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High-throughput screens (HTS) are a cornerstone of the 
pharmaceutical drug discovery pipeline (1, 2). Conven-
tional HTS have at least two major limitations. First, the 
readout of most HTS are restricted to gross cellular phe-
notypes, e.g. proliferation (3, 4), morphology (5, 6), or a 
highly specific molecular readout (7, 8). Subtle changes in 
cell state or gene expression, that might otherwise provide 
mechanistic insights or reveal off-target effects, are rou-
tinely missed. 

Second, even when HTS are performed in conjunction 
with more comprehensive molecular phenotyping such as 
transcriptional profiling (9–12), a limitation of bulk assays 
is that even cells ostensibly of the same ‘type’ can exhibit 
heterogeneous responses (13, 14). Such cellular heteroge-
neity can be highly relevant in vivo. For example, it re-
mains largely unknown whether the rare subpopulations 
of cells that survive chemotherapeutics are doing so on the 
basis of their genetic background, epigenetic state, or 
some other aspect (15, 16). 

In principle, single-cell transcriptome sequencing 
(scRNA-seq) represents a form of high-content molecular 
phenotyping that could enable HTS to overcome both lim-
itations. However, the per-sample and per-cell costs of 
most scRNA-seq technologies remain high, precluding 

even modestly sized screens. Recently, several groups de-
veloped ‘cellular hashing’ methods, wherein cells from dif-
ferent samples are molecularly labeled and mixed prior to 
scRNA-seq. However, current hashing approaches require 
relatively expensive reagents (e.g. antibodies (17) or chem-
ically modified DNA oligos (18, 19)), use cell type-depend-
ent protocols (20), and/or employ scRNA-seq platforms 
with a high per-cell cost. 

To enable cost-effective HTS with scRNA-seq-based 
phenotyping, we describe a novel sample labeling (hash-
ing) strategy that relies on labeling nuclei with unmodified 
single-stranded DNA oligos. Recent improvements in sin-
gle cell combinatorial indexing (sci-RNA-seq3) have low-
ered the cost of scRNA-seq library preparation to less than 
$0.01 per cell, with millions of cells profiled per experi-
ment (21). Here we combine nuclear hashing and sci-RNA-
seq into a single workflow for multiplex transcriptomics, 
termed ‘sci-Plex’. As a proof-of-concept, we apply sci-Plex 
to perform a HTS of 3 cancer cell lines, profiling thousands 
of independent perturbations in a single experiment. We 
further explore how chemical transcriptomics at single cell 
resolution can shed light on mechanisms of action. Most 
notably, we find that gene regulatory changes consequent 
to treatment with HDAC inhibitors are consistent with the 
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model that they interfere with proliferation by restricting a 
cell’s ability to draw acetate from chromatin (22, 23). 
 
Results 
Nuclear hashing enables multi-sample sci-RNA-seq 

Single-cell combinatorial indexing (sci-) methods use 
split-pool barcoding to uniquely label the molecular contents 
of large numbers of single cells or nuclei (24). Samples can be 
barcoded by these same indices, e.g. by placing each sample 
in its own well during reverse transcription in sci-RNA-seq 
(21, 25), but such enzymatic labeling at the scale of thousands 
of samples is operationally infeasible and cost-prohibitive. To 
enable single-cell molecular profiling of a large number of in-
dependent samples within a single sci- experiment, we set out 
to develop a low-cost labeling procedure. 

We noticed that single-stranded DNA (ssDNA) specifically 
stained the nuclei of permeabilized cells, but not intact cells 
(Fig. 1A and fig. S1A). We therefore postulated that a polyad-
enylated ssDNA oligonucleotide could be used to label popu-
lations of nuclei in a manner compatible with sci-RNA-seq 
(Fig. 1B and fig. S1B). To test this concept, we performed a 
‘barnyard’ experiment. Human (HEK293T) and mouse cells 
(NIH3T3) were each separately seeded to 48 wells of a 96-
well culture plate. We performed nuclear lysis in the presence 
of 96 well-specific polyadenylated ssDNA oligos (‘hash oli-
gos’) and fixed the resulting nuclear suspensions with para-
formaldehyde. Having labeled or ‘hashed’ the nuclei with a 
molecular barcode, we pooled nuclei and performed a 2-level 
sci-RNA-seq experiment. Because the hash oligos were poly-
adenylated, they had the potential to be combinatorially in-
dexed identically to endogenous mRNAs. As intended, we 
recovered reads corresponding to both endogenous mRNAs 
(median 4,740 unique molecular identifiers (UMIs) per cell) 
and hash oligos (median 270 UMIs per cell). 

We devised a statistical framework to identify the hash 
oligos associated with each cell at a frequency exceeding 
background (table S1). We observed 99.1% concordance be-
tween species assignments based on hash oligos vs. endoge-
nous cellular transcriptomes (Fig. 1C and fig. S1, C to F). 
Additionally, the association of hash oligos and nuclei was 
stable to a freeze-thaw cycle, highlighting the opportunity to 
label and store samples (Fig. 1D and fig. S1, G and H). These 
results demonstrate that hash oligos stably label nuclei in a 
manner that is compatible with sci-RNA-seq. 

In sci- experiments, ‘collisions’ are instances in which two 
or more cells are labeled with the same combination of bar-
codes by chance (24). To evaluate hashing as a means of de-
tecting doublets resulting from collisions, we varied the 
number of nuclei loaded per PCR well, resulting in a range of 
predicted collision rates (7-23%) that was well matched by 
observation (fig. S1I). Hash oligos facilitated the identifica-
tion of the vast majority of interspecies doublets (95.5%) and 

otherwise undetectable within-species doublets (Fig. 1E and 
fig. S1, J and K). 
 
sci-Plex enables multiplex chemical transcriptomics at 
single-cell resolution 
We next evaluated whether nuclear hashing could enable 
chemical screens, by labeling cells that had undergone a spe-
cific perturbation, followed by single-cell transcriptional pro-
filing as a high-content phenotypic assay. We exposed A549, 
a human lung adenocarcinoma cell line, to one of four com-
pounds dexamethasone (corticosteroid agonist), nutlin-3a 
(p53-Mdm2 antagonist), BMS-345541 (inhibitor of NF-κB-
dependent transcription), or vorinostat/SAHA (histone 
deacetylase inhibitor) for 24 hours, across 7 doses in triplicate 
for a total of 84 drug/dose/replicate combinations and addi-
tional vehicle controls (Fig. 2A and fig. S2A). Nuclei from each 
well were labeled and subjected to sci-RNA-seq2 (fig. S2, B to 
D, and table S1). 

We used Monocle 3 (21) to visualize these data via Uni-
form Manifold Approximation and Projection (26) (UMAP) 
and louvain community detection to identify compound-spe-
cific clusters of cells, which were distributed in a dose-de-
pendent manner (Fig. 2, B and C, and fig. S2, E and F). To 
quantify the “population average” transcriptional response of 
A549 to each of the four drugs, we modeled each gene’s ex-
pression as a function of dose through generalized linear re-
gression. 7,561 genes were sensitive to at least one drug, and 
3,189 genes were differentially expressed in response to mul-
tiple drugs (fig. S3A and table S2). These included canonical 
targets of dexamethasone (Fig. 2D) and nutlin-3a (Fig. 2E). 
Gene ontology analysis of differentially expressed genes re-
vealed the involvement of drug-specific pathways (e.g. hor-
mone signaling for dexamethasone; p53 signaling for nutlin-
3a; fig. S3B). Additionally, we evaluated whether the number 
of cells recovered at each concentration could be used to infer 
toxicity akin to traditional screens. After fitting a response 
curve to the recovered cellular counts, we inferred a ‘viability 
score’ from sci-Plex data, a metric which was concordant with 
gold standard measurements (Fig. 2F and fig. S2, G to I). 
 
sci-Plex scales to thousands of samples and enables HTS 
To assess how sci-Plex scales for HTS, we performed a screen 
of 188 compounds targeting a diverse range of enzymes and 
molecular pathways (Fig. 3A). Half of this panel was chosen 
to target transcriptional and epigenetic regulators. The other 
half was chosen to sample diverse mechanisms of action. We 
exposed three well-characterized human cancer cell lines 
(A549 (lung adenocarcinoma), K562 (chronic myelogenous 
leukemia), MCF7 (mammary adenocarcinoma) to each of 
these 188 compounds at four doses (10 nM, 100 nM, 1 μM, 10 
μM) in duplicate, randomizing compounds and doses across 
well positions in replicate culture plates (table S3). These 
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conditions, together with vehicle controls, accounted for 
4,608 of 4,992 independently treated cell populations in this 
experiment. After treatment we lysed cells to expose nuclei, 
hashed them with a unique combination of two oligos (fig. 
S4A), and performed sci-RNA-seq3 (21). After sequencing and 
filtering based on hash purity (fig. S4, B to F), we obtained 
transcriptomes for 649,340 single cells, with median mRNA 
UMI counts of 1,271, 1,071, and 2,407 for A549, K562 and 
MCF7, respectively (fig. S5A). The aggregate expression pro-
files for each cell type were highly concordant between repli-
cate wells (Pearson correlation = 0.99) (fig. S5B). 

Visualizing sci-RNA-seq profiles separately for each cell 
line revealed compound-specific transcriptional responses 
and patterns that were common to multiple compounds. For 
each of the cell lines, UMAP projected most cells into a cen-
tral mass, flanked by smaller clusters (Fig. 3B). These smaller 
clusters were largely comprised of cells treated with com-
pounds from only one or two compound classes (figs. S6 and 
S7, A to C). For example, A549 cells treated with triamcino-
lone acetonide, a synthetic GR agonist, were markedly en-
riched in one such small cluster, comprising 95% of its cells 
(Fisher’s exact test, FDR < 1%; fig. S7, D and E). Although 
many drugs were associated with a seemingly homogenous 
transcriptional response, we also identified cases in which 
distinct transcriptional states were induced by the same drug. 
For example, in A549, the microtubule stabilizing compounds 
epothilone A and epothilone B were associated with three 
such focal enrichments, each comprised of cells from both 
compounds at all 4 doses (fig. S7, F and G). The cells in each 
focus were distinct from one another, but transcriptionally 
similar to other treatments–either a recently identified mi-
crotubule destabilizer, rigosertib (27), the SETD8 inhibitor 
UNC0397, or untreated proliferating cells (fig. S7H). 

We next assessed the effects of each drug on the 'popula-
tion average' transcriptome of each cell line. In total, 6,238 
genes were differentially expressed in a dose-dependent man-
ner in at least one cell line (FDR < 5%; fig. S8 and tables S4 
and S5). Bulk RNA-seq measurements collected for 5 com-
pounds, across 4 doses and vehicle agreed with averaged gene 
expression values and estimated effect sizes across identically 
treated single cells, although correlations between small ef-
fect sizes were diminished (fig. S9). Moreover, sci-Plex dose-
dependent effect profiles correlated with compound matched 
L1000 measurements (11) (fig. S10). 

Genes associated with the cell cycle were highly variable 
across individual cells, and many drugs reduced the fraction 
of cells that expressed proliferation marker genes (figs. S11 
and S12). In principle, scRNA-seq should be able to distin-
guish shifts in the proportion of cells in distinct transcrip-
tional states from gene regulatory changes within those 
states. In contrast, bulk transcriptome profiling would con-
found these two signals (fig. S13A) (14). We therefore tested 

for dose-dependent differential expression on subsets of cells 
corresponding to the same drug but expressing high vs. low 
levels of proliferation marker genes (fig. S13B). Correlation 
between the dose-dependent effects on the two fractions of 
each cell type varied across drug classes (fig. S13C), with some 
frankly discordant effects for individual compounds (fig. 
S13D). Viability analysis, performed as in the pilot experi-
ment, revealed that after drug exposure at the highest dose, 
only 52 (27%) compounds caused a drop in viability of 50% 
or more (Fig. 3C and fig. S5C). Amongst the drugs that re-
duced viability, we observed a higher sensitivity of K562 to 
the Src/Abl inhibitor bosutinib (Fig. 3C), a result we con-
firmed via cell counting (fig. S14A). This result is consistent 
with K562 cells harboring a constitutively active BCR-ABL fu-
sion kinase (28) and an observed increased sensitivity of hem-
atopoietic and lymphoid cancer cell lines to Abl inhibitors 
(29) (fig. S14B). 

To assess whether each compound elicited similar re-
sponses across the three cell lines, we clustered compounds 
using the effect sizes for dose-dependent genes as loadings in 
each cell line (figs. S15 to S18). Joint analysis of the three cell 
lines revealed common and cell type specific responses to dif-
ferent compounds (figs. S19 and S20). For example, tramet-
inib, a MEK inhibitor, induced a transcriptionally distinct 
response in MCF7. Inspection of UMAP projections revealed 
trametinib-treated MCF7 interspersed amongst vehicle con-
trols, reflecting limited effects. In contrast, trametinib-
treated A549 and K562 cells, which harbor activating KRAS 
and ABL mutations (30), respectively, were tightly clustered, 
consistent with a strong, specific transcriptional response to 
inhibition of MEK signaling by trametenib (Fig. 3D). Further, 
we observed that these A549 and K562 cells appeared proxi-
mal to clusters enriched with inhibitors of HSP90, a key chap-
erone for protein folding (Fig. 3D). This observation was 
corroborated by concordant changes in HSP90AA1 expres-
sion in Trametinib-treated cells (Fig. 3E). Analysis of Connec-
tivity Map data (11, 12) revealed further evidence that MEK 
inhibitors do indeed induce highly similar gene expression 
signatures to HSP90 perturbations (fig. S14C) especially in 
A549 but not in MCF7 (fig. S14, D and E). These results are 
concordant with previous observations of the regulation of 
HSP90AA1 downstream of MEK signaling (31) and suggests 
that similarity in single-cell transcriptomes treated with dis-
tinct compounds can highlight drugs that target convergent 
molecular pathways. 
 
Inference of chemical and mechanistic properties of 
HDAC inhibitors 
For each of the three cell lines, the most prominent com-
pound response was comprised of cells treated with one of 
seventeen histone deacetylase (HDAC) inhibitors (Fig. 3B, 
dark blue, and table S6). To assess the similarity of the dose-
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response trajectories between cell lines, we aligned HDAC-
treated cells and vehicle-treated cells from all three cell lines 
using a mutual-nearest neighbor (MNN) matching approach 
(32) to produce a consensus HDACi trajectory, which we term 
'pseudodose' (analogous to pseudotime (33)) (Fig. 4A and fig. 
S21). We observed that some HDAC inhibitors induced homo-
geneous responses, with nearly all cells localized to a rela-
tively narrow range of the HDACi trajectory at each dose (e.g. 
pracinostat in A549), while other drugs induced much greater 
cellular heterogeneity (Fig. 4B and fig. S22). 

Such heterogeneity could be explained by cells executing 
a defined transcriptional program asynchronously, with the 
dose of drug that the cells are exposed to modulating the 
rates of their progression through it. To test this hypothesis, 
we sequenced the transcriptomes of 64,440 A549 cells that 
were treated for 72 hours with one of 48 compounds, includ-
ing many of the HDAC inhibitors from the large sci-Plex 
screen. Upon accounting for confluency dependent cell cycle 
effects and MNN alignment (figs. S23 and S24), the co-em-
bedded UMAP projection revealed new focal concentrations 
of cells at 72 hours that were not evident at the 24 hour time 
point, e.g. SRT1024 (fig. S25). However, for the majority of 
HDAC inhibitors tested, we did not observe that cells at a 
given dose moved farther along an aligned HDAC trajectory 
at 72 hours (fig. S26). This suggests that the dose of many 
HDAC inhibitors governs the magnitude of a cell’s response 
rather than its rate of progression and that any observed het-
erogeneity cannot be attributed solely to asynchrony (fig. 
S26). 

Next, we assessed whether a given HDAC inhibitor’s tar-
get affinity explained its global transcriptional response to 
the compound. We used dose-response models to estimate 
each compound’s ‘transcriptional EC50 (TC50)’, i.e. the con-
centration needed to drive a cell halfway across the HDACi 
pseudodose trajectory (fig. S27A and table S6). To compare 
the transcriptionally-derived measures of potency with the 
biochemical properties of each compound, we collected pub-
lished IC50 values for each compound from in vitro assays 
performed on 8 purified HDAC isoforms (table S7). With the 
exception of 2 relatively insoluble compounds, our calculated 
TC50 values increased as a function of compound IC50 values 
(Fig. 4C and fig. S27, B and C). 

To assess the components of the HDAC inhibitor trajec-
tory, we performed differential expression analysis using 
pseudodose as a continuous covariate. Of the 4,308 genes that 
were significantly differentially expressed over this consen-
sus trajectory, 2,081 (48%) responded in a cell type-depend-
ent manner, while 942 (22%) exhibited the same pattern in 
all three cell lines (fig. S28, A and B, and table S8). One prom-
inent pattern shared by the three cell lines was an enrich-
ment for genes and pathways indicative of progression 
toward cell cycle arrest (figs. S28C and S29, A and B). DNA 

content staining and flow cytometry confirmed that HDAC 
inhibition resulted in the accumulation of cells in the G2/M 
phase of the cell cycle (34) (fig. S29, C and D). 

The shared response to HDAC inhibition included not 
only cell cycle arrest, but also the altered expression of genes 
involved in cellular metabolism (fig. S28C). Histone acetyl-
transferases and deacetylases regulate chromatin accessibil-
ity and transcription factor activity through the addition or 
removal of charged acetyl groups (35–37). Acetate, the prod-
uct of HDAC class I-,II- and IV-mediated histone deacetyla-
tion and a precursor to acetyl-CoA, is required for histone 
acetylation but also has important roles in metabolic homeo-
stasis (23, 38, 39). Inhibition of nuclear deacetylation limits 
recycling of chromatin-bound acetyl groups for both cata-
bolic and anabolic processes (39). Accordingly, we observed 
that HDAC inhibition led to sequestration of acetate in the 
form of markedly increased acetylated lysine levels after ex-
posure to a 10μM dose of the HDAC inhibitors pracinostat 
and abexinostat (fig. S30). 

Upon further inspection of pseudodose-dependent genes, 
we observed that enzymes critical for cytoplasmic acetyl-CoA 
synthesis from either citrate (ACLY) or acetate (ACSS2) were 
up-regulated (Fig. 5A). Genes involved in cytoplasmic citrate 
homeostasis (GLS, IDH1, and ACO1), citrate cellular import 
(SLC13A3) and mitochondrial citrate production and export 
(CS, SLC25A1) were also up-regulated. Up-regulation of 
SIRT2, which deacetylates tubulin, was also observed in re-
sponse to HDAC inhibition. 

Together with increases in chromatin-bound acetate, 
these transcriptional responses suggest a metabolically con-
sequential depletion of cellular acetyl-CoA reserves in HDAC-
inhibited cells (Fig. 5B). To validate this further, we sought to 
shift the distribution of cells along the HDAC inhibitor tra-
jectory by modulating cellular acetyl-CoA levels. We treated 
A549 and MCF7 cells with pracinostat in the presence and 
absence of acetyl-CoA precursors (acetate, pyruvate or cit-
rate) or inhibitors to enzymes (ACLY, ACSS2 or PDH) in-
volved in replenishing acetyl-CoA pools. After treatment, cells 
were harvested and processed via sci-Plex and trajectories 
constructed for each cell line (figs. S31 and S32). In both A549 
and MCF7, acetate, pyruvate and citrate supplementation 
were capable of blocking pracinostat-treated cells from 
reaching the end of the HDACi trajectory (fig. S31, F, J, H, 
and L). In MCF7, both ACLY and ACSS2 inhibition shifted 
cells further along the HDACi trajectory, although no such 
shift was observed in A549 (fig. S31, G, K, I, and M). Taken 
together, these results suggest that a major feature of the re-
sponse of cells to HDAC inhibitors, and possibly their associ-
ated toxicity, is the induction of an acetyl-CoA deprived state. 
 
Discussion 
Here we present sci-Plex, a massively multiplex platform for 
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single-cell transcriptomics. sci-Plex uses chemical fixation to 
cost-effectively and irreversibly label nuclei with short, un-
modified single-stranded DNA oligos. In the proof-of-concept 
experiment described here, we applied sci-Plex to quantify 
the dose-dependent responses of cancer cells to 188 com-
pounds through an assay that is both high content (global 
transcription) and high resolution (single cell). By profiling 
several distinct cancer cell lines, we distinguished between 
shared and cell line-specific molecular responses to each 
compound. 

sci-Plex offers some unique advantages over conventional 
HTS: sci-Plex can distinguish a compound’s distinct effects 
on cellular subsets (including complex in vitro systems e.g. 
cellular reprogramming, organoids, synthetic embryos); it 
can unmask heterogeneity in cellular response to a perturba-
tion; and it can measure how drugs shift the relative propor-
tions of transcriptionally distinct subsets of cells. 
Highlighting these features, our study provides insight into 
the mechanism of action of HDAC inhibitors. Specifically, we 
find that the main transcriptional responses to HDAC inhib-
itors involve cell cycle arrest and marked shifts in genes re-
lated to acetyl-CoA metabolism. For some HDAC inhibitors, 
we observe clear heterogeneity in responses observed at the 
single cell level. Although HDAC inhibition is conventionally 
thought to act through mechanisms directly involving chro-
matin regulation, our data support an alternative model, al-
beit not a mutually exclusive one, wherein HDAC inhibitors 
impair growth and proliferation by interfering with a cancer 
cell’s ability to draw acetate from chromatin (22, 23, 39). As 
such, variation in cells’ acetate reservoirs is a potential expla-
nation for their heterogeneous responses to HDAC inhibitors. 

As the cost of single cell sequencing continues to fall, the 
opportunities for leveraging sci-Plex for basic and applied 
goals in biomedicine may be substantial. The proof-of-con-
cept experiments described here–nearly 5,000 independent 
treatments, transcriptional profiling of over 100 single cells 
per treatment–can potentially be scaled toward a comprehen-
sive, high-resolution atlas of cellular responses to pharmaco-
logic perturbations (e.g. hundreds of cell lines or genetic 
backgrounds, thousands of compounds, multi-channel single 
cell profiling, etc.). The ease and low cost of oligo hashing, 
coupled with the flexibility and exponential scalability of sin-
gle cell combinatorial indexing, would facilitate this goal. 
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perform analyses can be accessed on Zenodo and https://github.com/cole-
trapnell-lab/sci-plex. All methods for making the transposase complexes used in 
this paper are described in Cao et al., Science 357, 661–667 (2017); however, 
Illumina will provide transposase complexes in response to reasonable requests 
from the scientific community subject to a material transfer agreement. 
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Fig. 1. sci-Plex uses polyadenylated single stranded oligonucleotides to label nuclei, enabling cell 
hashing and doublet detection. (A) Fluorescent images of permeabilized nuclei after incubation with 
DAPI (top) and an Alexa-647 conjugated single stranded oligonucleotide (bottom). (B) Overview of sci-
Plex. Cells corresponding to different perturbations are lysed in-well, their nuclei labeled with well-
specific “hash” oligos, followed by fixation, pooling and sci-RNA-seq. (C) Scatter plot depicting the 
number of unique molecular identifiers (UMIs) from single cell transcriptomes derived from a mixture 
of hashed human HEK293T cells and murine NIH3T3 cells. Points colored based on hash oligo 
assignment. (D) Boxplot depicting the number of mRNA UMIs recovered per cell for fresh vs. frozen 
human and mouse cell lines. (E) Scatter plot of overloading experiment; axes as in panel C. Identified 
Hash oligo collisions (red) identify cellular collisions with high sensitivity. 
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Fig. 2. sci-Plex enables multiplex chemical transcriptomics at single cell resolution. (A) Cartoon 
representation depicting compounds and corresponding targets assayed within the pilot sci-Plex 
experiment. A549 lung adenocarcinoma cells were treated with either vehicle (DMSO or ethanol) or 
one of four compounds (BMS345541, dexamethasone, nutlin-3a or SAHA). (B) UMAP embedding of 
chemically perturbed A549 cells colored by drug treatment. (C) UMAP embedding of chemically 
perturbed A549 cells faceted by treatment with cells colored by dose. (D and E) Expression of a 
canonical (D) glucocorticoid receptor activated (ANGPTL4) and repressed (GDF15) target genes as a 
function of dexamethasone dose, or (E) p53 target genes as a function of nutlin-3a dose. Y-axes 
indicate percentage of cells with at least one read corresponding to the transcript. (F) Dose-response 
viability estimates for BMS345541, dexamethasone, nutlin-3a and SAHA-treated A549 cells, based on 
the relative number of cells recovered at each dose.  
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Fig. 3. sci-Plex enables global transcriptional profiling of thousands of chemical perturbations in a single 
experiment. (A) Schematic of the large-scale sci-Plex experiment (sci-RNA-seq3). 188 small molecules were tested 
for their effects on A549, K562 and MCF7 human cell lines, each at 4 doses and in biological replicate, after 24 hours 
of treatment. The plate positions of doses and drugs were varied between replicates and a median of 100 to 200 cells 
were recovered per condition. (B) UMAP embeddings of A549, K562 and MCF7 cells in our screen with each cell 
colored by the pathway targeted by the compound to which a given cell was exposed. To facilitate visualization of 
significant molecular phenotypes, we added transparency to cells treated with compound/dose combinations that 
did not appreciably alter the corresponding cells’ distribution in UMAP space as compared to vehicle controls 
(Fisher’s exact test, FDR < 1%). (C) Viability estimates obtained from hash-based counts of nuclei at each dose of 
selected compounds (bosutinib highlighted in red text). Rows represent compound doses increasing from top to 
bottom and columns represent individual compounds. Annotation bar at top depicts the broad cellular activity 
targeted by each compound. (D) UMAP embeddings highlighted by treatment with the MEK inhibitor trametinib (red), 
an HSP90 inhibitor (purple), or vehicle control (gray). (E) HSP90AA1 expression levels in cells exposed to increasing 
doses of trametinib. Y-axes indicate percentage of cells with at least one read corresponding to the transcript. 
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Fig. 4. HDAC inhibitor trajectory captures cellular heterogeneity in drug response and biochemical affinity. 
(A) Nearest-neighbor alignment and UMAP embedding of transcriptional profiles of cells treated with one of 
seventeen HDAC inhibitors. Pseudodose root displayed as a red dot. (B) Ridge plots displaying the distribution of 
cells along pseudodose by dose. Shown for 3 HDAC inhibitors with varying biochemical affinities. (C) Relationship 
between log transcriptional EC50 (TC50) and average log10(IC50) from in vitro measurements. Asterisks indicate 
compounds with a solubility below 200 mM (in DMSO) that were not included in the fit. 
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Fig. 5. HDAC inhibitors shared transcriptional response indicative of acetyl CoA deprivation. (A) 
Heatmap of row-centered and z-scaled gene expression depicting the up-regulation of pseudodose-
dependent genes involved in cellular carbon metabolism. (B) Cartoon of the roles of genes from (A) in 
cytoplasmic acetyl-CoA regulation. Red circles indicate acetyl groups. Enzymes shown in gray. Transporters 
shown in green (FA = fatty acid; Ac-CoA = Acetyl-CoA; C = Citrate). 
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