidney), adjacent normal kidney, and perinephric adipose tissue.

The fibrous connective tissue comprising the pseudocapsule

tends to constrain tumor growth spatially, and pseudocapsule

invasion is correlated with tumor stage and grade.29 Perinephric

adiposity is of interest because of the obesity paradox in RCC,

whereby obesity is one of the strongest risk factors for the diag-

nosis of kidney cancer, yet is also associated with improved

oncological outcomes.30 Understanding spatial heterogeneity

and evolution of RCCwith respect to tumor, immune and stromal

cells, and their interactions in the wider TME is still lacking.

To address this, we performed multi-region-based scRNA-seq

from 12 patients, sampling peripheral blood, normal kidney,

four different spatial regions of the tumor core, and the

tumor-normal interface, alongside focally exhaustive exome

sequencing of laser-capture microdissection (LCM)-derived tu-

mor samples. We further validated important regional transcrip-

tomic differences at finer resolution through the use of spatial

transcriptomics, comparing cellular profiles across the tumor-

normal interface with tumor core.

RESULTS

Multi-region-based genomic and single-cell
transcriptomic profiling of RCC
We conducted multi-region genomic and single-cell transcrip-

tomic profiling in 12 patients, who underwent surgical resection

of radiologically diagnosed and treatment-naive renal tumors,

with the aim of sampling multiple low-, intermediate-, and high-

risk tumors. After histopathological examination, tumors from

10 out of the 12 patients were evaluated as ccRCC, one

(PD47172) was an oncocytoma, and one (PD44714) was a large

benign thick-walled cyst (Figure S1A and Table S1). In each pa-

tient, we sampled tissues from peripheral blood, normal kidney,

four geographically distinct regions of the tumor core, and the

tumor-normal interface. Additionally we sampled tissues from
(B) Overall UMAP of all cells in our study.

(C) Heatmap showing top differentially expressed genes (DEGs) in each of the m

(D) UMAP and bar plots showing tissue distribution of the major cell types. Colo

(E) Dot plot showing tissue distribution of the fine-grained annotated cell types.

certain major cell compartment.

See also Figures S1 and S2; Tables S1–S4.
the perinephric fat, normal adrenal gland, adrenal metastasis,

and tumor thrombus, if available (Figure 1A). Where sufficient

numbers of viable single cells could be retrieved, we performed

droplet-based 50 scRNA-seq with T cell receptor (TCR) enrich-

ment using the 10X platform (Table S2). We also performed

10X Visium spatial transcriptomics on 11 tumor-normal inter-

face and five tumor core tissue sections from eight patients

(Table S2). In parallel, in each patient we dissected microbiopsy

samples from each region containing tumor tissue using LCM

prior to performing whole-exome sequencing (WES) (Table S3).

Based on WES data, we identified genomic alterations that

have been reported as recurrent/driver events in ccRCC.2,4

Seven out of nine ccRCC patients (no data in one ccRCC patient)

harbored VHL mutations, four had PBRM1 mutations, and three

carried BAP1 mutations (Figure S1A and Table S1). Copy-num-

ber loss of chromosome 3p was detected in all nine patients

(Figure S1A).

Using scRNA-seq, we captured transcriptomes from approx-

imately 270,000 cells after stringent quality control, which can be

broadly categorized into 12 major cell types based on the

expression of canonical marker genes (Figures 1B, 1C, and

S1B–S1D). As a result of our single-cell isolation protocol,

T cells were most abundant in our data (Figures 1C and S1E).

Tumor cells were identified within clusters that specifically ex-

pressed CA9 and harbored extensive copy-number variations

(CNVs) across their genomes, as inferred from scRNA-seq

data (Figures 1C, S1E, and S1F). Next, we investigated the tissue

of origin of the 12 major cell types and observed different tissue

distributions (four tumor regions were combined in the analysis)

(Figure 1D). We further conducted subclustering analyses for the

major cell compartments, leading to the identification of 105 cell

subsets with various tissue distribution preferences (Figure 1E

and Table S4). Through a cross-study comparison covering

four recently published scRNA-seq datasets,26–28,31 we showed

that we substantially improved the characterization of the TME

with refined cell-type annotations (i.e., for tumor cells) and newly

reported cell types (i.e., gamma delta T [gdT] cells) (Figure 2).

Subclustering of natural killer (NK) cells revealed well-known

NCAM1- and FCGR3A- expressing subsets and an interesting

keratin (KRT81 and KRT86)-expressing subset potentially en-

riched in tumor tissues (Figures 1E, S2A, and S2B; Table S4).

In the B/plasma cell compartment, we identified major subsets

including naive, switched memory, and non-switched memory

B cells as well as plasma immunoglobulin A (IgA) and IgG cells

(Figures S2C and S2D; Table S4). We observed heterogeneous

stromal cell populations in our dataset (Figures S2E–S2H), which

were largely under-reported in previous studies (Figure 2). In

the endothelial cell (EC) compartment, we identified IGFBP3+

EC and collagen EC subsets showing considerable enrichments

in tumor tissues (Figures 1E, S2E, and S2F). Collagen EC was

more enriched in the interface, which may play roles in TME

interactions through extra-cellular matrix (ECM) production.
ajor cell types.

rs in the bar plots correspond to those in the UMAP here and in (B).

Proportions are calculated as dividing cell numbers by total cell numbers of a
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Similar to this, we also found a collagen-expressing fibroblast

subset potentially enriched in the interface (Figures 1E and

S2H). This suggests that different ECM-producing stromal cells

tend to enrich and co-localize in the interface, possibly exerting

diverse functions including extra-cellular context remodeling

and cell-cell interactions. The normal epithelial cell population

in our dataset exhibited expected diversity as reported previ-

ously32 (Figures S2I and S2J; Table S4).

Expansion of CD8+ T cell clonotypes and the influence of
tissue localization on exhaustion
Subclustering of the CD8+ T cell compartment (including gdT

cells), we identified typical CD8+ T cell clusters which repre-

sented different T cell functional states including naive, effector,

memory, pre-dysfunction, and dysfunction based on the expres-

sion of canonical marker genes (Figures 3A, S3A, and S3B;

Table S4). We identified resident memory T (TRM) cells highly

expressing tissue-residency markers (i.e., ITGAE and CD69)

and specifically expressing CXCL13 among all cell types

(Figures 3A and S3C). A similar CXCL13+ CD103 (ITGAE)+

CD8+ T cell subtype was previously suggested to play potential

roles in mediating B cell recruitment and tertiary lymphoid

structure formation in human cancer.33 We found cluster 6 highly

expressed FGFBP2 and CX3CR1, and was substantially en-

riched in peripheral blood (Figures 3A and 1E); therefore, this

cluster may represent recently activated effector memory

T cells (CD8+ T_EMRA). Two exhausted T cell clusters (clusters

7 and 8) were identified on the basis of elevated expression of

genes including LAG3, TIGIT, PDCD1, HAVCR2, and CTLA4

(Figure 3A). Interestingly, we found that cluster 8 had the highest

expression of LAG3 and specifically expressed the immunosup-

pressive cytokine IL10 (Figure 3A). IL10-expressing CD8+ T cells

in RCC were not found in the previous four RCC single-cell data-

sets (Figures 2 and S3D). These cells may represent CD8+ T cells

with extremely high effector and dysfunction levels, which exert

regulatory functions by producing interleukin-10 (IL-10). Besides

the conventional CD8+ T cell clusters, we identified two gdT cell

clusters, gdT_Vd1 (expressing TRDV1) and gdT_Vd2 (expressing

TRDV2), which were not reported in the previous four RCC

studies (Figures 2 and 3A). We also performed subclustering

analysis of the CD4+ T cell population, revealing various sub-

types such as CD4+ naive/central memory and CD4+ regulatory

T cells and their different tissue distributions (Figures S3E–S3H

and Table S4).

Next, we conducted a pseudotime trajectory analysis on CD8+

T cells excluding gdT cells and cycling clusters (Figures 3B and

S3I). Along the pseudotime trajectory, we found that cytotox-

icity-related genes (i.e., KLRG1, GNLY, and GZMH) were gradu-

ally downregulated while dysfunction-related genes (i.e.,CTLA4,

HAVCR2, and LAG3) were gradually upregulated (Figure 3C).

Typical T cell pre-dysfunction-related genes (i.e., CXCR4,

GZMK, and GZMA) were initially upregulated and then went

downward along the pseudotime trajectory (Figure 3C). There-
Figure 2. Cross-study comparisons of different cell types

Cell types and annotations our study (rows) were compared with annotations o

Biet al.,26 Krishna et al.,27 Braun et al.,28 and Borcherding et al.31 The comparisonw

as the reference. Dot size represents the fraction of cells predicted as certain ce
fore, this pseudotime trajectory recapitulated the progression

of CD8+ T cells from a cytotoxic state via a pre-dysfunctional

state to a dysfunctional state, alongside which the degree of

exhaustion gradually escalated (Figure S3J). Furthermore, pro-

jection of the top ten expanded TCR clonotypes onto the trajec-

tory led to an observation that individual TCR lineages were

usually restricted to a similar phenotypic state rather than distrib-

uting across the entire trajectory (Figure 3D). Across all tumors,

we found that 90% of clonotypes with 23 cells or greater were

confinedwithin a range of pseudotime values (p < 0.05,Wilcoxon

test). Highly expanded TCR clones with over 100 cells per clone

were observed in multiple patients, where remarkably up to 30%

of CD8+ T cells can derive from a single clonotype (Figure 3E).

In contrast, TCR clonotypes in CD4+ populations were less

expanded compared with those in CD8+ populations (Fig-

ure S3H). Many of the most expanded CD8+ TCR clones had

considerable proportions of cycling cells, with the exception be-

ing observed in the less-exhausted clonotypes (Figure 3E). This

finding demonstrates that the proliferation in highly exhausted

T cells in RCC has not been completely arrested, similar to pre-

vious findings in melanoma.19

We examined whether the TCR clonotypes detected in the

blood reflected those detected in other regions. We found that

the average degree of exhaustion (inferred pseudotime) and

the probability of detecting CD8+ TCR clones in the peripheral

blood were strongly anti-correlated regardless of the clonal

size, to the extent that exhausted clonotypes are seldom de-

tected in the blood (Figure 3F). This finding is unexpected and in-

dicates that tissue-resident exhausted CD8+ T cell clones do not

appear to recirculate in peripheral blood. To further illustrate the

relationship between T cell exhaustion, clonal expansions, and

their tissue distributions, we categorized CD8+ T cells according

to whether they were singlets or expanded and their principal tis-

sue locations (blood, normal tissues, or tumor). Expanded T cells

in tumor were further subcategorized into those that appeared in

all tumor regions and those that did not (tumor homogeneous

and heterogeneous). Notably, the phenotypic state of CD8+

T cells, in terms of the degree of exhaustion, showed a strong

dependence on clonal expansion and tissue location (Figure 3G;

all p < 0.05, Tukey’s test). Meanwhile, clones private to

one tumor region were not significantly more exhausted than

those shared between different regions (Figure 3G; p > 0.05,

Tukey’s test).

Spatial localization rather than intra-tumoral somatic
heterogeneity primarily influences CD8+ clonotypic
heterogeneity
Using somatic mutations called fromWES data, we constructed

phylogenetic trees to elucidate the clonal evolution and ITH of

the tumors in our study. Overall, we found that all tumor clones

shared a long trunk but had short branches (Figure 4A). The

majority of detected driver mutations and key CNVs were

shared by all tumor clones within individual tumors (Figure 4A).
r cluster numbers (columns) reported by four previous RCC studies, namely

as based on logistic regression trainedmodels using CellTypist55 with our data

ll types, and color scale represents mean probability of prediction.
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Figure 3. CD8+ T cell characterization, clonality, exhaustion, and regional enrichment
(A) Dot plot showing marker gene expression defines principal CD8+ cell types. EM, effector memory; Act, activated; EFF, effector; EX, exhausted.

(B) UMAP depicting the pseudotime inference of CD8+ cells.

(legend continued on next page)
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Furthermore, the vast majority of LCM samples we sequenced

appeared clonal according to the variant allele frequency distri-

butions (Figure S4A). Taken together, the WES revealed that

the extent of ITH of tumors in our cohort was limited. Previous

studies have extensively investigated intra-tumor genetic het-

erogeneity in various cancers.8,34 However, the influence of so-

matic heterogeneity on the local TME at different spatial localiza-

tions, especially the anti-tumor immune response, remains

largely uncharacterized. Here we investigated TME composition

of the four tumor core regions which have similar histological

grades and observed heterogeneity in cell compartments such

as stromal cells (Figure S4B). This implies that the TME of RCC

is spatially heterogeneous, orchestrated by various cell types,

which may play roles in shaping tumor behaviors. On top of

this, we systematically compared the relationship between so-

matic mutations, spatial localizations, and TCR clonotypes of

CD8+ T cells in individual tumors (Figures 4B and S4C).We found

that T cell clonotypes were often enriched in different tissues.

Unexpectedly, tumor-associated clonotypes were frequently

enriched in single regions, which appeared to harbor negligible

heterogeneity of somatic mutations (Figures 4B and S4C). So-

matic mutations, which generate neoantigens on tumor cells,

are considered a driving factor for T cell clonal expansion upon

antigen presentation. Our finding suggests that the heterogene-

ity of TCR clonal expansions associate more with the different

spatial localization of T cells in tissues rather than ITH of somatic

mutations. To formally examine this, we calculated the correla-

tion between T cell clonotype distance and (1) mutation distance

and (2) spatial localization distance (Figure 4C). We found that

TCR heterogeneity in CD8+ T cells was more strongly correlated

with spatial localization rather than somatic heterogeneity

(p < 0.05, paired Wilcoxon test).

We sought to further understand the processes that are driving

the tissue- and region-specific enrichment of many of the clono-

types. We used the GLYPH2 algorithm to cluster TCRs that are

predicted to recognize the same epitope.35 In total, we detected

six patterns that were shared between expanded clonotypes

(Figure 4D). One of these patterns (SQDR%TDT) was enriched

in different tumor regions for the two clonotypes. Two of the pat-

terns (SLGAG%TE and SVGQ%YE) represented clonotypes that

appeared at different stages at maturation, each with one clono-

type that was present in peripheral blood and normal tissues and

one that was enriched in tumor with high exhaustion levels.

Taken together, these findings lend credence to the notion that

there is ongoing priming of T cells, in part through the re-presen-

tation of the same epitopes. The final region of residence within

the tumor for these expanded clonotypes appears stochastically
(C) Expression of canonical exhaustion markers across cells ordered by pseudo

values (q value = 0; Moran’s I test in Monocle 3).

(D) UMAP showing the ten most expanded clones from patient PD43948. Gray d

(E) Box plot depicting the most expanded clonotypes (>100 cells) across all patien

range, and outlier pseudotime values. Statistical analysis by two-sided Wilcoxon

quartiles with notches depicting 95% confidence intervals (top panel); bar plots s

and percentage of cycling cells (lower panel).

(F) The probability of detecting a given TCR clone in peripheral blood as a functi

(G)Mean pseudotime values based on the categorization of clonotypes according

third quartiles with whiskers depicting 95% confidence intervals. Statistical anal

See also Figure S3.
determined, perhaps influenced by local environmental factors

at the time of seeding, but not uniformly distributed according

to expression of the originally stimulating epitope.

Precise de novo somatic mutation calling from
scRNA-seq data
The detection of somatic mutations within single cells from their

transcriptomic sequences may help infer their clonal relation-

ships. We developed a framework to perform de novo somatic

mutation calling from scRNA-seq data (deSCeRNAMut; see

STAR Methods for more details) (Figure S4D). To benchmark

our mutation-calling method, we first compared somatic muta-

tions called from scRNA-seq data of tumor cells with those called

from tumorWES data. Overall, our method achieved a good per-

formance with a precision of 0.64 (or 0.70 when considering

exonic mutations only) and a sensitivity of 0.53 (Figure 4E). We

were also able to benchmark themethod inCD8+T cells, showing

that 84% of called mutations are restricted to a single TCR clone

(Figure S4E). This confirms the expected finding that themajority

of mutations called in CD8+ T cells are restricted to clonotype

because of the very limited number of mutations that could be

shared between T cell clones prior to thymic maturation.

Using these mutation calls, we investigated the numbers of

mutations expressed by different cell types, which can poten-

tially shed light on their degree of clonal expansion. We calcu-

lated the proportion of cells with one, two, three, or greater

than three mutations. We required at least 100 cells from each

cell lineage and patient to account for the lack of discriminatory

power in rarer cell populations (Figure S4F). As expected, the

lineage with the highest number of cells expressing called muta-

tions was the tumor cells, mainly explained by the known clonal

structure of the lineage, but also due to the likelihood of

increased mutational burden when compared with the normal

cell types. For similar reasons, stromal cells did not typically

have discernible numbers of cells with more than one called mu-

tation. However, we observed a large number of myeloid cells

expressing mutations, indicating that a sizable proportion of

these cells are clonally related. This is perhaps unsurprising

given the increasing incidence of clonal hematopoiesis with

age36 and with a diagnosis of RCC.37 The majority of the muta-

tions detected are likely to have been acquired during their he-

matopoietic stem cell state.38 The next cell types expressingmu-

tations were fibroblasts, then CD8+ T cells (which we know are

clonally expanded, based on the TCR-sequencing results).

A very small proportion of CD4+ T cells expressed mutations,

consistent with the low degree of clonality based on TCR anal-

ysis (Figure S3H).
time analysis. All marker genes are statistically significant across pseudotime

ots represent cells outside the ten most expanded clones.

ts, ordered by their mean pseudotime values, showing themedian, interquartile

rank-sum test. Data are presented as boxes with the median ± first and third

howing the maximum expansion for the most expanded region (middle panel);

on of minimal clone size and mean pseudotime value of the clone.

to their principal region of enrichment. Data are presented asmedian ± first and

ysis by Tukey’s test.
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Figure 4. Somatic mutation calling and the relationship with TCR clonotypic heterogeneity

(A) Reconstructed phylogenies from WES of multi-regional LCM biopsies. Each node represents a mutant clone present in one or more of the biopsies.

(B) Comparison of WES-derived phylogenies (left) with geographic location (center) and CD8+ TCR clonotype expansion (right). Colors reference somatic clones

to spatial localization. Each column in the right panel represents a TCR clonotype; those with significant regional enrichment are highlighted in red. a, c, d, and e

represent four different regions of the tumor core; g, tumor-normal interface; n, normal kidney; b, peripheral blood; h, normal adrenal gland.

(C) Scatterplot of Mantel correlation between tree distances. x axis represents the correlation coefficient between WES-derived clones and TCR clonotype

distances. y axis represents the correlation coefficient between spatial localization and TCR clonotype distances.

(D) Dot plot showing inferred TCR groups with a high probability of sharing antigen specificity. The exhaustion levels represent pseudotime values.

(E) Benchmarking results for scRNA-seq-derived calls against WES data for each patient donor.

See also Figure S4.
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Regional characterization and evolution of myeloid
populations
We captured heterogeneous myeloid subsets in subclustering

analysis (Figures 5A and S5A; Table S4). Clusters 1, 2, 3, and 4

were predominantly present in the blood with high expression

ofCD14but lack ofFCGR3A expression, thus representing circu-
1590 Cancer Cell 40, 1583–1599, December 12, 2022
lating classical monocytes. Cluster 5 represented circulating

non-classical monocytes with high expression of FCGR3A but

lack of CD14 expression (Figure S5B). We identified three den-

dritic cell (DC) clusters: plasmacytoid DC (pDC) and types 1

and 2 conventional DC (cDC1 and cDC2), characterized by spe-

cific expression of JCHAIN, CLEC9A, and CD1C, respectively



0

0.07

0.9

2.24

2.31

2.3

2.27

0.01

0

0.23

1.65

1.22

0.1

0

0

0.02

0.04

0

0.37

0.12

0.81

0.52

0.1

0.14

0.23

0.21

0

0

0.81

0.44

0.14

0.11

0.15

1.09

2.63

0.61

1.31

0.11

0

0.03

0.05

0.16

0.33

0.17

0

0.22

0.57

0.75

1.02

1.1

0.96

0.06

0.48

1.02

0.29

0.07

0.07

0.11

0

0

0.54

0.76

0.56

0.25

0.86

0.36

2.38

1.86

2.01

1.88

1.1

0.09

0.05

0.06

0.08

1.82

1.83

1.73

0.52

0.82

1.75

1.79

1.8

1.5

1.3

1.24

0.93

1.12

1.05

0.06

0.03

0.07

0.07

2.13

2.17

1.28

0.53

1.2

1.9

1.93

2.05

1.77

2.78

2.01

A B

C D E

F G

Figure 5. Myeloid cell characterization, regional enrichment, and evolution

(A) UMAP re-presentation of all myeloid cells, their annotation, and their regional contribution. Mono, monocyte; TR Mac, tissue-resident macrophage; TAM,

tumor-associated macrophage.

(B) The relative enrichment of different myeloid cell subsets across different regions sampled.

(C) Dot plot depicting top DEGs for macrophage clusters.

(D) Heatmap showing mean scaled scores for macrophage subsets by macrophage function of M1/M2 polarization and suppressive, angiogenesis, and

phagocytosis activity.

(E) Heatmap showing the results of pathway enrichments of macrophage subsets using gene set variation analysis.

(legend continued on next page)
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(Figure S5B). We found mast cells, which were characterized by

specific expression of TPSAB1, potentially enriched in the tumor

core (Figures 5B and S5B), consistent with previous reports.39

Notably, we identified nine macrophage clusters (clusters 6–8

and 11–16) based on the high expression of CD163 and C1QC

(Figure S5B).

To further characterize the macrophage population, we

explored differentially expressed genes (DEGs) and the tissue

enrichment of the nine macrophage clusters, and compared the

datawith those from four previous studies (FigureS5C).We found

six macrophage clusters (clusters 11–16) preferentially enriched

in the tumor core/interface compared with other normal tissues,

thus being defined as tumor-associated macrophages (TAMs).

The remaining three clusters (clusters 6, 7, and 8) showed enrich-

ment in normal tissues/interface and were regarded as tissue-

resident macrophages (TR Mac) (Figure 5B). This distribution

pattern can be also observed in the spatial transcriptomic data

(Figure S5D). Among the six TAM clusters, MHC-II TAM (cluster

14) highly expressed HLA-DRB5, APOE, and APOC1, and was

more enriched in tumor core than in tumor-normal interface. In

contrast, the other five TAM clusters showed comparable de-

grees of enrichment in both tumor core and the interface (Fig-

ure 5B).FN1+ TAMhighly expressedfibronectin 1 (FN1) andscav-

enger receptor MARCO (Figure 5C), which has been previously

reported as a specific macrophage subset in kidney cancer.39

We found that FN1+ TAM was likely pro-tumor in RCC, as re-

flected by the high expression of a myeloid-derived suppressor

cell signature and of M2 polarization genes (Figures 5D and

S5E). We identified an SPP1+ TAM cluster expressing GPNMB

that showed a high similarity to the GPNMB+ TAM identified by

the previous study (Figure S5F). Considering we also identified

a GPNMB+ TAM cluster (cluster 15) and that the expression of

GPNMB can be detected in multiple TAM clusters (Figures 5C

and S5G), this finding suggests that SPP1+ TAM may represent

a subset of GPNMB+ TAM. Besides expressing SPP1, we found

that SPP1+ TAM also expressed APOC4-APOC2, a gene not re-

ported by previous RCC studies (Figure S5C), and TREM2 (Fig-

ure 5C), which has been reported in various biological and path-

ological processes such as obesity and cancer.40,41

Among the three TR Mac clusters, TR Mac.2 was enriched at

the interface (Figures 5B and S5D) and highly expressed inter-

leukin IL1B and the epidermal growth factor receptor ligand

AREG, which may reflect its likely role in tissue repair in homeo-

stasis (Figure 5C). TR Mac.3 showed high expression of SEPP1

andMRC1, and was extremely enriched in normal adrenal gland

(Figures 5B and 5C). Interestingly, TR Mac.3 exhibited extremely

high expression of M2 and phagocytotic signatures, and showed

pathway activations similar to those of the pro-tumor TAM clus-

ters (i.e., FN1+ TAM) (Figures 5D, 5E, and S5E). We were not

able to clearly separate embryologically seeded from mono-

cyte-derived tissue macrophages in this dataset.42

Using RNA velocity analysis, we found two obvious directional

flows from circulating monocytes to macrophages in the tissue:
(F) UMAP with superimposed RNA velocity analysis of the monocyte and macrop

from monocytes to macrophages.

(G) Neighbor-joining tree depicting the relationship of different monocyte and mac

The numbers of supporting votes in bootstrapping (100 times) are labeled.

See also Figure S5.
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(1) classical mono.3 to TR Mac.2 and (2) non-classical mono-

cytes toward TR Mac.1 (Figure 5F). TR Mac.1 and TR Mac.2

then potentially gave rise to other macrophages in the tissues

(Figure 5F). On the other hand, we leveraged the somatic muta-

tions for lineage tracing, in a similar way to how the relationship

of T cell phenotypic states has been determined from the sharing

of TCR clonotypes. Here, by constructing a neighbor-joining tree

(Figure 5G and STAR Methods), we found that circulating mono-

cytes were separate from macrophages in tissues and that

non-classical monocytes showed a closer relationship withmac-

rophages in tissues when compared with other classical mono-

cytes. Our data support non-classical monocytes representing

an intermediary state between circulating monocytes and mac-

rophages, with the majority of macrophages appearing to arise

from monocyte progenitor rather than yolk sac origin.

RCC expression meta-programs show differential
abundance at the tumor-normal interface and correlate
with prognosis
To explore intra-tumor expression heterogeneity in the tumor cell

population, we first defined intra-tumor expression programs

that consist of co-expressed genes in each tumor using non-

negative matrix factorization (NMF). These expression programs

represented gene modules that were highly expressed by only

subsets of tumor cells in each tumor, as exemplified by the

NMF result in a representative tumor, PD45816 (Figure 6A). In to-

tal, we dissected 45 intra-tumor expression programs from the

ten ccRCC tumors and classified six meta-programs (MPs)

shared by multiple tumors (Figure 6B and Table S5). MP1 was

characterized by expression of genes such as FOS and JUN,

thus representing a stress-response-related signature in tumor

cells. MP2 consisted of genes (i.e., NAT8 and ACSM2B) that

were specifically expressed by proximal tubule (PT) cells. The

presence of PT signature among tumor cells confirmed the pre-

vious finding that PT cells are the cell type of origin of ccRCC.25

Interestingly, we found that MP3 was enriched for genes such as

TGFBI andMT2A (Figure 6B), which are related to the epithelial-

to-mesenchymal transition (EMT) and have not been reported in

RCC previously (Figure 2). MP4 consisted of non-coding RNA

genes such as NEAT1 and HCG18, probably reflecting some

stress or cell death (CD)-related cell state. MP5 was character-

ized by expression of MHC-II-related genes such as CD74 and

HLA-DRA. Genes such as TOP2A and MKI67 were found in

MP6, indicating that this MP is related to the proliferation of

tumor cells.

Next, we integrated tumor cells from the ten tumors, mitigating

the inter-patient heterogeneity through batch effect removal

(Figures 6C and S6A). Through subclustering and DEG analysis,

we validated the presence of the sixMPs among tumor cells (Fig-

ure S6B). We calculated gene scores of the six MPs andmapped

them onto the uniform manifold approximation and projection

(UMAP) of tumor cells (Figure S6C). Interestingly, we found that

the expression of PT and EMT programs showed an inverted
hage subsets, with zoomed-in windows highlighting possible directional flows

rophage clusters, utilizing the somatic mutations called from scRNA-seq data.
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Figure 6. RCC cell expression programs, regional enrichment, and prognosis

(A) Heatmap showing expression programs derived in a representative patient using NMF.

(B) Heatmap depicting shared expression meta-programs across all patients.

(C) UMAP representing clusters of tumor cell population.

(D) Relative expression scores of meta-programs in each RCC cell cluster (left) and the distributions of cells with different meta-programs in tumor core and

tumor-normal interface.

(legend continued on next page)
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pattern (Figure S6C), which was further confirmed by the anti-

correlation between PT and EMT scores calculated in The Can-

cer Genome Atlas (TCGA) bulk RNA-seq data (Figure S6D).

Furthermore, we found that EMThigh tumor cells weremore abun-

dant at the tumor-normal interface (the leading edge of a tumor)

compared with the tumor core (Figure 6D), which reflects the fact

that the EMT state represents a more invasive and migratory

state of tumor cells. The relationship between PT and EMT pro-

grams and the spatial location of cells was exemplified by indi-

vidual tumors (Figures 6E and S6E). We also observed this

spatial distribution pattern of PT/EMT programs in the spatial

transcriptomic data, after mapping cell types using cell2loca-

tion43 (Figure 6F).

To investigate how our tumor cell signatures align with those

previously defined and clinical related signatures, we first scored

TCGA bulk RNA-seq data and found that the TCGA molecular

subtype m3, which displays the worst prognosis according to

TCGA study,2 showed significantly higher EMT scores but lower

PT scores (Figure 6G). This finding indicates that cancer-specific

survival may be linked to the relative abundance of these MPs

within the tumor specimens (Figure S6F). We further checked

the expression of three clinical related signatures in our tumor

cells,44–46 and observed some extent of overlaps between signa-

tures (Figure 6H). For example, CDhigh tumor cells showed high

expression of the angiogenesis signature defined by Motzer

et al.45 and Cyclinghigh tumor cells showed high expression of

the cell-cycle signature, the cell growth/division signature,

and the FAS/pentose phosphate signature. EMThigh tumor cells

have high expression of the U-oxidation signature and moder-

ately high expression of the cell growth/division signature. We

also realized that these clinically relevant signatures were mainly

defined on the basis of bulk gene expression profile, thus some

of themmay reflect features of the TME. Therefore, we extended

our analysis to all cell types/states identified in our study (Fig-

ure S6G), revealing some interesting findings. For example, the

angiogenesis signature defined by Motzer et al.45 highlights six

genes (VEGFA, KDR, ESM1, CD34, PECAM1, and ANGPTL4),

but only four of them were expressed by endothelial cells while

VEGFA and ANGPTL4 were mainly expressed by tumor cells.

We also found that VEGFA was also expressed in podocytes

and CD34 was expressed in matrix metalloproteinase (MMP) fi-

broblasts. These findings highlight that we can potentially refine

these gene signatures by leveraging single-cell data and, in

future use of these signatures, it might be useful to distinguish

factors that are contributed by tumor cells or the TME.

Interface enrichment and spatial correlation of IL1B-
expressing macrophages with high EMT-expressing
RCC cells
Our results indicated that EMThigh tumor cells preferentially local-

ized to the leading edge of tumors (Figures 1E and 6D). This
(E) Cells from patient donors PD45815 and PD45816, ranked by decreasing EMT

(F) Spatial mapping of EMT and PT tumor cells in a representative tumor-norma

intensity) is overlaid on a histology image. Scale bars, 1 mm.

(G) Box plots showing the EMT and PT scores of TCGA samples in different molec

Data are presented as median ± first and third quartiles with whiskers depicting

(H) Dot plot showing gene scores of previously defined signatures in tumor cell p

See also Figure S6 and Table S5.
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prompted us to explore whether there were any active inter-

cellular interactions at the interface that could promote EMT in

tumor cells. We used NicheNet47 to link ligands from cells in

the TME and the EMT program in tumor cells. From this analysis,

we found that macrophage-derived IL1B showed a high and

wide regulatory potential to these EMT genes (Figure 7A),

putatively via the receptor IL1R1 expressed in tumor cells

(Figures S7A and S7B). Interestingly, IL1B was specifically ex-

pressed by TR Mac.2 (Figure 5C), which again was enriched at

the tumor-normal interface (Figure 5B).

We sought to validate this finding through spatial transcrip-

tomics at the tumor-normal interface and tumor core. A consis-

tent inverse correlation was again observed between signals

derived from PT and EMT genes in RCC cells (Figures 6F, 7B,

and S7C). Notably, we observed an enrichment of EMThigh

RCC cells in close proximity to the tumor-normal interface. On

further inspection, many of these regions co-locate with IL1B-

expressing macrophages (TR Mac.2). We sought to formally

quantify this correlation across all of our tissue sections by

comparing the location of IL1B macrophages with all of the

RCC cell subsets. We found that in many tissue sections,

IL1B-expressing macrophages correlated most strongly with

EMThigh RCC cells (Figures 7B and 7C). Surprisingly, this was

true for all of the tumor core sections, which from our previous

single-cell sequencing results showed a relative sparsity of

EMThigh RCC cells. Among the tumor-normal interface sections,

three out of five sections showed the strongest correlation be-

tween IL1B-expressing macrophages and EMThigh RCC cells.

Taken together, our findings indicate that IL1B-expressing

macrophages (TR Mac.2) are co-localized with EMThigh RCC

cells macroscopically and microscopically both at the tumor-

normal interface and in the tumor core (Figures S7C and

S7D). The microscopic correlation is not universal at the tu-

mor-normal interface and may be a consequence both of the

complex spatially dependent microenvironment and the chal-

lenges of accurate deconvolution of cell types from current

spatial transcriptomic data. The ability of IL-1b expression to

mediate RCC cell invasion has been previously investigated

via a von Hippel-Lindau (VHL) null cell line model.48 Here, inva-

sion of a collagen-rich matrix was induced by tumor cells via

the IL-1b/CEBPb/MMP pathway. In our data we also note

that the EMT MP is defined by both CEBPB and MMP7 (Fig-

ure S6B and Table S5). Our data support the notion that the

IL-1b-mediated EMT pathway is promoting tumor growth, in

part through facilitating the breakdown of the collagenase-

rich interface.

DISCUSSION

We used multi-region-based genomic and single-cell transcrip-

tomic sequencing to characterize the phenotypic heterogeneity
score with corresponding PT score and cell location.

l interface sample (PD47171) using cell2location. Estimated abundance (color

ular subtypes, which are m1 (n = 145), m2 (n = 90), m3 (n = 93), and m4 (n = 86).

95% confidence intervals. ***p < 0.001 (two-sided Wilcoxon rank-sum test).

opulations.
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Figure 7. Cellular interactions in the ccRCC microenvironment

(A) Heatmap depicting the potential regulation of genes expressed by the EMT meta-program and ligands expressed by macrophages.

(B) Spatial mapping of EMT tumor cells, PT tumor cells, and TR Mac.2 in Visium data for representative tumor-normal interface (PD45816) and tumor core

(PD47171) samples using cell2location. Estimated abundance for cell types (color intensity) across locations (dots) is overlaid on histology images. Scale

bars, 1 mm.

(C) Abundance correlation between EMT tumor cells and TR Mac.2 in tumor cores and tumor-normal interfaces from multiple tumors.

See also Figure S7.
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and the multi-cellular ecosystem of ccRCC. Overall, our study

depicts a comprehensive atlas of the TME of ccRCC alongside

the established ITH in ccRCC, including the phenotypic catego-

rization of tumor cells and immune/stromal cells and their inter-

cellular communications in the TME, largely associating with

their geographical localization.

Cells within expanded CD8+ TCR clonotypes were largely

restricted by exhaustion levels. Similar observations were

recently reported in melanoma.49 The phenotypic restriction of

clonotypes may be related to either temporal maturation of

clones or differential neo-epitope specificity rather than environ-

mental factors, as individual tumors harbored clonotypes across
the full diversity of states. We also found a spatial restriction of

TCR clonal expansion within one or more of the macroscopic tu-

mor biopsies. This cannot be entirely accounted for through the

exposure to different mutation-associated neoantigens because

of the limited observed ITH of somatic mutations, and that in

some instances the same epitope binding patterns were en-

riched in different tumor regions (Figure 4D).

The utility of peripheral TCRs for non-invasive cancer detec-

tion and surveillance shows promise,50 especially in RCC where

circulating tumor DNA fragments are scarce.51 Although we

found many expanded clonotypes were represented both in

blood and tumor regions, we observed that the degree of
Cancer Cell 40, 1583–1599, December 12, 2022 1595
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exhaustion and the probability of detecting TCR clones in the pe-

ripheral blood were inversely correlated to the extent that ex-

hausted clonotypes are seldomdetected in the blood (Figure 3F).

This finding suggests that once T cell clones infiltrate into tumors

and undergo phenotypic transition from activation to dysfunction

they seldom recirculate, possibly due to a tissue-residency

phenotype as evidenced by CD69 (Figure 3A). Peripheral sam-

pling of tumor-reactive TCRs is therefore more likely to either

detect antecedents of exhausted tumor-resident clones rather

than those currently active in the tumor, or to detect non-tu-

mor-specific bystander clonal expansions. The tumor region

and tissue-specific expansion of clonotypes has significant im-

plications for the use of TCR sequencing in the detection and

monitoring of disease. Our data also indicate that sampling of

a single tumor region or tissue is unlikely to fully reflect the

TCR clonal expansion in the entire tumor.

We developed a framework to accurately detect somatic mu-

tations in different cell populations based on droplet-based

scRNA-seq data. The principal challenges of the lack of consis-

tent coverage, low read depth, and error-prone sequencing

reads were abrogated using a number of filtering metrics

including the implausibility of shared post-embryonic mutations

between different cell-type lineages. We envisage that in the

future, the use of spatial imaging techniques to visualize called

mutations in expressed genes across a range of cell types will

help to decipher the phylogenetic organization of the multi-

cellular TME.

An EMT MP was defined and shared by multiple ccRCC tu-

mors in our study. More abundant tumor cell populations

and the use of methods to help circumvent challenging batch

variations allowed us to uncover this previously unreported

feature.26–28 EMThigh tumor cells in ccRCC tended to localize

to the tumor-normal interface, which is the leading andmigration

edge of a tumor. These findings are similar to those reported in

the scRNA-seq study of head and neck cancer.16

We identified that IL1B, specifically expressed by a subset of

tissue-resident macrophage cells, could potentially promote tu-

mor cells undergoing EMT, with both cell types found to be en-

riched at the tumor-normal interface. Expression of IL1B has

been reported to positively correlate with tumor stages of

RCC52 and is associated with worse prognosis of patients with

RCC in patients recruited to TCGA. In addition, inhibition of IL-

1b in RCC has been shown to induce tumor regression in a

syngeneic murine model of RCC.53 IL-1b blockade has been

shown to reduce incident lung cancer in patients with athero-

sclerosis,54 putatively preventing pre-existing clinically unde-

tectable nascent tumor clones from progressing. Its use is now

being investigated in several clinical trials, principally in later-

stage disease. Our data indicate roles of macrophage-derived

IL-1b signaling in RCC, acting through the promotion of EMT. Ex-

ploiting this pathway could be therapeutically useful, not only for

those patients with established disease but also in the secondary

prevention of cancer for those with RCC predisposition syn-

dromes such as VHL disease.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Multi-regional tissue samples from renal cancer patients This paper Tables S1–S3

Chemicals, peptides, and recombinant proteins

PAXgene Tissue FIX Container Qiagen 765312

PAXgene Tissue STABILIZER Concentrate Qiagen 765512

Liberase TM Roche 5401119001

DNase Sigma 69182

RPMI Gibco 21875034

gentleMACS Miltenyi Biotec 130-093-237

70mm cells strainer Falcon 10788201

Percoll Sigma-Aldrich P1644

Critical commercial assays

Chromium single cell V(D)J enrichment kit, human T cell 10X Genomics 1000005

Chromium single cell 50 feature barcode library kit 10X Genomics 1000080

Chromium single cell 50 library and gel bead kit 10X Genomics 1000006

Chromium single cell chip A 10X Genomics 120236

Chromium I7 multiplex kit 10X Genomics 120262

Visium Spatial Tissue Optimization Slide & Reagents Kit 10X Genomics 1000193

Vsium Spatial Gene Expression Slide Kit 10X Genomics 1000184

PicoPure DNA Extraction Kit Life Technologies KIT0103

Deposited data

Whole-exome sequencing raw data This paper EGAD00001008029

scRNA-seq raw data This paper EGAD00001008030

Spatial transcriptomics raw data This paper EGAD00001008781

scRNA-seq and spatial transcriptomics count data objects This paper Mendeley Data: 10.17632/g67bkbnhhg.1

TCGA data Cancer Genome

Atlas Research2
N/A

Myeloid data from Cheng et al Cheng et al39 GSE154763

Data from Biet al Biet al26 N/A

Data from Krishna et al Krishna et al27 SRZ190804

Data from Braun et al Braun et al28 N/A

Data from Borcherding et al Borcherding et al31 GSE121638

Software and algorithms

Samtools Github https://github.com/samtools/

Cell Ranger v2.1.1 10x Genomics https://10xgenomics.com

Space Ranger v1.3.0 10x Genomics https://10xgenomics.com

SoupX Github https://github.com/constantAmateur/SoupX

DoubletFinder Github https://github.com/chris-mcginnis-ucsf/DoubletFinder

Seurat v3.2 Stuart et al56 https://satijalab.org/seurat

InferCNV v1.6.0 Github https://github.com/broadinstitute/inferCNV

Monocle 3 Github https://github.com/cole-trapnell-lab/monocle3

CaVEMan v1.11.2 Github https://github.com/cancerit/CaVEMan

Pindel v2.2.2 Github github.com/cancerit/cgpPindel

AlleleCounter Github https://github.com/cancerit/alleleCount

ascatNGS Github https://github.com/VanLoo-lab/ascat

Dpclust Github https://github.com/Wedge-lab/dpclust

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

deSCeRNAMut This paper https://github.com/ThomasJamesMitchell/deSCeRNAMut

ANNOVAR Wang et al57 https://annovar.openbioinformatics.org/en/latest

NicheNet v0.1.0 Github https://github.com/saeyslab/nichenetr

scVelo v0.2.2 Github https://github.com/theislab/scvelo

Scanpy v1.8.2 PyPI https://pypi.org

Anndata v0.7.5 PyPI https://pypi.org

numpy v1.19.5 PyPI https://pypi.org

velocyto v0.17.17 Github https://github.com/velocyto-team/velocyto.py

cell2location v0.7a0 Github https://github.com/BayraktarLab/cell2location

CellTypist v1.1.0 Github https://github.com/Teichlab/celltypist

NMF R package v0.23.0 CRAN https://cran.r-project.org/web/packages/NMF

GSVA R package v1.38.2 Bioconductor https://bioconductor.org/packages/release/bioc/html/

GSVA.html

phangorn R package v2.5.5 CRAN https://cran.r-project.org/web/packages/phangorn

ape R package v5.4 CRAN https://cran.r-project.org/web/packages/ape

survival R package v3.2-3 CRAN https://cran.r-project.org/web/packages/survival

survMisc R package v0.5.5 CRAN https://cran.r-project.org/web/packages/survMisc

survminer R package v0.4.8 CRAN https://cran.r-project.org/web/packages/survminer

GLYPH v2 Huang et al35 http://50.255.35.37:8080/

Other

Web portal This paper https://www.sanger.ac.uk/project/microenvironment-

of-kidney-cancer
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Thomas J

Mitchell (tjm@sanger.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The data generated by this paper is available through the following means: The genome sequence data reported in this paper

is available at the European Genome-Phenome Archive: EGAD00001008029 for whole-exome sequencing data,

EGAD00001008030 for the single cell RNA sequencing data, and EGAD00001008781 for the spatial transcriptomic data.

Our single cell RNA sequencing and spatial transcriptomics data are available to download as h5ad objects in Mendeley

Data: https://doi.org/10.17632/g67bkbnhhg.1. Our data can be explored on an online web portal https://www.sanger.ac.uk/

project/microenvironment-of-kidney-cancer. Other data involved in this study were obtained from the following sources:

TCGA ccRCC cohort (Cancer Genome Atlas Research2), Biet al26 (the provided Single Cell Portal), Krishna et al27 (SRZ:

SRZ190804), Braun et al28 (supplementary materials), Borcherding et al31 (GEO: GSE121638) and Cheng et al39 (GEO:

GSE154763).

d Code and pipeline for deSCeRNAmut is available at Github: https://github.com/ThomasJamesMitchell/deSCeRNAMut. The

code generated during this study is available at Github: https://github.com/ruoyan-li/RCC-spatial-mapping. Additional DOIs

for code used in this study are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Human kidney and tumor tissues were collected through studies approved by UKNHS research ethics committees. Written informed

consent was obtained from all donors. All adult kidneys samples, except PD44967 were collected from patients enrolled in the
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DIAMOND study; Evaluation of biomarkers in urological disease (NHSNational Research Ethics Service ref. 03/018). Tumor PD44967

was collected from a patient enrolled in Characterisation of the immunological and biological markers of Renal cancer progression

(NHS National Research Ethics Service ref. 16/WS/0039). Tissue samples were acquired as part of the DIAMOND study ‘‘Evaluation

of biomarkers in urological disease’’ - NHS National Research Ethics Service reference 03/018, whose infrastructure is part-funded

by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20,014) and CRUK Cambridge Center Urological Malignancies

program (Cancer Research UK Major Center Award C9685/A25117). Tissue and blood processing was carried out in the Clatworthy

Lab, based in the University of Cambridge Molecular Immunity Unit in the MRC Laboratory of Molecular Biology. More relevant in-

formation is summarized in Table S1.

METHOD DETAILS

Tissue sampling
Peripheral bloodwas sampled on the day of the surgery prior to removal of the kidney tumor and placed on ice. The surgical specimen

was directly taken from the operating room to histopathology in order to minimise the warm ischaemia time. Biopsies were sampled

by local pathologists to include (where available) multi-regional tumor biopsies from 4 macroscopically disparate regions, the

tumour-normal interface, normal kidney (distant to the tumor and close to cortico-medullary border), perinephric adipose tissue,

and adrenal gland. The biopsy locations from the bivalved kidney were annotated. Locations for the multi-regional core biopsies

were determined by the following factors. First, the likelihood of harvesting viable tumor cells for single cell RNA sequencing

and intact DNA for exome sequencing. Second, we aimed to sample from regions as geographically spatially separated as

possible, without the risk of disrupting the clinical histopathological diagnosis. Tissue samples were divided and either placed on

wet ice for immediate transfer for generation of single cell suspensions, underwent formalin-free fixation for 24 h in PAXgene Tissue

FIX containers before being 20 transferred to PAXgene STABILIZER solution for storage at �20�C, or snap frozen prior to storage

at �80�C.

Generation of single cell suspensions
The fresh tissue samples were coarsely dissected using a single edged razor blade prior to digestion for 30min at 37�Cwith agitation

in a digestion solution containing 25 mg/ml Liberase TM (Roche) and 50 mg/ml DNase (Sigma) in RPMI (Gibco). Following incubation

samples were transferred to a C tube (Miltenyi Biotec) and processed on a gentle MACS (Miltenyi Biotec) on program spleen 4 and

subsequently lung 2. The resulting suspension was passed through a 70mm cells strainer (Falcon), and washed with PBS. Percoll

(Sigma-Aldrich) density separation was used both as a strategy to remove dead cells and cellular debris, and also to enrich stromal

components of the TME, whilst still being permissive for a proportion of RCC cells themselves. We added the cell pellet to 44% Per-

coll in PBS (PBS) prior to centrifugation at 800G for 20 min. The supernatant was removed and the pellet suspended in PBS prior to

centrifugation for 5 min at 800G. The concentration of enriched live cells was calculated after counting with a hemocytometer with

trypan blue staining.

Cell loading and 10x library preparation
Cells were loaded according to standard protocol of the Chromium single cell 50mRNA kit with TCR library enrichment in order to

capture approximately 14,000 cells/chip position. All the following steps were performed according to the standard manufacturer

protocol. Sequencing of libraries used either the Illumina HiSeq or NovaSeq systems.

Initial processing of scRNA-seq data
After the conversion of CRAMs files into FASTQs using samtools,58 we used the 10X software package cellranger (version 2.1.1 and

vdj) and the GRCh38 reference genome for processing the 50 sequencing data. We used SoupX59 to return an adjusted count matrix

to account for ambient RNA contamination per channel using the adjustCounts() function. We then used DoubletFinder60 to estimate

the probability of a given droplet containing RNA frommore than one cell. Given that our cell loading aimed to recover 14,000 cells per

lane, we assumed an 11% doublet formation rate.

scRNA-seq merge and QC
Seurat56 V3’s implementation of Reciprocal PCA (RPCA) was used to reduce the computational expense in merging the patient spe-

cific scRNA-seq data. Cells with greater than 30%mitochondrial content, or expression of fewer than 200 genes were excluded from

further analysis. We used relatively permission thresholds to avoid removing renal epithelial cells that are known to have relatively

high mitochondrial contents. We used standard clustering metrics and the expression of canonical marker genes to broadly classify

cells into the principal cell subsets; T and NK cells, B and plasma cells, myeloid cells, endothelial cells, epithelial cells (non-

cancerous), fibroblasts, and cancerous RCC cells. Cell clusters expressing implausible combinations of cell lineage specific marker

genes were labeled doublets and were excluded from further analysis.

Cell type sub-clustering and annotation
We performed sub-clustering analysis of various cell compartments using the Seurat pipeline. Briefly, we first pulled out each cell

compartment using the subset() function based on the broad classification of cells. We then used regularised negative binomial
e3 Cancer Cell 40, 1583–1599.e1–e10, December 12, 2022
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regression to normalise UMI counts using the SCTransform() function in Seurat, with the percentage of mitochondria genes being

regressed out. Principal component analysis (PCA) was performed using the RunPCA() function based on highly variable features

generated by using the VariableFeatures() function. For the PCA of T cell population, we excluded TCR encoding genes from the

list of highly variable features so that to avoid clusters driven by the expression of different TCR genes. Batch correction was per-

formed in each cell compartment using the RunHarmony() function implemented in the R package harmony, with the batch key

(parameter ‘group.by.vars’) being set as patients and the assay (parameter ‘assay.use’) being set as ‘SCT’. Next, we performed

nearest-neighbour graph construction, cluster determination and nonlinear dimensionality reduction using the FindNeighbors(),

FindClusters() and RunUMAP() functions, respectively. The ‘reduction’ parameter in the FindNeighbors() and FindClusters() was

set as ‘harmony’. DE-Gs of different clusters were extracted using the FindAllMarkers() function. Cell clusters expressing implausible

combinations of cell lineage specific marker genes were labeled doublets and were excluded from the analysis. Cell type annotation

was based on the expression of canonical markers and DE-Gs in various clusters. The annotation of cell cycle phases in the T cell

population was based on the previously reported phase specific genes.17

Pseudotime inference, TCR analysis
Single cell count data and associated metadata of CD8+ T cells was analyzed using Monocle3 (https://github.com/cole-trapnell-lab/

monocle3) after removal of cycling, gamma delta and MAIT cells. Pre-processing used the function preprocess_cds() with a dimen-

sionality of 100, prior to alignment with ‘align_cds’ and batch correcting by individual sample. Dimension reduction used the function

reduce_dimension(), prior to fitting the principal graph using ‘learn_graph’ and then ordering the cells using ‘order_cells’, all using

the default parameters. To visualise the relationship of canonical marker genes of CD8+ T cell exhaustion we used the function

plot_genes_in_pseudotime(). All such genes were found to be differentially expressed across the single cell trajectory using the func-

tion ‘graph_test’ at a q value of 0.

To demonstrate the differentiation properties of cells within clonotypes, we selected the most expanded clonotypes. For ease of

interpretation we selected those clonotypes that contained at least 100 CD8+ T cells. The median, interquartile range, minimum,

maximum values, and outlier values of pseudotime were plotted by clonotype, ordered by mean pseudotime values. The percentage

maximum expansion was calculated from the region that contributed the maximum percentage of CD8+ T cells for each clonotype.

The percentage of cells cycling in either the G1/S or G2/M phases were also calculated for each clonotype. We sought to quantify the

degree of restriction of TCR clonotypes to a range of pseudotime values, by calculating the Wilcoxon test statistic for each clonally

expanded CD8+ T cell clone (clones with more than one cell), compared to all of the other CD8+ T cells. To determine the likelihood of

detecting expanded TCR clones in the blood as a function of pseudotime we computed the conditional density of detection of any

cells with a given TCR in the blood, with pseudotime, for minimal clone sizes of 2, 4, 8, 16, 32, and 64 cells.

Laser capture microdissection, library preparation, and low-input DNA sequencing
Laser capture microdissection and low-input DNA sequencing followed the protocol previously reported.61 Briefly, PAXgene fixed

samples were subsequently embedded in paraffin using standard histological tissue processing. 16mm sections were cut, mounted

onto PEN-membrane slides, and stained with Gill’s haematoxylin and eosin. Using the LCM (Leica LMD7), tumor regions were

selected in order to perform focally exhaustive tumor sampling. The dissected cells were collected into separate wells in a

96-well plate. Tissue lysis was performed using Arcturus PicoPure Kit (Applied Biosystems).

Libraries were constructed using enzymatic fragmentation as described previously and subsequently submitted for whole-exome

sequencing on the Illumina HiSeq X platform. Short insert (500bp) genomic libraries were constructed, flowcells prepared and

150 base pair paired-end sequencing clusters generated on the Illumina HiSeq X platform without PCR amplification. The average

sequence coverage was 84X and 92X for tumor and normal dissection samples, respectively (Table S3).

Mutation calling from whole-exome sequencing
DNA sequencing reads were aligned to the GRCh 37d5 reference genome using the Burrows-Wheeler transform (BWA-MEM).62 Sin-

gle base somatic substitutions were called using an in-house version of CaVEMan v1.11.2 (Cancer Variants through Expectation

Maximisation, https://github.com/cancerit/CaVEMan). CaVEMan compares sequencing reads from tumor and matched normal

samples and uses a naive Bayesian model and expectation-maximisation approach to calculate the probability of a somatic variant

at each base. Small insertions and deletions (indels) were called using an in-house version of Pindel (https://github.com/cancerit/

cgpPindel). Post-processing filters required that the following criteria were met to call a somatic substitution:

1. At least a third of the reads calling the variant had a base quality of 25 or higher.

2. If coverage of the mutant allele was less than 8, at least one mutant allele was detected in the first 2/3 of the read.

3. Less than 5% of the mutant alleles with base quality R15 were found in the matched normal.

4. Bidirectional reads reporting the mutant allele.

5. Not all mutant alleles reported in the second half of the read.

6. Mean mapping quality of the mutant allele reads was R21.

7. Mutation does not fall in a simple repeat or centromeric region.

8. Position does not fall within a germline insertion or deletion.
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9. Variant is not reported byR 3 reads in more than one percent of samples in a panel of approximately 400 unmatched normal

samples.

10. A minimum 2 reads in each direction reporting the mutant allele.

11. At least 10-fold coverage at the mutant allele locus.

12. Minimum variant allele fraction 5%.

13. No insertion or deletion called within a read length (150bp) of the putative substitution.

14. No soft-clipped reads reporting the mutant allele.

15. Median BWA alignment score of the reads reporting the mutant allele R140.

The following variants were flagged for additional inspection for potential artifacts, germline contamination or index-jumping event:

16. Any mutant allele reported within 150bp of another variant.

17. Mutant allele reported in >1% of the matched normal reads.

18. The median alignment score of reads that support a mutation should be greater than or equal to 140 (ASMD R140)

19. Fewer than half of the reads should be clipped (CLPM = 0).

We then tested for true presence or absence of the somatic variants that passed the above flags using an approach previously

described.63 Briefly, counts were re-calculated using AlleleCounter (https://github.com/cancerit/alleleCount) across all the samples

in this study. For each patient, the non-tumour samples in this study not belonging to that patient were used as a reference to obtain

the locus-specific error rate. Tominimise the false positive rate, the presence of the variant in the samplewas accepted if themultiple-

testing corrected p value was less than 0.001. The ascatNGS64 algorithm was used to estimate tumor purity and ploidy and to

construct copy number profiles. A penalty of 200 was used with the prior knowledge that copy number events in RCC tended to

be either arm or chromosome level.

DNA mutational clustering
Mutations were clustered using a Bayesian Dirichlet based algorithm as described previously.65 Briefly, the expected number of

reads for a given mutation if present in one allelic copy of 100% of tumor cells may be estimated based upon the ASCAT derived

tumor cell fraction, the copy number at that locus and the total read-depth. The fraction of cells carrying a given mutation is modeled

by a Dirichlet process with an adjustment for the decreased sensitivity in identifying mutations in lower tumor fractions. Mutations

were thus assigned to clusters according to the calculated fraction of clonality. The hierarchical ordering of these clusters was deter-

mined by applying the pigeonhole principle.

De novo Mutation calling from scRNA-seq data
The code for this method is available at https://github.com/ThomasJamesMitchell/deSCeRNAMut. The steps are described below:

Initial variant calling

In order to call cell specific mutations, indexed BAM files from the cellranger pipeline were first split into cell specific BAM files and

were indexed using samtools.58 Mutations were initially called using bcftools mpileup. The choice of mutation caller was primarily

influenced by the need for high sensitivity calls of variants with few supporting reads.66 Unsurprisingly, a huge number of mutations

were called - with between 800,000 and 4,000,000 mutations called per patient. To facilitate more efficient downstream filtering of

putative mutations, we perform the first filter step at this point:

d Removal of singlet variants only called in a single cell as it will be challenging to accurately determine whether these mutations

are real or artifact.

d Removal of variants that are shared between the main cell lineages of T and NK cells, B and plasma cells, myeloid cells, endo-

thelial cells, epithelial cells (non-cancerous), fibroblasts, and cancerous RCC cells. The vast majority of somatic mutations are

acquired post embryonic differentiation, and therefore any true degree of sharing is implausible.

After these steps, we are left with between 40,000 and 300,000 mutations per patient. We have generated a list of putative variant

sites, but we are unaware how many variants may have been missed at each loci, and we have no information regarding reference

calls at those loci. We therefore run alleleCount (https://github.com/cancerit/alleleCount) to generate count tables of each base for all

cells at every putative patient-specific loci.

Collation and annotation of counts

Reference and variant counts were collated for all of the loci called above to create a sparse matrix of counts for all cells. In the

absence of copy number variants, if an autosomal chromosome harbors a true mutation, one expects an approximately equal num-

ber of reference and variant calls. The exception is for genes that exhibit a high degree of allelic specific expression, or that typically

transcribe a particular allele in concentrated bursts. Alternatively, a high ratio of reference to variant counts in a cell base may imply

artifact associated with high depth sequencing/poorly mapped regions. A binomial filter (p < 0.05) was therefore applied in each cell,

with calls ignored in future analyses if there are significantly higher reference than variant counts.

Each genomic loci was annotated using ANNOVAR57 and the trinucleotide context of the variant.
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The number of cells containing either the reference or variant base were collated for:

d The cell lineage with the greatest number of mutations.

d All of the other cell lineages.

d The TCR clonotype with the greatest number of mutations.

d All other TCR clonotypes

Fisher’s exact test was used to compute whether there are proportionally greater numbers of mutations in the cell lineage/clono-

type with the greatest number of mutations. An enrichment factor was also calculated for each mutation that represents the multiple

of the increased prevalence in the predominant cell type compared to all others.

Final filter

We applied the following thresholds to filter all possible mutations

d Fisher’s exact significance of enrichment by cell lineage, p < 0.0001 with proportionally at least 5 times greater mutations in the

most enriched lineage.

d Absence of any known single nucleotide polymorphisms from either ExAC or dbSNP.

d No shared mutations between patients

d Adequate coverage with at least 5 cells with variant base from the mutated cell lineage and at least 20 cells with reference base

from the reference population

We then examined the trinucleotide context of calledmutations after this filtering step. Note is made of high levels of mutations that

are otherwise unexplained from published catalogs of mutational signatures (particularly in a GCN > GGN and GTN > GGN context).

By separating the trinucleotide context into the positive versus negative transcribed strands, we see differences that are otherwise

unexplained by DNA derived mutational signatures, implying artifact either through library prep, sequencing, or RNA editing.

The striking strand bias cannot be accounted for by knownmutational processes. Given the disparity between transcribed strands,

mutations that have arisen with a highly biased context are removed (binomial filter, p < 0.005). We finally removed all mutations that

are clustered within 4 bases in a given patient, to yield the final mutation calls.

Benchmarking data by whole-exome sequencing

Multi-regional whole exome sequencing data has been processed for tumor tissue adjacent to the regions that have undergone sin-

gle cell RNA sequencing. The exonic mutations may therefore be used as a benchmark to determine the precision and sensitivity of

the single cell mutation calling method above. To provide a fair comparison between single cell RNA and bulk exonic DNA mutation

calls, and to account for differences in coverage between the methods, we also examine whether there is evidence of a given mu-

tation using the reciprocal technology by performing a pileup at that mutation locus.

We can therefore classify mutations called using the above pipeline as:

d True positive - The mutation has been called in both in the scRNA-seq pipeline and CaVEMan.

d True positive, pileup only - The mutation has been called in the scRNA-seq pipeline, and there is evidence of the mutation in

exome sequencing from tumor regions, with nomutations in the normal sample BAM files. Themost common reasons for these

mutations not being called by CaVEMan is low coverage or the mutation being called in mtDNA.

d False positive - The mutation has been called in the scRNA-seq pipeline, but there are fewer than 5 supporting reads for the

variant base, and more than 20 reads for the reference base in the exome data.

d False negative - Themutation has been called by CaVEMan from the exome data, and has not been called from the scRNA-seq

data, despite there being adequate coverage of at least 5 cells with the variant and at least 20 cells with the reference base.

d Indeterminate - The mutation has been called by the scRNA-seq pipeline, but there is not sufficient depth in the exome data to

corroborate the call.

Note that it is possible that some of the false positive results may be real mutations that simply have not been captured spatially as

adjacent tissuewassequenced.Overall, this scenario isunlikelyas themajorityofmutationsareclonal andpresent throughout the tumor.

Benchmarking data by clonotype

In adult tumors, one expects a high proportion of somatic mutations in expanded CD8+ T cells to have been acquired post thymic

selection. Most called mutations should therefore be restricted to a single T cell receptor clonotype. By using identical metrics to

those used to select mutations across all cell types, we examined the proportion of CD8+ T cell mutations that are restricted to a

single clonotype. Again, in order to call a mutation, we use thresholds requiring at least 5 cells with the variant in the most prevalent

clonotype, with a least 20 cells covering the reference allele in the other clonotypes.

Inferring copy number variations based on scRNA-seq data
To effectively distinguish malignant and non-malignant cells, we inferred the large-scale chromosomal CNVs of single cells based on

scRNA-seq data using the tool InferCNV (https://github.com/broadinstitute/inferCNV) with default parameters. Briefly, InferCNV first

orders genes according to their genomic positions (first from chromosome 1 to X and then by gene start position) and then uses a

previously described sliding-average strategy to normalise gene expression levels in genomic windows with a fixed length. Multiple

putative non-malignant cells are chosen as the reference to further denoise the CNV result. In our analysis, we chose epithelial cells
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(including both PT and non-PT cells), endothelial cells and fibroblasts as the reference cell types to define a baseline in inferring CNVs.

Cell subtype abundance in different tissues
To explore the potential enrichments of cell subtypes in different tissues, we compared the observed and expected number of cells of

all cell types/subtype across different tissues. Adrenal metastasis and tumor thrombus were excluded from this analysis as we only

managed to sample them in single patients. The ratio of observation to expectation (RO/E) was calculated as follows:

RO=E = Observed=Expected

where the expected number of cells were calculated based on theChi-square test. In this analysis, we excluded cells from the adrenal

metastasis and tumor thrombus because we only captured cells from these two tissues from single patients. A specific cluster was

considered as being enriched in a specific tissue if Ro/e > 1. In the dot plot shown in Figure 1E, all proportions were calculated as

dividing cell numbers by total cell numbers of a certain major cell compartment. We filtered out proportions smaller than 0.001 to

display the result.

Cross-study comparison analysis using the CellTypist to train LR models
To perform cross-study comparisons, we trained logistic regression (LR) models with our dataset and cell annotations as the training

data using the CellTypist,55 an automated cell type annotation tool for scRNA-seq datasets on the basis of logistic regression clas-

sifiers optimised by the stochastic gradient descent (SGD) algorithm. The training process was conducted for each major cell

compartment separately, in which we first performed a fast feature selection based on the feature importance (the absolute regres-

sion coefficients) using SGD learning and then re-ran the classifier using the corresponding subset genes of the input data. We used

LRmodels for different cell compartments to predict the identities of cells in four previously published datasets,26–28,31 and compared

the predicted cell identities to the provided annotations/cluster numbers. Among the four previous studies, Braun et al,28 Biet al26 and

Krishna et al27 captured all major cell populations in the TME of RCC, including stroma, immune, epithelia andRCC cells, while Borch-

erding et al31 only profiled the immune cell compartment. We included all these cell populations in the comparison analysis.

Correlation between spatial, somatic RCC evolution and TCR clonotype evolution
Tree structures relating to somatic ITH, spatial localisation of the tissue samples, and CD8+ clonotype enrichment for each region

sampled were generated. The distance matrix relating regions to their somatic ITH was generated using pairwise distances from

the mutational cluster output from the Bayesian Dirichlet based algorithm from the WES data for each of the (clonally) derived

LCM samples. The spatial localisation distance matrix was calculated from the pairwise distances from tree structures determined

either by:

1) The approximate absolute distance between LCM biopsies: This metric is not meaningful for normal tissue samples, particu-

larly for peripheral blood and therefore the normal samples were excluded using this absolute distance metric.

2) A categorical distance: The first level equates to adjacent LCM biopsies, whose centers lie approximately 0.2mm apart. The

second level for LCM biopsies taken from the same histologically mounted section, approximately 2mm distant. The third level

relates to biopsies from small macroscopically separate biopsies, separated by approximately 6mm. The fourth level relates to

macroscopic tumor biopsies taken approximately 30mm apart. The fifth level encompasses all of the adjacent normal tissue

samples.

The Euclidian CD8+ T cell clonotype distance matrix was calculated using the relative expansions of the CD8+ clonotypes for each

region sampled. Regions were removed where there was incomplete data – for instance if there were no viable cells in the single cell

sequencing data. However, any regions where there was overlapping data, for instance multiple WES data from adjacent LCM cuts

relating to a single region for single cell RNA sequencing were all included.

The pairwise correlation between the above distance matrices was computed using the Mantel test. A paired Wilcoxon test was

used to determine whether somatic ITH or spatial localisation correlated with CD8+ clonotypic heterogeneity.

Gene set enrichment analysis and gene signature scoring in macrophage population
We performed gene set variation analysis among macrophage subsets using the GSVA R package. The gene sets we used were the

C2 collection (curated gene sets) downloaded from the MsigDB database (https://www.gsea-msigdb.org/gsea/msigdb). The differ-

ences in activities pathways between clusters were calculated using the Limma R package. Significantly disturbed pathways were

identified with Benjamini-Hochberg–corrected p value of <0.01. Some representative pathways that related to tumor progression,

immune response and regulation were selected to make a heatmap. We investigated the phenotypes of different macrophage sub-

sets by scoring them based on four previously reported gene signatures, including M1 and M2 polarisation,18 signature of myeloid-

derived suppressor cells (MDSC),67 and signatures of angiogenesis and phagocytosis.39

RNA velocity analysis
We conducted RNA velocity analysis using velocyto.68 We first ran the command line ‘velocyto run10x’ to annotate spliced and un-

spliced reads using the cellranger output (the BAM file) as the input, generating loom files for each cellranger output. We thenmerged
e7 Cancer Cell 40, 1583–1599.e1–e10, December 12, 2022

https://www.gsea-msigdb.org/gsea/msigdb


ll
OPEN ACCESSArticle
these loom files and pre-processed the velocity data using the scVelo python package.69 We projected the velocity information onto

pre-generated UMAP and visualised the results using the function scvelo.pl.velocity_embedding_grid().

Similarity analysis of myeloid clusters
To compare the similarities of myeloid clusters to the previously published data,39 we trained a logistic regressionmodel using elastic

net regularisation as previously described.25 The previous kidney cancer data were obtained from Gene Expression Omnibus (GEO:

GSE154763) and were used as training data.

Lineage tracing using scRNA-seq called somatic mutations
Based on the somaticmutations called from scRNA-seq data, we constructed a neighbour-joining tree to elucidate the relationship of

different monocyte and macrophage subtypes (the low-quality cluster was excluded). Since our somatic mutations were called from

gene expression data, we realised that the expression levels of genes may impact on the detection of mutations in different clusters,

thus potentially making cell subtypes with more similar expression profiles cluster closer while those with less similar expression pro-

files segregate farther in the tree structure. To mitigate this, we excluded mutations that were detected in the top 100 DE-Gs of every

cluster from the tree construction process. Based on the remaining mutations, we created a mutation matrix (mutation 3 subtype)

considering whether a specific mutation appears in specific subtypes or not. Next, we calculated the binary distance between any

two cell subtypes based on the mutation matrix and constructed the neighbour-joining tree using the ‘NJ’ function in the R package

‘phangorn’. A bootstrapping analysis was performed using the ‘boot.phylo’ function implemented in the R package ‘ape’, with the

number of bootstrap replicates being set as 100. The final tree structure was displayed using the ‘plotBS’ function in the R package

‘phangorn’.

Deciphering intra-tumour expression programmes and meta-programmes
To explore underlying intra-tumour expression signatures of tumor cell population in RCC, we applied non-negative factorization (im-

plemented in the RNMFpackage) to the tumor cells in ten patients (PD44714 andPD47172were excluded from this analysis because

they were histologically evaluated as benign and oncocytoma). Briefly, for each tumor, we first normalised the expression counts

using Seurat NormalizeData() function with default parameter settings. We selected highly variable genes (HVGs) using Seurat Find-

VariableFeatures() function and only focused on the 2000 HVGs in downstream analysis. Then, we performed centre-scale for HVSs

using Seurat ScaleData() function with the percentage of mitochondria genes being regressed out, and replaced all negative values in

the expression matrix by zero. The top 10 ranked co-expressed gene modules in each tumor sample were dissected by using the

nmf() function in the NMF package. For each gene module, we extracted the top 50 genes with the highest weight and used them

to define a specific intra-tumour expression program. Finally, we only included those expression programmes with standard devia-

tions larger than 0.2 among tumors cells, thus generating 3 to 6 intra-tumour expression programmes in the 10 tumors.

To investigate if some intra-tumour expression programmes were actually shared bymultiple tumors, we applied a clustering anal-

ysis to all programmes based on the pair-wised Jaccard index calculated as follows, where A and B represent two intra-tumour

programmes.

Jaccard index = AXB=AWB

We defined those intra-tumour programmes shared by multiple tumors as meta-programmes. Genes that are shared by at least

50% tumors with a specific meta-programme were used to define the meta-programme except for the cell cycle program, which is

only shared by two tumors and thus we used genes shared by the two tumors to define the cell cycle program.

Integrating and analysing tumor cells from different patients
To mitigate the effect brought by the strong inter-tumour heterogeneity in integration, we used the Seurat scRNA-seq integration

pipeline to integrate tumor cells from 10 patients (PD44714 and PD47172 were excluded from this analysis because they were his-

tologically evaluated as benign and oncocytoma). Briefly, for each tumor, we first used regularised negative binomial regression to

normalise UMI counts based on the SCTransform() function in Seurat with the percentage of mitochondria genes being regressed

out. The pre-processed individual objects were then added to a list, based on which we further performed selection of integration

features using the SelectIntegrationFeatures() function with the number of features being set as 3000. We next performed integration

preparation using the PrepSCTIntegration() function and found the integration anchors using the FindIntegrationAnchors() function

with the normalisation method being set as ‘SCT’ and the ‘k.filter’ parameter being set as 50. Finally, these objects were integrated

by using the IntegrateData() function. Based on this integrated object of tumor cells, we further performed downstream analyses

including clustering and differentially expressed gene analysis. Gene signature scores of the six identified meta-programmes

were calculated with the AddModuleScore() function using featured genes in these programmes.

TCGA data and prognosis analysis
We used TCGA expression and prognostic data to calculate meta-programme scores and investigate how the meta-programmes

correlate with survival of patients with ccRCC. We processed the gene expression matrix by log-transforming and centralising.

Gene scores of each meta-programme were calculated as the average expression of genes in the specific program. TCGA samples

with records of age, gender, stage, survival data and tumor purity information were further used for survival analysis. For the
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expression of each meta-programme, patient cohorts were grouped into high and low groups by the optimal cut point determined

using the cutp() function documented in the survMisc R package. We performed multivariate analyses using the Cox proportional

hazardsmodel (coxph() function in the survival R package) to correct clinical covariates including age, gender, tumor stage and tumor

purity for all survival analyses in our study. Kaplan-Meier survival curves were plotted to show differences in survival time using the

ggsurvplot() function in the survminer R package.

Cell-cell interaction analysis
To study if any active intercellular interactions at the interface that potentially promoted EMT in tumor cells, we conducted an analysis

of cell-cell interaction by linking ligands expression on one cell type to some target genes of interest expressing another cell type

using NicheNet.47 This analysis uses public databases (KEGG, ENCODE, PhoshoSite) to track downstream effectors such as tran-

scription factors and receptor’s target in the provided dataset. Specifically, we were interested in what ligands from non-malignant

cells in the TME can potentially trigger EMT program in tumor cells, thus considering the gene list of deciphered EMT meta-pro-

gramme as the target genes. Genes were considered as expressed when they have non-zero values in at least 5% of the cells in

a specific cell type.

Sample preparation for 10x Genomics Visium spatial transcriptomics
Fresh frozen samples from tumor core and tumour-normal interface tissues were first embedded in optimal cutting temperature me-

dium (OCT) compound and then sectioned into 10 mm-thick sections using the Leica CX3050S cryostat. The generated sections were

selected based on H&E staining with focusing on morphology and orientation. A further selection on samples was conducted based

on the RNA integrity number obtained from Agilent2100 Bioanalyzer. Tissue optimization was performed respectively on tumor core

and tumour-normal interface samples. After optimization, the Visium spatial gene expression protocol from 10X Genomics was per-

formed using the Library Preparation slide and following the manufacturer’s protocol. After transcript capture, Visium Library Prep-

aration was further performed following themanufacturer’s protocol. All images for this processwere scanned at 403 onHamamatsu

NanoZoomer S60. cDNA libraries from five tumor core and 11 tumor normal interface samples were diluted and pooled to a final con-

centration of 2.25 nM (200 mL volume) and sequenced on 23 SP flow cells of Illumina NovaSeq 6000.

Visium data processing
Sequencing reads from 10x Genomics Visium libraries were aligned to the human transcriptome reference GRCh38-2020-A

using 10x Genomics SpaceRanger (v.1.3.0) and exonic reads were used to produce mRNA count matrices for each sample.

10x Genomics SpaceRanger was also used to align paired histology images with mRNA capture spot positions in the Visium slide.

We further integrated and processed SpaceRanger outputs using Scanpy (v.1.8.2). Following Scanpy pipeline, we filtered out

Visium spots with the number of counts smaller than 2,000 and greater than 35,000, and the number of genes smaller than

500. Visium spots with a mitochondrion gene percentage greater than 20% were further filtered out. After quality check and

data filtering, we removed two poor quality slides whose numbers of spots were smaller than 500 (6800STDY12499504 and

6800STDY12499505).

Spatial mapping of cell types with cell2location
To spatially map the cell types that we annotated in scRNA-seq data to spatial transcriptomic data, we applied cell2location to inte-

grating scRNA-seq data with 10x Genomics VisiummRNA count matrices as described previously.43 In brief, the cell2location model

estimates the abundance of each cell population in each location by decomposing mRNA counts in 10x Genomics Visium data using

the transcriptional signatures of reference cell types. Two major steps were in analysis using cell2location: (1) We applied a negative

binomial regression model implemented in cell2location and estimated the reference signature of cell types we annotated based on

scRNA-seq data. In this step, we used an unnormalized mRNA count matrix as input and filtered it to 13,042 genes and 261,202 cells

(cells that were annotated as unknown, low-quality and patient specific were removed from this analysis). Donor IDs were regarded

as the batch category and the following parameters were used to train the model: ‘max_epochs’ = 120, ‘batch_size’ = 2500, ‘train_

size’ = 1 and ‘Ir’ = 0.002. (2) The reference signature model was further used by cell2location to estimate spatial abundance of cell

types. We kept genes that were shared with scRNA-seq and estimated the abundance of cell types in tumor core and interface

groups respectively. In this step, cell2location was used with the following parameter settings: training iterations: 20,000, number

of cells per location N = 20, ‘detection_alpha’ = 200. We plotted cells of interest (i.e., EMT and PT tumor cells) in each slide and

excluded one slide (6800STDY12499409) where no tumor cells were clearly mapped in the spatial data.

We examined the localisation pattern between TR Mac.2 and different tumor cell subtypes. To take into account cell-types prox-

imally co-localised, the 6 adjacent spots were identified for each spot in the slide.Where there were less than 6 surrounding spots (for

spots on an edge of the tissue for example) or where one of the spots had already been used as another spots neighbor, the spot in

question was skipped. This iterative grouping of spot and neighbor provided a comprehensive non-overlapping map of 7-spot units

covering the whole slide. The mean of the computed cell2location abundance scores was computed for each of these 7 spot units

and the Pearson correlation was calculated between these for each RCCprogram (defined as "TRMac.200, "EMT", "Stress", "MHCII",

"PT", "CD"). Correlations of abundances between "TR Mac200 and each other RCC program were selected from the resulting corre-

lation matrix and plotted separately for interface and tumor core samples.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R (version 4.0.4). Two-sidedWilcoxon rank-sum test was applied to examining whether

T cell clonotypes refine to a range of pseudotime values, whether TCR heterogeneity is more strongly correlated with spatial local-

isation or somatic heterogeneity, and whether certain TCGA subtype of tumors has significantly higher EMT score. Tukey test was

used to investigate the relationship of TCR clonal expansion and tissue locations among different TCR categories. In De Novo mu-

tation calling, binomial test was applied in each cell to test whether there is significantly higher reference than variant counts and was

used to test whether called mutations show a significant strand bias. Fisher’s exact was used to test whether called mutations are

significantly enriched by cell lineage. Descriptions of statistical tests performed for each individual analysis are provided in Fig-

ure legends and method details. No methods were used to determine whether the data met assumptions of the statistical approach.
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