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SUMMARY
N6-methyladenosine (m6A) is an abundant RNA modification that plays critical roles in RNA regulation and
cellular function. Global m6A profiling has revealed important aspects of m6A distribution and function, but
to date such studies have been restricted to large populations of cells. Here, we develop a method to identify
m6A sites transcriptome-wide in single cells. We uncover surprising heterogeneity in the presence and abun-
dance of m6A sites across individual cells and identify differentially methylated mRNAs across the cell cycle.
Additionally, we show that cellular subpopulations can be distinguished based on their RNAmethylation sig-
natures, independent from gene expression. These studies reveal fundamental features of m6A that have
been missed by m6A profiling of bulk cells and suggest the presence of cell-intrinsic mechanisms for m6A
deposition.
INTRODUCTION

N6-methyladenosine (m6A) is a widespread RNA modification

that plays diverse roles in gene expression control and contrib-

utes to a variety of physiological processes and disease states

(Shi et al., 2019; Zaccara et al., 2019). Thus, identifying the distri-

bution of m6A in distinct RNAs and within individual cells of a

population is critical for understanding how m6A residues

contribute to normal cellular function and disease pathogenesis.

However, current m6A detection strategies require high amounts

of input RNA, and as a result, all transcriptome-wide m6A

profiling studies to date have mapped m6A in bulk cellular pop-

ulations comprising thousands or millions of cells. Thus, there

is a great need to developm6A profilingmethods that can identify

m6A sites within single cells.

Recently, our group developed deamination adjacent to RNA

modification targets (DART-seq), a method for transcriptome-

wide m6A mapping, which utilizes a fusion protein consisting

of the m6A-binding YTH domain tethered to the cytidine deam-

inase APOBEC1 to direct C-to-U editing at cytidine residues

that invariably follow m6A sites (Meyer, 2019) (Figure 1A). These

editing sites are then identified from RNA-seq data, enabling

nucleotide-resolution m6A mapping. Unlike antibody-based ap-

proaches, DART-seq does not detect the cap-associated

modification m6Am. Additionally, DART-seq can map m6A

from ultra-low-input amounts of RNA (Meyer, 2019). Therefore,

we reasoned that this strategy could be used to identify m6A

sites in single cells.

Here, we describe single-cell DART-seq (scDART-seq), the first

method for transcriptome-wideprofilingofm6Asites insinglecells.

Using both the droplet-based 10x Genomics and plate-based
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SMART-seq2 platforms, we identify the single-cell methylomes

of thousands of individual cells. Although the general topology of

m6A identified from bulk cellular samples is recapitulated in single

cells, we uncover substantial heterogeneity in the methylation of

RNAs and individual m6A sites across distinct cells within a popu-

lation. Analysis of m6A stoichiometry at individual sites within

mRNAs also reveals broad variability across cells, with many

m6A sites that are highly methylated at the population level

showing lowornomethylation ina substantial numberof individual

cells. Finally, we uncover unique m6A signatures associated with

specific cell-cycle phases and show that individual cells can be

distinguished based on their RNA methylation status, revealing a

source of cellular heterogeneity independent from RNA abun-

dance. Altogether, our studies uncover fundamental features of

m6A biology that have been missed by m6A profiling in bulk cells

and provide new insights into the regulation and function of m6A

within distinct cells of a population.

RESULTS

scDART-seq identifies m6A sites in single cells
To determine whether DART-seq can map m6A sites in single

cells, we first created HEK293T stable cell lines expressing

inducible APOBEC1-YTH or APOBEC1-YTHmut, which lacks

the m6A-binding region of the YTH domain and facilitates the

removal of off-target editing events in downstream analyses

(Meyer, 2019) (Figures S1A–S1H). We then induced APOBEC1-

YTH or APOBEC1-YTHmut expression and performed DART-

seq on bulk cells to identify m6A sites transcriptome-wide. To

identify m6A sites, we developed Bullseye, a pipeline that iden-

tifies C-to-U editing events that are enriched in APOBEC1-YTH
c.
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Figure 1. scDART-seq detects m6A in single cells, see also Figures S1 and S2

(A) Experimental workflow of scDART-seq.

(B) UMAP visualization of all 10x Genomics-sequenced cells clustered by gene expression.

(C) Overlap of methylated RNAs identified in each 10x Genomics scDART-seq replicate, before filtering sites for those occurring in all 3 replicates and in at least

10 cells.

(D) Distribution of C-to-U editing events identified by scDART-seq. The stop codon is centered at position 0. Bins = 25 nt.

(E) Single-cell expression levels (left) and methylation status (right) for the TPT1mRNA in 10x Genomics-sequenced cells overlaid on the global gene expression

UMAP plot.

(F) Single-cell expression levels (left) andmethylation status (right) for theRPL34mRNA in 10x Genomics-sequenced cells overlaid on the global gene expression

UMAP plot.
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cells compared with APOBEC1-YTHmut cells and that meet a

minimum editing threshold (STAR Methods). Using this strategy,

we identified 12,672 m6A sites in 5,200 RNAs (Table S1). These

sites showed characteristic features of m6A, such as enrichment

in proximal 30UTRs and in the vicinity of the stop codon, and

there was a high degree of overlap between methylated RNAs

identified by DART-seq and those identified by MeRIP-Seq (Liu

et al., 2020; Meyer et al., 2012) and miCLIP (Linder et al., 2015)

(Figures S1I–S1M). These results are consistent with previous

studies demonstrating the ability of DART-seq to accurately

map m6A transcriptome-wide in populations of cells.

To identify m6A sites in single cells, we induced APOBEC1-

YTH expression and performed droplet-based (10x Genomics)

scRNA-seq on 10,352 total cells across three biological repli-

cates (Figures 1A, 1B, and S2A–S2H). We then used Bullseye

to identify m6A sites in single cells and found 16,934 high-confi-

dence sites in 3,844 RNAs in 10,352 cells (Table S2). Detection of
m6A sites and methylated RNAs was highly consistent across

samples, indicating the reproducibility of the scDART-seq

approach (Figure 1C). Single-cell m6A sites exhibit similar fea-

tures to those identified at the population level, including a strong

enrichment in the vicinity of the stop codon and in the RAC (R=A/

G) consensus sequence (Figures 1D and S2I). We also observed

a high degree of overlap between themethylated RNAs identified

using scDART-seq and those identified in bulk cells using anti-

body-based m6A mapping (Linder et al., 2015; Liu et al., 2020;

Meyer et al., 2012) (Figures S2J and S2K). Thus, these data

demonstrate that scDART-seq can identify m6A sites in single

cells with high accuracy and reproducibility.

We next analyzed the distribution of methylated RNAs within

individual cells of the population. We observed a high degree

of variability in the proportion of cells in which individual RNAs

are methylated. Some transcripts, such as TPT1, are highly ex-

pressed in most cells and also methylated in the majority of cells
Molecular Cell 82, 868–878, February 17, 2022 869



Figure 2. High-coverage scDART-seq detects m6A transcriptome-wide in single cells, see also Figure S3

(A) UMAP visualization of SMART-seq2-sequenced cells clustered by gene expression.

(B) Distribution of C-to-U editing sites across mRNA length for cells expressing APOBEC1-YTH and APOBEC1-YTHmut. Distribution of the RAC motif is

also shown.

(C) Single-cell expression levels (left) and methylation status (right) for the TPT1mRNA in SMART-seq2-sequenced cells overlaid on the global gene expression

UMAP plot.

(D) Single-cell expression levels (left) and methylation status (right) for the RPL34mRNA in SMART-seq2-sequenced cells overlaid on the global gene expression

UMAP plot.

(E) Cumulative distribution plot showing the percentage of cells in which each methylated RNA contains at least one m6A site.
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in which they are expressed (Figure 1E). However, other RNAs,

such as RPL34, also exhibit high expression levels but are rarely

methylated (Figure 1F). This variability in methylation across the

population is not limited to highly expressed RNAs, as we found

many examples of weakly expressed transcripts that are methyl-

ated in a high or low proportion of cells (Figures S2L and S2M;

Table S2).

To ensure that this variability in single-cell RNA methylation

frequency is not due to the low coverage of the droplet-based

approach, we also performed scDART-seq using the SMART-

seq2 technology, which enables high single-cell read counts

and improved coverage across transcripts (Picelli et al., 2013,

2014) (Figures 2A and S3A–S3J; Table S3). The improved

coverage and sequencing depth enabled the use of more strin-

gent criteria for identifying m6A sites (STAR Methods), which

we employed to obtain a list of 120,904 high-confidence m6A

sites in 7,820 RNAs in 1,068 cells (Figure S3K; Table S3). Meta-

gene analysis of all high-confidence sites showed an m6A-like

distribution characterized by a strong enrichment in the vicinity

of the stop codon (Figure 2B). Similar metagene profiles were

observed in multiple randomly selected single cells, indicating

that the distribution of m6A within individual cells mirrors that

of the larger population (Figure S3L). As expected, the improved

read depth and coverage across transcripts of SMART-seq2 li-

braries enabled the identification of many more m6A sites in

the 50UTR and CDS compared with 10x Genomics scDART-

seq libraries (Figures S3M and S3N). Importantly, 91% of meth-
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ylated mRNAs identified in the 10x Genomics dataset were also

identified in the SMART-seq2 dataset, and the majority of meth-

ylated mRNAs identified in bulk HEK293T samples, using both

DART-seq and antibody-based methods, were identified in sin-

gle cells using SMART-seq2 scDART-seq (Figures S3O–S3Q).

We also observed that mRNAs methylated in a small proportion

of cells are less likely to be identified in bulk m6A mapping data-

sets than mRNAs that are methylated in many cells (Figure S3R).

Thus, scDART-seq enables robust m6A detection in single cells

and can identify infrequently methylated mRNAs that would

otherwise evade detection by standard bulk m6A mapping

approaches.

Consistent with what we observed in the 10x Genomics

scDART-seq dataset, we found widespread variability in the fre-

quency with which individual RNAs aremethylated. For instance,

re-examination of the highly expressedmRNAs TPT1 andRPL34

again revealed extreme differences in methylation frequency

(Figures 2C and 2D). Furthermore, when we analyzed all methyl-

ated RNAs, we found that 70% of m6A-containing RNAs are

methylated in fewer than half the cells in the population (Figures

2E and S3S). Thus, although some transcripts are methylated in

a large proportion of cells, the majority of RNAs are rarely

methylated.

Association of m6A with RNA abundance in single cells
We next investigated the relationship between m6A and RNA

expression. We found a positive correlation between RNA



Figure 3. Relationship between RNA abundance and RNA methyl-

ation in single cells, see also Figure S4

(A) Relationship between RNA abundance and RNA methylation frequency at

the population level. R = 0.5. Boxed region contains 1,231 RNAs that exhibit

high expression in the population and rare methylation (< 25% of cells).

(B) Single-cell gene expression values of parent RNAs for each m6A site in the

SMART-seq2 scDART-seq dataset. Unmethylated sites: n = 5,947,374;

methylated sites: n = 344,581. ****p < 2.2 3 10�16.

(C) Mean single-cell TPM values of RNAs in single cells containing un-

methylated or methylated m6A sites (unmethylated mean: 106.5, methylated

mean: 193.0). Unmethylated sites: n = 5,947,374; methylated sites: n =

344,581. **** = p < 2.2 3 10�16.

(D) Number of RNAs grouped by expression and proportion of cells with

methylation. High expression = TPM R 10; low expression = TPM < 10; high

methylation R 75% of cells methylated; low methylation < 25% of cells

methylated.

(E) Mean parent RNA TPM values for m6A sites across all cells in which the site

is methylated (blue) or unmethylated (red). Sites are divided into quintiles

based on single-cell parent RNA abundance. n=1,258,391 sites for each

quintile.
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abundance at the population level and the percentage of cells in

which the RNA is methylated (Figure 3A). However, we also iden-

tified a group of over 1,200 RNAs that are highly expressed but

infrequently methylated, which includes genes involved in RNA

regulation (box in Figure 3A; Table S4). We then examined the

relationship between RNA methylation and RNA expression in

single cells. For each m6A site in the dataset, we compared its

parent RNA expression in cells in which the site is methylated

to those in which it is unmethylated. We found that parent RNA

expression is 1.8-fold higher in cells in which a given site is meth-

ylated than in cells in which the site is unmethylated (Figures 3B–

3D). To determine whether this association is consistent across a

range of RNA expression levels, we divided the sites into quin-

tiles based on parent RNA expression in each cell. Interestingly,

only methylated sites in the highest expression quintile show

increased parent RNA abundance compared with unmethylated

sites (Figures 3E and S4; Table S4). However, for transcripts with

low tomoderate levels of expression, the presence of m6A at any

given site in an individual cell is not correlated with parent RNA
expression in that cell (Figure 3E). Collectively, these data sug-

gest that for a given m6A site in a single cell, the likelihood of

methylation is not associated with the expression level of the

parent RNAwithin that cell. However, for sites occurring in a sub-

set of highly expressed transcripts, there is a positive correlation

between RNA abundance and the presence of m6A. At the pop-

ulation level, this manifests as highly expressed RNAs exhibiting

a greater likelihood of being methylated in more cells in the pop-

ulation (Figure 3A).

Mostm6A sites occur infrequently within individual cells
of a population
Although the number of m6A sites in a transcript is variable, most

studies of m6A in bulk cells estimate approximately 1 to 3 m6A

residues per mRNA (Dominissini et al., 2012; Linder et al., 2015;

Meyer et al., 2012; Perry et al., 1975). Indeed, DART-seq profiling

of bulk cells shows amedian of 2m6A sites permRNA, and only 2

mRNAscontainingmore than20sites (Figure 4A; TableS1).How-

ever, examination of scDART-seq data revealed a surprisingly

high number of m6A sites per transcript, with a median of 12

m6A sites per mRNA and 237 mRNAs with at least 50 sites (Fig-

ure 4A; Table S4). To ensure that this discrepancy is not due to

the detection of false-positive sites by scDART-seq, we used

SELECT (Castellanos-Rubio et al., 2019) to validate a set of

m6Asites thatweredetectedby scDART-seqbut not bybulk anti-

body-based methods. Using this approach, we successfully

confirmed the presence of m6A at all tested sites, indicating

that this effect is not due to false-positives (Figure S5A).

We therefore reasoned that the higher number of m6A sites per

mRNA detected in single cells could be due to the presence of

rare m6A sites that are found in subpopulations of cells that

evade detection by bulk m6A profiling. Indeed, we found that

most m6A sites identified in single cells are rare: 88% of sites

occur in fewer than 20% of cells (Figure 4B). Additionally, while

most mRNAs contain many total m6A sites across all cells in

the population, mRNAs are methylated at an average of only

1–3 sites in each cell, and individual sites are methylated in

only 4.5% of cells on average (Figures 4C and 4D). Moreover,

there is no correlation between the percentage of cells in which

an individual m6A site occurs and the total number of m6A sites in

the parent mRNA (Figure 4E). This suggests that most individual

sites are rarely methylated, even those in mRNAs with many total

m6A sites. Indeed, mRNAs methylated in a high percentage of

cells generally have more m6A sites (Figure S5B), and only a

small proportion of these sites are methylated per cell (Figures

S5C–S5F). Collectively, these data reveal that mRNAs are sus-

ceptible to methylation at many more sites than has been sug-

gested by m6A profiling of bulk cells, and that most of these

m6A sites occur in a low proportion of cells within the population.

This pattern can be seen in the methylation landscape of indi-

vidual mRNAs. For instance, the PPP2CAmRNA ismethylated in

92% of cells in which it is expressed and contains a total of 33

m6A sites. Most sites are methylated in fewer than 10% of cells,

and the most frequently methylated site is present in only 39%

of cells (Figure 4F). Furthermore, on average only 3 sites in

PPP2CA are methylated per cell (Figure 4G). Notably, however,

we found some transcripts with more distinct patterns of m6A

site frequency (Figures S5G and S5H). For instance, STX4
Molecular Cell 82, 868–878, February 17, 2022 871



Figure 4. Distribution of m6A sites in single cells, see also Figure S5

(A) Histogram showing the total number of m6A sites identified in each methylated mRNA.

(B) Cumulative distribution plot showing the percentage of cells in which each methylated mRNA contains at least one site.

(C) Average number of m6A sites per mRNA in single cells. The mRNAs are grouped by the total number of m6A sites observed within the entire population. Only

cells with detectable expression of the parent mRNA were considered.

(D) Percentage of cells in which each m6A site is found, stratified by the total number of m6A sites identified in the parent mRNA across all cells of the population.

Only cells with detectable expression of the parent mRNA were considered.

(E) Relationship between the total number of m6A sites identified within anmRNA and the percentage of cells in which eachm6A site occurs. OnlymRNAswith 100

or fewer sites are shown for ease of visualization. n = 5,092,360 sites. R = �0.07. p = 0.23.

(F) Schematic of the PPP2CA mRNA with each vertical bar representing an individual m6A site. Only cells in which PPP2CA is methylated were considered.

(G) Histogram showing the number of PPP2CA m6A sites per cell.

(H) Schematic of the STX4 mRNA with each vertical bar representing an individual m6A site. Only cells in which STX4 is methylated were considered.

(I) Schematic of the ACTB mRNA with each vertical bar representing an individual m6A site. Only cells in which ACTB is methylated were considered.

(J) Histogram showing the number of ACTB m6A sites per cell.
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contains a total of just twom6A sites, but only one of these sites is

predominant and is found in 88% of the cells in which STX4 is

methylated (Figure 4H). Additionally, the ACTBmRNA is methyl-

ated in more than 99% of cells and contains only 11 total m6A

sites, although four of these sites aremethylated in nearly all cells

(Figures 4I and 4J). Thus, although the majority of m6A sites in

mRNAs are present in a low proportion of individual cells, some

mRNAs contain one or more m6A sites that are methylated in

most cells of the population. Such ‘‘high-frequency’’ sites may

serve important regulatory roles.

m6A stoichiometry at individual sites is highly variable
across single cells
We next sought to investigate m6A stoichiometry in single cells,

which is a critical determinant of the impact of m6A on RNA func-

tion. Previous measurements have indicated that m6A abun-

dance can vary widely, from less than 5% to as high as 80% at

individual sites (Garcia-Campos et al., 2019; Liu et al., 2013; Mo-

linie et al., 2016). However, these studies used bulk cellular prep-

arations, and the stoichiometry of m6A within individual

cells remains unknown. We previously demonstrated that %

C2U values correlate with m6A stoichiometry in bulk DART-seq
872 Molecular Cell 82, 868–878, February 17, 2022
data (Meyer, 2019). To confirm that %C2U values from

scDART-seq data can also be used to estimate stoichiometry,

we compared scDART-seq %C2U values with measurements

from two independent methods for m6A quantification—

MAZTER-seq and SCARLET (Garcia-Campos et al., 2019; Liu

et al., 2013). Both methods showed a positive correlation with

%C2U values from scDART-seq data (Figures 5A and 5B). As

further validation, we used a third independent method, SELECT

(Castellanos-Rubio et al., 2019), to measure the stoichiometry of

ten randomly selected m6A sites from our scDART-seq dataset.

Again, we observed a good correlation between %C2U and

SELECT-based stoichiometry estimates (Figure 5C), confirming

that C-to-U editing rates obtained with scDART-seq can be

used to estimate m6A stoichiometry.

We next examined m6A abundance estimates from %C2U

values transcriptome-wide in single cells. Surprisingly, we

observed higher average %C2U values and a wider range of

%C2U values for m6A sites in single cells than in bulk cells (Fig-

ures 5D and S6A). These differences are not caused by variable

levels of APOBEC1-YTH across individual cells, as there is no

correlation between APOBEC1-YTH levels and average %C2U

values in single cells (Figures S6B and S6C).



Figure 5. Heterogenous stoichiometry of m6A in single cells, see also Figure S6

(A) Correlation between m6A stoichiometry estimates using MAZTER-seq and scDART-seq (pseudobulk %C2U). R = 0.57; p = 1.83 3 10�6; n = 60 sites.

(B) Relationship between SCARLET and pseudobulk scDART-seq %C2U m6A stoichiometry estimates for sites in the MALAT1 RNA. R = 0.79; p = 0.036; n =

7 sites.

(C) Relationship between relative m6A levels measured by SELECT and pseudobulk scDART-seq %C2U m6A stoichiometry estimates at 10 random sites. n = 2.

R = 0.68.

(D) Cumulative distribution plot showing the distribution of %C2U for all m6A sites identified by bulk DART-seq and scDART-seq.

(E)%C2U values of m6A sites observed in bulk DART-seq and average population-level %C2U values of the same sites identified with scDART-seq.R = 0.78; p <

2.2 3 10�16; n = 5,502 sites.

(F) Relationship between the%C2U values ofm6A sites identified with bulk DART-seq and the single-cell%C2U values identifiedwith SMART-seq2 scDART-seq.

R = 0.32; p < 2.2 3 10�16; n = 3,111,980 sites.

(G) Single-cell %C2U values for the m6A site at A1181 in the CHCHD3 30UTR. Only cells expressing CHCHD3 were considered.

(H) Histogram showing the distribution of %C2U values for the m6A site at A1181 in CHCHD3. Only cells expressing CHCHD3 were considered.
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We reasoned that the differences in m6A stoichiometry esti-

mates between single cells and bulk cells could reflect variability

in m6A abundance across individual cells. Since%C2U values in

bulk DART-seq data include all cells in the population, cells with

no methylation at a given site would reduce the overall %C2U

value for that site. Indeed, when we compared the%C2U values

of m6A sites in bulk DART-seq with the population-averaged

(pseudobulk) %C2U values in scDART-seq, we observed a

strong correlation in m6A abundance measurements. (Figures

5E, S6D, and S6E). However, single-cell %C2U values show

substantial cell-to-cell variability (Figure 5F).

This single-cell variability is recapitulated in individual mRNAs.

For instance, site A1181 in the CHCHD3 mRNA has a pseudo-

bulk %C2U value of 20.1%, similar to the 20.5% estimate of

MAZTER-seq (Garcia-Campos et al., 2019). However, 18% of

cells expressing CHCHD3 have no methylation at A1181,

whereas 56.7% of cells with A1181 methylation have a higher

%C2U than the pseudobulk average (Figures 5G and 5H). A

similar pattern is observed at A592 in the ETFA mRNA. This

site has high methylation estimates (scDART-seq: 46.7%,

MAZTER-seq: 55.9%), but most cells expressing ETFA are un-

methylated at A592, and all cells with A592 methylation have

higher %C2U values than the pseudobulk average (Figures

S6F and S6G). These data suggest that m6A stoichiometry is
highly variable across individual cells, and that population-level

estimates of m6A stoichiometry fail to detect the extremes of

m6A abundance in single cells.

Differential methylation within subpopulations of cells
One advantage of scDART-seq is that it enables analysis of

methylation patterns in different cellular states, such as distinct

phases of the cell cycle. To determine whethermRNAs are differ-

entially methylated throughout the cell cycle, we first identified

cells in G1, S, and G2/M (Liu et al., 2017). Interestingly, we found

no changes in global m6A distribution or consensus site usage

throughout the cell cycle (Figures 6A and 6B). However, we iden-

tified 122 mRNAs that are methylated in a significantly higher or

lower proportion of cells within each cell cycle phase than would

be expected based on the number of cells in which they are ex-

pressed (‘‘CC-DMRNAs’’; Table S5). The majority of CC-

DMRNAs in G1 and G2/M phase cells are methylated more

frequently than expected (53% and 83%, respectively), whereas

most CC-DMRNAs in S phase cells (74%) are methylated less

frequently (Figure 6C).

To investigate how the methylation of specific CC-DMRNAs

changes during the cell cycle, we focused on two mRNAs,

TET1 and TOPBP1, which encode proteins that have been linked

to cell cycle control through their roles in DNA regulation
Molecular Cell 82, 868–878, February 17, 2022 873



Figure 6. Differential RNA methylation throughout the cell cycle

(A) Metagene plots showing the distribution of m6A sites identified in cells in the indicated cell cycle stage.

(B) The most commonmotifs surrounding m6A sites identified in all cells, as well as in cells in different cell cycle stages. The y-axis indicates the percentage of all

m6A sites occurring in each motif.

(C) Number of differentially methylated RNAs (CC-DMRNAs) in cells within the indicated cell cycle phase.

(D) Percentage of cells in each cell cycle phase in which TET1 is methylated. *p < 0.05 (left). Single-cell expression values for TET1 in cells in each cell cycle

phase (right).

(E) Percentage of cells in each cell cycle phase in which TOPBP1 is methylated. *p < 0.05 (left). Single-cell expression values for TOPBP1 in cells in each cell cycle

phase (right).
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(Bamezai et al., 2020; Wardlaw et al., 2014). Both TET1 and

TOPBP1 are methylated in an increasing proportion of cells

throughout cell cycle progression (Figures 6D and 6E). These dif-

ferences are observed despite consistent expression of both

mRNAs in each cell cycle phase (Figures 6D and 6E). Indeed,

we found that CC-DMRNAs generally exhibit consistent expres-

sion levels throughout the cell cycle (Table S5). Thus, although

global m6A topology does not change across the cell cycle, we

find that a subset of transcripts exhibit cell cycle-specific

changes in methylation status independent of gene expression.

These findings prompted us to explore whether m6A can be

usedmore generally to distinguish subpopulations of cells. Iden-

tification of cellular subtypes is often done by using gene expres-

sion-based clustering to find heterogeneity in gene expression

patterns. To determine whether mRNA methylation can be

used to distinguish subpopulations of cells, we clustered cells

using %C2U values identified by scDART-seq. This revealed

two distinct clusters (me-cluster 1: 77.5% of cells; me-cluster

2: 22.5% of cells; Figures 7A and S7A). APOBEC1-YTH expres-

sion, cell cycle distribution, and global gene expression patterns

are highly similar between the two me-clusters, indicating that

these factors do not contribute tom6A-based cell clustering (Fig-

ures 7B, 7C, and S7B–S7D). We searched for the sites that drive

m6A-based clustering and identified a total of 508 m6A sites that

are differentially methylated between the two me-clusters (Table

S6). Most differentially methylated sites have lower stoichiom-
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etry estimates in me-cluster 2 relative to me-cluster 1, despite

consistent expression of the parent RNAs (Figures 7D–7F and

S7E; Table S6). When we examined the 393 mRNAs whose

differentially methylated sites drive m6A-based clustering, we

found that many encode proteins involved in RNA regulation

and RNA binding (Figures S7F and S7G), suggesting that the

methylation of transcripts encoding RNA regulatory factors

may contribute to cell subtype identity. Altogether, these data

show that mRNA methylation can be used to distinguish sub-

populations of cells and that the methylation status of a subset

of mRNAs drives cell clustering independently of gene expres-

sion. It will be interesting in future studies to explore whether

mRNA methylation can be used to distinguish distinct cell types

that comprise complex cellular populations such as tumor sam-

ples or tissues.

DISCUSSION

In conclusion, we have developed a method for single-cell m6A

profiling and used it to identify the methylomes of 11,420 individ-

ual cells. Transcriptome-widem6Amapping studies have to date

been hampered by high input RNA requirements and have there-

fore been limited to profiling m6A in large populations of cells.

scDART-seq circumvents these issues and, as reported here,

uncovers fundamental features of RNA methylation that have

been missed by population-level m6A profiling studies. We find



Figure 7. m6A-based clustering to identify cellular subpopulations, see also Figure S7

(A) UMAP visualization of single cells clustered by m6A.

(B) Distribution of cell cycle state in cells clustered by m6A.

(C) me-cluster identity of single cells overlaid on the global gene expression UMAP plot.

(D) Differentially methylated m6A sites with decreased %C2U in each me-cluster.

(E) Distribution of %C2U values for the m6A site at A1225 in the HNRNPA1 mRNA (left). Single-cell expression levels of the HNRNPA1 mRNA within each me-

cluster (right).

(F) Distribution of %C2U values for the m6A site at A3603 in the TSC22D1 mRNA (left). Single-cell expression levels of the TSC22D1 mRNA within each me-

cluster (right).
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that single cells contain an average of 7,000 m6A sites in 3,100

mRNAs, which is less than that predicted from bulk cellular

m6A profiling. At the same time, we find that individual mRNAs

contain many more total m6A sites than have been previously

identified from population-level m6A mapping. Our data show

that the discrepancy between single-cell and population-level

m6A prevalence is largely driven by extreme heterogeneity in

the frequency of individual m6A sites in single cells. Although

many mRNAs contain a surprisingly high number of total m6A

sites across the population, most of these sites occur in a low

proportion of cells. This infrequent occurrence of individual

m6A sites contributes to the wide variability in transcript methyl-

ation frequency observed for many mRNAs across single cells. It

further suggests that the density of m6A sites within a transcript

is likely to be an important factor for m6A-mediated RNA regula-

tion. Instead of a single site within an mRNA playing a dominant

regulatory role, it may be that multiple, infrequently occurring

sites in a particular region of an mRNA collectively contribute

to transcript fate.

The fact that most mRNAs contain multiple m6A sites that are

methylated in a low proportion of cells suggests the possibility of

cell-specific regulatory factors that direct the m6A methyltrans-

ferasemachinery to specific sites within anmRNA. Indeed, chro-

matin modifications, transcription factors, and transcription rate
have been shown to influence m6A methylation (Aguilo et al.,

2015; Huang et al., 2019; Slobodin et al., 2020), so it will be inter-

esting to apply scDART-seq in conjunction with the assessment

of other gene regulatory signatures to determine whether cellular

variation in site-specific m6A modification is correlated with

other factors. Notably, we also identified mRNAs containing

‘‘high-frequency’’ sites that are methylated in nearly all cells.

The presence of such sites suggests that most cells have adapt-

ed the ability to methylate these sites and further underscores

the importance of examining other factors at the single-cell level

that contribute to their consistent methylation. These sites likely

also serve important functional roles, and it will be important to

investigate these and their impact on gene expression in future

studies.

Our examination of single-cell m6A stoichiometry reveals that

population-level estimates of m6A abundance at individual sites

do not reflect the extreme variability that is observed among sin-

gle cells. We found that many m6A sites that show only modest

stoichiometry estimates at the population level are in fact highly

abundant within subpopulations of individual cells. To date, m6A

stoichiometry has been measured from bulk cellular samples,

and it has been tempting to speculate that very low-stoichiom-

etry m6A sites may have a reduced functional impact compared

with high-stoichiometry sites. Our studies challenge this notion
Molecular Cell 82, 868–878, February 17, 2022 875
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and suggest that m6A sites with low-stoichiometry estimates at

the population level may in fact be highly abundant within sub-

populations of single cells and, therefore, have important func-

tions in those cells.

Further supporting this idea, we find that we can cluster

groups of cells based on their m6A abundance patterns. This

m6A-based clustering was largely driven by the methylation of

mRNAs encoding proteins involved in RNA binding and RNA

processing, and it was independent of both gene expression

and cell cycle phase. The ability to distinguish groups of cells

by m6A patterns alone reveals m6A as a potential driving force

for co-regulation of subpopulations of cells. It will be interesting

to explore this phenomenon further in more complex biological

systems, such as in the context of cancer development and

cellular differentiation, as well as in tissues comprising heteroge-

neous cell types. Additionally, m6A plays a critical role in stem

cell maturation (Batista et al., 2014; Weng et al., 2018; Yoon

et al., 2017) and has been implicated in numerous cancers (Jiang

et al., 2021; Li et al., 2017; Liu et al., 2018; Zhang et al., 2017).

Thus, developing scDART-seq tools in the form of cell lines

and mouse models will enable m6A mapping in unique contexts

and improve our understanding of in vivo m6A regulation in both

normal and pathological states.

Limitations of the study
One limitation of scDART-seq in its current form is that it requires

the expression of APOBEC1-YTH in cells or tissues of interest.

In vitro DART-seq uses purified APOBEC1-YTH to globally pro-

file m6A from low-input samples (Meyer, 2019), so further devel-

opment of this approach to make it compatible with single-cell

sequencing may help overcome this limitation. Additionally, as

with any m6A mapping approach, there remains the possibility

that scDART-seq can detect false-positive m6A sites.

Conversely, some sites may be missed due to low abundance

or inaccessibility to the APOBEC1-YTH protein. Although we

have taken several steps to minimize both outcomes, additional

controls—such as the use of METTL3 knockout cells or further

optimization of the APOBEC1-YTH protein—may improve the

accuracy of single-cell m6A detection. Going forward, as more

single-cell m6A datasets are produced and compared with

data from bulk cells, it will be critical to develop standards for

determining the expected overlap between technologies and

to eliminate potential false-positives. Lastly, although scDART-

seq-based estimates of m6A stoichiometry compare well with

other independent methods for m6A quantification, the accuracy

of m6A abundance estimates can likely be further improved with

additional optimization.
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Doxycycline Sigma-Aldrich D3447

jetPEI Polyplus 101-10N

TrypLE Gibco 12604-013

DNase I New England Biolabs M0303L

Bst Polymerase New England Biolabs M0275S

Penicillin/Streptomycin Gibco 15140-122

Critical commercial assays

Qubit 1x dsDNA HS Assay Kit Invitrogen Q33230

NEBNext Ultra II Directional RNA Library

Prep Kit for Illumina

New England Biolabs E7760
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Raw and processed data This paper GEO: GSE180954

Bullseye code This paper https://github.com/mflamand/Bullseye

Original Images (Mendeley Data) This paper https://doi.org/10.17632/99cjyffbyc.1

Experimental models: Cell lines

HEK293T (Human embryonic kidney,

female)

ATCC ATCC CRL-3216

iDART-APOBEC1-YTH (Human embryonic

kidney, female)

This paper N/A

iDART-APOBEC1-YTHmut (Human

embryonic kidney, female)

This paper N/A

Oligonucleotides

ActinFwd (Sanger sequencing) This paper caacacagtgctgtctggc

ActinRev (Sanger sequencing) This paper caagatgagattggcatggc

ACTBqPCRFwd Meyer, 2019 cagcaagcaggagtatgacgagtc

ACTB_nonAdjRev Meyer, 2019 catgccaatctcatcttg

ActinA1222_AdjRev This paper ttgtcaagaaagggtgtaacgcaactaag

GPIqPCRFwd This paper gcagtggtgtgatctcggctcactg
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GPI_nonAdjRev This paper accatcctggctaacacggtgaaac

GPIA3874_AdjRev This paper gtgtggtggcgggcacctgtag

ETFAqPCRFwd This paper ggttgccccgatttctgacatc

ETFA_nonAdjRev This paper actggtgaagtacttgatgccttttc

ETFAA592_AdjRev This paper ggttcaccaaatgatggggcttg
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PWP1A1726_AdjRev This paper ccaccgcagttgcagaaaggaatg

EXOSC2qPCRFwd This paper agaggcttttggaacaggaggg
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TLCV2-APOBEC1-YTHmut This paper Addgene: 178950

pCMV-APOBEC1-YTH Meyer, 2019 Addgene: 131636
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Software and algorithms

Bullseye This paper https://github.com/mflamand/Bullseye

Cell Ranger 3.1.0 10x Genomics https://www.10xgenomics.com/

RRID:SCR_017344

Seurat 3.2.1 Stuart et al., 2019 https://satijalab.org/seurat/get_started.

html RRID:SCR_016341

R/4.0.0 R Development Core Team http://www.r-project.org/

Flexbar 3.0.3 Roehr et al., 2017 http://sourceforge.net/projects/flexbar/

RRID:SCR_013001

STAR 2.7.5c Dobin et al., 2013 https://github.com/alexdobin/STAR/

releases RRID:SCR_004463

Subread 1.6.3 Liao et al., 2014 http://subread.sourceforge.net/

RRID:SCR_009803

HOMER Heinz et al., 2010 http://homer.ucsd.edu/ RRID:SCR_010881

MetaPlotR Olarerin-George and Jaffrey, 2017 https://github.com/olarerin/metaPlotR

BEDTools Quinlan and Hall, 2010 https://github.com/arq5x/bedtools2

RRID:SCR_006646

SAMtools Li et al., 2009 http://htslib.org/ RRID:SCR_002105

RSeQC Wang et al., 2012 https://github.com/

MonashBioinformaticsPlatform/RSeQC

RRID:SCR_005275

Wiggleplotr Unpublished https://bioconductor.org/packages/

release/bioc/html/wiggleplotr.html

FlowJo FlowJo https://www.flowjo.com/
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Materials availability
Plasmids generated in this study have been deposited to Addgene.

Data and code availability
d All raw fastq sequencing files and processed bed files have been deposited at GEO and are publicly available on the date of

publication. Accession numbers are listed in the key resources table.

d All code for Bullseye is publicly available on Github (https://github.com/mflamand/Bullseye) on the date of publication.

d Other requests for data, scripts, or analyses are available upon reasonable request from the lead contact.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Employed cell lines
Human HEK293T cells (ATCC, Manassas, VA) were cultured in Dulbecco’s Modified Eagle’s Medium (Corning, Corning, NY) with

10% fetal bovine serum (Avantor, Radnor, PA) and 10 units/mL Penicillin, and 10 mg/mL Streptomycin (Gibco, Waltham, MA). Cells

were cultured at 37�C with 5% CO2. Cell lines have not been authenticated or tested for mycoplasma.

Cell culture treatments
All HEK293T transgenic cell lineswere plated 2 daysbefore the experiment. The following day, the cells were treatedwith 1 mg/mLdoxy-

cycline (Sigma-Aldrich, St. Louis, MO). The cells were harvested or prepared as described in Method Details for each experiment.

METHOD DETAILS

Cloning and stable cell line creation
The lentiviral vector TLCV2 (gift from Adam Karpf, Addgene #87360) was used as the backbone for the lentiviral expression

construct used to generate TLCV2-APOBEC1-YTH and TLCV2-APOBEC1-YTHmut plasmids, which were used to create stable
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cell lines. To clone TLCV2-APOBEC1-YTH and TLCV2-APOBEC1-YTHmut, the CAS9-FLAG sequence in TLCV2 was replaced with

the APOBEC1-YTH (or APOBEC1-YTHmut for control cell lines) cassette from pCMV-APOBEC1-YTH, Addgene #131636 (or

pCMV-APOBEC1-YTHmut, Addgene #131637) by Gibson Assembly. To make lentivirus, HEK293T cells at 80% confluency on a

15 cm plate were transfected with 26.75 mg of TLCV2-APOBEC1-YTH or TLCV2-APOBEC1-YTHmut, 20 mg of psPAX2 (Gift

from Didier Trono, Addgene plasmid #12260), and 6.25 mg of pMD2.G (Gift of Didier Trono, Addgene plasmid #12259) using

3 mg jet-PEI (Polyplus, Illkirch, France). The medium was changed to fresh DMEM/10% FBS after 8 hours. 72 hours after trans-

fection, the virus was purified from the medium. To purify the virus, the medium was centrifuged at 5,000 x g for 10 minutes. The

supernatant was then filtered through a 0.45 mm filter into an ultracentrifuge tube (Beckman-Coulter, Pasadena, CA). 4 mL of ster-

ile 20% sucrose was added below the medium using a 5 mL serological pipette. The mixture was centrifuged at 19,700 rpm for 2 h

at 4�C in a swinging bucket rotor (Beckman-Coulter). Then the supernatant was removed and 100 mL of PBS was added, and the

virus was resuspended overnight at 4�C with rocking. The resuspended virus was stored at -80�C. To create stable cell lines, the

virus was added to HEK293T cells at a 1:100 dilution. After 24 h, the medium was replaced with medium containing 2 mg/mL pu-

romycin (Sigma-Aldrich). The medium was replaced daily to remove dead cells for 7 days. To select clonal cell lines, the transgenic

cells were plated in 96-well plates at a dilution of 0.5 cells per well and only wells containing a single cell were used for expansion.

The cell lines express a dox-inducible APOBEC1-YTH transgene with a T2A followed by EGFP, so induced cells have green fluo-

rescence, but EGFP is not fused to the APOBEC1-YTH protein.

Western blots
Cells were quickly rinsed with cold 1x PBS and scraped from culture plates. Cells were then pelleted by centrifugation at 1,000

x g for 3 minutes at 4�C. Cell pellets were resuspended in lysis buffer (25 mM Tris-HCl, pH7.4; NaCl 150 mM; Triton X-100 1%

(v/v); sodium dodecyl sulfate 0.1% (v/v); cOmplete proteinase inhibitor cocktail (Sigma-Aldrich)) and incubated on ice for 10 mi-

nutes. Lysates were then centrifuged at 13,000 x g for 15 minutes at 4�C. The supernatant was transferred to a new

tube. Samples for SDS-PAGE were then prepared at a final concentration of 1mg/mL total protein in 1x NuPAGE LDS Sample

Buffer (Invitrogen, Waltham, MA) and 0.1 M DTT (VWR, 97061-338). Samples were run on 4-12% SDS-PAGE gels (Invitrogen)

and transferred for 60 minutes at 100V in Towbin transfer buffer (25 mM Tris Base, 192 mM Glycine, 20% methanol (v/v)) to a

nitrocellulose membrane (GE Amersham, Amersham, UK). After transferring, the membrane was blocked in PBST (PBS with

0.1% Tween 20 (Sigma-Aldrich)) with 5% milk (w/v) (Quality Biological, Gaithersburg, MD) for 1 h at room temperature. Primary

antibodies (anti-bactin (Genscript, Piscataway, NJ), anti-HA (Cell Signaling Technology, Danvers, MA)) were incubated with the

blots overnight at 4�C. The membrane was washed 3 times with PBST before the secondary antibody was added for 1 h at

room temperature in PBST. Anti-rabbit-HRP secondary (Fisher Scientific, Waltham, MA) was used at 1:10,000 dilution, while

anti-mouse-HRP secondary (Fisher Scientific) was used at 1:2,500. The membrane was then washed 3 times with PBST for

5 minutes. The western blot was visualized using Amersham ECL Prime Reagent (Amersham) and imaged on a Chemidoc

MP (BioRad, Hercules, CA).

Microscopy
Fluorescent images were captured using a Leica DMi8 inverted microscope (Excitation 470/40, Emission 525/50) using the LAS X

software.

DART-PCR
Transgenic cells were treated with 1 mg/mL doxycycline for 0 h, 2 h, 4 h, 8 h, or 24 h. Total RNA was extracted using Trizol (Invitrogen,

Paisley, UK) according to the manufacturer’s instructions. Total RNA was treated with DNase I (NEB) for 15 min at 37�C to remove

possible DNA contamination. RNA was isolated using ethanol precipitation. cDNA was made using iScript Reverse Transcription

Supermix (Bio-Rad, Hercules, CA). PCR amplification of the region surrounding A1222 on the ACTBmRNAwas carried out with Clo-

neAmp HiFi PCR Mastermix (Takara, Mountain View, CA) with the following oligos: ActinFwd 50-caacacagtgctgtctggc-30; ActinRev
50- caagatgagattggcatggc-30. The resulting PCR product was gel-purified on a 1% agarose gel and gel extracted using the Qiaquick

Gel Extraction Kit (Qiagen, Hilden, Germany). Samples were submitted for sanger sequencing (Genewiz, South Plainfield, NJ) and%

C2U was quantified using EditR software (Kluesner et al., 2018).

Cell cycle analysis using propidium iodide staining
When APOBEC1-YTH- and APOBEC1-YTHmut-expressing cells were approximately 50% confluent, they were treated with 1mg/mL

doxycycline and cultured for 24 h. After 24 h, cells were removed from the plate by incubatingwith 1x TrypLE (Invitrogen) for 5minutes

at 37 �C. The cells were resuspended to 10 mL using 1x PBS with 1% FBS and counted using a hemacytometer. 1 million cells were

then resuspended in 1mL 1x PBS.While vortexing, 4mL of ice-cold 100%was added dropwise to the cells. The cells were fixed for a

minimumof 2 h at 4 �C. After ethanol fixation, cells were resuspended in 500 mL of labeling solution (1x PBS containing 0.05%TritonX-

100, 0.2 mg/mL propidium iodide (Sigma-Aldrich), and 0.5 mg/mL RNase A (Promega)). The samples were incubated at 37 �C for

30 minutes, then filtered through a 40 mm filter (BD, Franklin Lakes, NJ). Samples were analyzed using a BD Canto flow analysis cy-

tometer and the cell cycle distribution was determined using FlowJo software.
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Relative quantitation of m6A using RT-qPCR
Total RNA was extracted from HEK293T cells using Trizol (Invitrogen) according to the manufacturer’s instructions, then treated with

DNase I (NEB) for 15 minutes at 37�C to remove possible DNA contamination. RNA was isolated using ethanol precipitation. Two

reverse transcription reactions using BstI polymerase (NEB) were assembled, one with a primer adjacent to a potential m6A site

(+), and one using a non-adjacent primer (-). Final reaction buffer consisted of 1x ThermoPol Buffer (NEB), 50 mM dNTPs, 500nM

primer, 150 ng total RNA, and 10U BstI Polymerase. Samples were incubated in a thermocycler for the following protocol: 3 minutes

25 �C, X minutes 50 �C, and 3 minutes 85 �C. The extension times used for the following sites were as follows: EID1 A709, RAN A939

and G3BP1 A2191 – 10 minutes; ACTB A1222, GPI A3874, ETFA A592, EXOSC2 A1019, PWP1 A1726, SRP9 A1132, NDC1 A1791,

ACTN1 A1061, TMEM167A A346, TMEM192 A957 – 15 minutes; DPM2 A771, ZDHHC16 A1737 – 40 minutes. Additionally, two

reverse transcription reactions were performed using Super Script III (Invitrogen), one with them6A adjacent primer (+), and one using

only the non-adjacent primer. Quantitative PCR was performed for all samples using the resulting cDNA, and relative m6A

levels were calculated from the Ct values obtained, using the following formula described in (Castellanos-Rubio et al., 2019):

Rel. m6A = 2-(Ct Bst(-) – Ct SSIII(-)/Ct Bst(+) – Ct SSIII(+)).

Bulk DART-seq
Three independent plating and RNA isolation experiments were performed for both APOBEC1-YTH and APOBEC1-YTHmut cells.

24 h after doxycycline treatment, cells were briefly rinsed with cold 1X PBS and removed from the culture plate using a cell scraper

(Corning). Cells were pelleted and supernatants were removed and stored at -80�C. Total RNA was isolated using Trizol (Invitrogen)

according to the manufacturer’s instructions. Total RNA was treated with DNase I (NEB) for 15 minutes at 37�C to remove possible

DNA contamination. RNA was isolated using ethanol precipitation. Sequencing libraries were generated from 900 ng of total RNA for

each replicate using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB) with the Poly(A) Selection Module (NEB)

according to the manufacturer’s instructions. Sample QC was performed using a Bioanalyzer High Sensitivity DNA 1000 Chip (Agi-

lent, Santa Clara, CA) and quantified using the Qubit 1X dsDNA HS Kit (Invitrogen). 50bp paired-end sequencing was performed on a

NovaSeq 6000 using the S-Prime flow cell.

Single-cell DART-seq using 10X Genomics sample preparation
Samples were prepared according to the protocol from the 10x Genomics Cell Preparation Guide (Manual Part #CG00053). Briefly,

three separate plates of APOBEC1-YTH and three separate plates of APOBEC1-YTHmut cells were processed distinctly and were

used as biological triplicates. 24 h after doxycycline treatment, cells were rinsedwith 1X PBS and treated with 2mL 1X TrpLE Express

(Invitrogen, 12604039) for 5 minutes at 37�C. 6 mL of DMEM with 10% FBS was added, and the cells were gently disrupted with a

wide bore p1000 pipette tip 10 times. The cells were counted using a hemacytometer and 2.5 million cells were transferred to a new

tube and washed in 1 mL PBS with 0.04% BSA. 1 million cells were then resuspended in 1 mL DMEM with 10% FBS. Single-cell

libraries were constructed as described for the 10x Genomics Next GEM Single Cell 3’ Kit, v3.1 chemistry (10x Genomics, Pleasan-

ton, CA). 50bp-paired end sequencing was performed on a NovaSeq 6000 using an S1 flow cell, obtaining approximately 80,000

reads per cell.

Single-cell DART-seq using SMART-seq2 sample preparation and sequencing
24 h after doxycycline treatment, APOBEC1-YTH and APOBEC1-YTHmut cells were rinsed with 1X PBS and treated with 2 mL

1X TrpLE Express (Invitrogen) for 5 mins. at 37�C. Then 12 mL of flow buffer (DMEM with 1% FBS) was added. Cells were gently

agitated and counted using a hemacytometer. 2 million cells were transferred to a sterile 1.5 mL tube and pelleted at 2,000 x g

for 3 minutes. The supernatant was removed, and the cells were resuspended in 200 mL of flow buffer. 2 mL of near-IR LIVE/

DEAD viability marker (Invitrogen) was added and the cells were incubated at room temperature for 5 minutes. Then 4 units

of DNase I was added and incubated for 15 minutes at 37�C. The cells were pelleted at 2,000 x g for 3 minutes and resus-

pended in 2 mL of flow buffer. They were then filtered through a 40 mM filter. Single, viable, GFP+ cells were then sorted

into individual wells of 384-well PCR plates containing 1 mL of the prepared lysis buffer supplied with the SMART-seq HT Kit

(Takara) using a FACS Aria II (BD). Immediately after sorting, each plate was centrifuged at 1,000 x g for 1 min before flash-

freezing on dry ice. Plates were stored at -80�C until library preparation. Manufacturer’s instructions for the SMART-seq HT

Kit were followed for reverse transcription/cDNA synthesis, but reactions were scaled down 12.5-fold. Briefly, each plate

was thawed on ice and 1 mL of the One-Step mastermix was added to each well and incubated in a thermocycler (42�C for

90 minutes, 95�C for 1 minute, followed by 18 cycles of 98�C for 10 seconds, 65�C for 30 seconds, and 68�C for 3 minutes.

A final extension at 72�C for 10 minutes was used followed by a hold at 4�C). Ampure XP beads (Beckman-Coulter) were

used to purify the amplified cDNA, which was eluted into 17 mL of 10 mM Tris (pH 8.0). All cDNA samples were quantified using

the Qubit 1X dsDNA HS Kit (Invitrogen). Samples above 200 pg/mL were diluted to 200 pg/mL, and samples with undetectable

cDNA were discarded. The Nextera XT DNA Library Prep Kit (Illumina, San Diego, CA) was used to prepare indexed libraries

from the amplified cDNA. Manufacturer’s instructions were used, but reactions were scaled down 8-fold. Briefly, 1.88 mL of tag-

mentation premix and 0.63 mL of cDNA was added to each well of a 384-well PCR plate and incubated in a thermocycler for

10 minutes at 55�C. Then 0.63 mL NT Buffer was added and the plate was vortexed and incubated at room temperature for

5 minutes. Then 1.88 mL of NPM buffer, 0.63 mL water, and 0.63 mL of custom duplexed CDI primers (IDT, 10 mM) were added
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and library amplification was performed in a thermocycler (72�C for 3 minutes, 95�C for 30 seconds, followed by 13 cycles of

95�C for 10 seconds, 55�C for 30 seconds, and 72�C for 1 minute. A final extension at 72�C for 5 minutes was used followed by

a hold at 4�C). After amplification, Ampure XP beads were used to purify the final libraries, which were eluted into 17 mL of

10 mM Tris, pH 8.0. Each library was quantified using the Qubit 1X dsDNA HS Kit (Invitrogen), and all samples above 200

pg/mL were pooled. Pooled samples were run on a Bioanalyzer High Sensitivity DNA 1000 Chip for QC (Agilent). Average frag-

ment size was approximately 700 bp. 150bp paired-end sequencing was performed on a NovaSeq 6000 using an S4 flow cell to

generate approximately 5 million reads per cell.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell DART-seq (10X Genomics) gene expression analysis
Raw readswere demultiplexed using Illumina bcl2fastq2 software. Fastq files fromAPOBEC1-YTH, APOBEC1-YTHmut andwild-type

HEK293T cells (10x Genomics) were aligned to the hg38 reference genome using Cell Ranger count. APOBEC1-YTH transgene

expression was assessed by aligning to the rat APOBEC1 sequence. Filtered barcodematrices were loaded into Seurat (3.2.1). Cells

were eliminated from analysis if they had high mitochondrial content (>20% of reads), low read or gene detection numbers (<

1,000 UMI reads or < 500 genes), or low transcriptional complexity (< 0.8 log10 genes/UMI). Each replicate was then log-normalized

and scored for cell cycle using Seurat in the following way. Separately, each replicate was normalized using the SCTransform func-

tion, regressing out cell cycle genes to eliminate the effect of cell cycle on clustering. 3,000 features were used to find integration

anchors, and the IntegrateData command was used to integrate all 6 replicates with wild-type HEK293T cells. PCA was performed

on variable features, followed by the RunUMAP command. Clusters were identified by using the FindNeighbors command on dimen-

sions 1:40, followed by FindClusters at different resolutions. The resolution used in this manuscript (0.05, followed by MergeClusters

0 and 1) was used as it was the highest resolution where all clusters had at least one significantly differentially expressedmarker gene

as determined by the FindConservedMarkers command.

SMART-seq2 scDART-seq data quality control, integration with 10x Genomics scDART-seq data, and gene
expression analysis
Raw files were demultiplexed and converted to fastq format using bcl2fastq2 software from Illumina. Adapter sequences were

removed using Flexbar (3.0.3) (Roehr et al., 2017). For gene expression analysis, reads were aligned to the hg38 reference genome

using STAR (2.7.5c) (Dobin et al., 2013), with the –soloType option set to SmartSeq and –soloUMIdedup set to Exact. The filtered

matrices were loaded into Seurat (3.2.1) (Stuart et al., 2019). Cells were eliminated from analysis if they had high mitochondrial con-

tent (> 10% of reads), low read or gene detection numbers (< 1,000,000 reads or < 9000 genes), or low transcriptional complexity (<

0.58 log10 genes/count). Using Seurat, the QC-filtered counts were normalized using the SCTransform function. Then, integration

anchors were selected for all cells sequenced and passing QC filters using SMART-seq2 or 10x using 3,000 features. All SMART-

seq2, 10x Genomics, and HEK293T samples were integrated using the IntegrateData function. Then PCA analysis was performed,

followed by UMAP reduction using dimensions 1:40. Clusters were identified using the FindNeighbors and FindClusters commands;

the resolution used in this analysis was 0.06. Marker genes were found using the FindConservedMarkers command.

Genome alignment and TPM calculation for SMART-seq2 scDART-seq data
After demultiplexing using bcl2fastq2 and trimming adapter sequences using Flexbar (3.0.3), each cell library was aligned to the hg38

reference genome using STAR (2.7.5c). Transgene expression was assessed by adding the rat APOBEC1 sequence to the reference

genome. PCR duplicates were removed from the BAM files using SAMtools (1.11) (Li et al., 2009) fixmate and markdup with the -r

option. featureCounts (Subread 1.6.3) (Liao et al., 2014) was used to generate a countsmatrix for all features. TPM valueswere calcu-

lated in R using a custom script from the counts matrix and the resulting TPM-cell matrix was filtered to only include cells that passed

QC filters in Seurat and were included in the integrated dataset analysis.

reCAT for cell cycle analysis of SMART-seq2 scDART-seq data
Cell cycle assignments for SMART-seq2 cellswere determined using reCAT (Liu et al., 2017), available onGitHub (https://github.com/

tinglab/reCAT).Briefly, log2TPM+1wascalculated from theTPM-cellmatrix togenerate the input data. Expression values for cell cycle

genes only were prepared using the get_test_exp() function. Cells were then indexed by their order within the cell cycle using get_or-

dIndex(). G1, S, andG2/Mphase scoreswere obtained using the get_score() function and plotted using plot_bayes() and plot_mean().

Finally, the indexed cells were then assigned a cell cycle stage using a hidden markov model with the get_hmm_order() function.

Identification of m6A sites from bulk DART-seq data
Bullseye is a custom perl-based software designed to identify RNA editing sites and is modified from the HyperTRIBE pipeline (Rah-

man et al., 2018). Bullseye is available on GitHub (https://github.com/mflamand/Bullseye). To use Bullseye for bulk DART-seq anal-

ysis, raw sequencing data was converted to fastq files using bcl2fastq2 software from Illumina, and adapter sequenceswere trimmed

using Flexbar (3.0.3). Sequences were aligned to the hg38 genome using STAR (2.7.5c). PCR duplicates were removed from the BAM

files using Samtools (1.11) fixmate and markdup with the -r option. Then, using Bullseye, the parseBAM.pl script was used to parse
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the BAM files and create a counts matrix of the number of reads for each nucleotide at all positions with coverage. The Find_edit_-

site.pl script was then used to findC-to-Umutationswith at least 10 reads of coverage, an edit ratio of 10%-95% (Treads/Totalreads), an

edit ratio at least 1.5-fold higher than mutant control samples, and at least 2 C-to-U editing events at a given site. Those sites were

further filtered to include only those occurring in an RAC (G/A-A-C) motif. Editing events observed when APOBEC1 alone was over-

expressed in HEK293T cells (Meyer, 2019) were removed. Editing events fulfilling these criteria and occurring in at least 2 of 3 APO-

BEC1-YTH cell biological replicates were considered high-m6A sites. For each C-to-U editing site, the m6A is considered to be the A

immediately preceding the edited C.

Identification of high-confidence m6A sites in 10x Genomics scDART-seq data
The sequences in the fastq files were aligned to the hg38 reference genome using Cell Ranger count the create aligned, deduplicated

BAM files. Then, Bullseye was used to identify m6A sites. First, the parseBAM.pl script was used to parse the sequences from the

position-sorted bam files so that the number of A,T,G,C, and N at all positions with coverage was obtained for each APOBEC1-

YTH cell barcode. The APOBEC1-YTHmut cell BAM files were parsed as an averaged population without tracking barcodes. The Fin-

d_edit_site.pl script was then used to find C-to-U mutations within each cell that has at least 3 reads of coverage, an edit ratio of at

least 10% (Treads/Totalreads), and an edit ratio at least 1.5-fold higher than the APOBEC1-YTHmut cell population average. Editing sites

observed when APOBEC1 alone was overexpressed in HEK293T cells (Meyer, 2019) were removed. This defines low-stringency

sites. Figure 1C shows the overlap of low-stringency sites identified within each 10x Genomics biological replicate. Finally, high-con-

fidence sites were found by filtering editing events to include only those within an RAC motif that additionally occur in all 3 biological

replicates and in at least 10 cells in total to account for potential sequencing errors.

Identification of high-confidence m6A sites in SMART-seq scDART-seq data
After demultiplexing using bcl2fastq2 and trimming adapter sequences using Flexbar (3.0.3), each cell library was aligned to the

hg38 reference genome using STAR (2.7.5c). PCR duplicates were removed from the BAM files using Samtools (1.11) fixmate and

markdup with the -r option. The resulting APOBEC1-YTHmut control cell BAM files were concatenated and sorted by position using

samtools sort. Bullseye was then used to identify m6A sites. First, the parseBAM.pl script was used to generate the nucleotide

matrix file. Each APOBEC1-YTH cell BAM file was parsed so that the number of A,T,G,C, and N reads at all positions with coverage

was obtained for each APOBEC1-YTH cell barcode. The parseBAM.pl script was also used to parse the concatenated APOBEC1-

YTHmut cell BAM file so that the number of A,T,G,C, and N at all positions with coverage was obtained as a population average of all

APOBEC1-YTHmut cells. The Find_edit_site.pl script was then used to find C-to-U mutations within each APOBEC1-YTH cell with

at least 20 reads of coverage at each site, an edit ratio of at least 10-95% (Treads/Totalreads), an edit ratio at least 1.5-fold higher than

the APOBEC1-YTHmut population average, and at least 2 C-to-U editing events at that site within the cell. Editing sites observed

when APOBEC1 alone was overexpressed in HEK293T cells (Meyer, 2019) were removed. Low-stringency sites were found by

filtering all sites for those occurring in an RAC motif. Finally, high-confidence m6A sites were defined as editing events occurring

within RAC sites and identified in at least 10 APOBEC1-YTH cells.

m6A metagene and motif enrichment analysis
metaPlotR was used to generate m6A and RAC motif metagenes and stop codon enrichment profiles. (Olarerin-George and Jaffrey,

2017). HOMER (Heinz et al., 2010) was used to identify enriched motifs near sites identified before filtering for sites occurring in RAC

(R=G/A) motifs only. The sequence around each site was expanded 10nt in each direction and 8bp enrichedmotifs were found within

those 21nt windows. Metagene of RNA-seq relative RNA-seq read coverage was generated using RseQC (Wang et al., 2012).

Comparison of methylated RNAs with REPIC database
A text file containing the genomic coordinates, gene annotation, and dataset information for MeRIP peaks reported in HEK293T cells

from 3 separate studies (Lichinchi et al., 2016; Meyer et al., 2012; Schwartz et al., 2014) was downloaded from the REPIC database.

(https://repicmod.uchicago.edu/repic/download.php) (Liu et al., 2020). Gene names were then retrieved from the Ensembl Gene ID

annotations. RNAs with called peaks in at least 2 of the 3 studies were then compared to the list of RNAs containing high-confidence

m6A sites in the bulk DART-seq, 10x Genomics scDART-seq, or SMART-seq2 scDART-seq datasets.

Comparison of RNA abundance and methylation likelihood
The percentage of cells containingmethylation in each RNAwas obtained by calculating (# of cells with at least 1m6A site/# cells with

expression of the parent RNA > 0.5) * 100. An RNA was considered expressed within a cell if the single-cell TPM was R 0.5. The

population-level gene expression was calculated by taking the log10 of the mean TPM value from all SMART-seq2 APOBEC1-

YTH-expressing cells. The relationship between RNA abundance and likelihood of methylation was calculated in the following

way. The nucleotide matrix generated by the parseBAM.pl script in the Bullseye pipeline was used to calculate the %C2U for all po-

sitions in all cells at which an m6A site was found. Since detection of sites may potentially suffer from noise at locations of low

coverage, and consequently bias the analysis, all positions with a coverage less than 250 reads were eliminated, and further, parent

RNAs with a single-cell TPM value < 1 were also omitted. All sites with > 10%C2Uwere considered methylated and sites with < 10%

C2Uwere considered unmethylated. This is the same cutoff used in identifyingm6A sites. The single-cell expression in TPM values for
Molecular Cell 82, 868–878.e1–e10, February 17, 2022 e7

https://repicmod.uchicago.edu/repic/download.php


ll
Resource
the parent RNA each site is located on was also calculated. Then the mean TPM of the parent RNA for all methylated sites as well as

all unmethylated sites was calculated, and significance determined using a Wilcoxon rank-sum test.

Comparison of RNA abundance and methylation likelihood among gene expression quintiles
For analysis of gene expression quintiles, the list of methylated and unmethylated sites in each cell was divided into 5 groups, with the

sites occurring in the parent RNAs in 0th-20th percentiles of gene expression (by single-cell TPM values) binned in the lowest quintile,

>20th-40th percentiles in the second quintile, >40th-60th percentiles in the third quintile, >60th-80th percentiles in the fourth quintile,

and >80th-100th percentile in the fifth quintile. The mean TPM values of parent RNA expression for all methylated and unmethylated

sites within each quintile was compared and normalized to the mean TPM of unmethylated sites within that quintile to give a relative

expression level. Significance was determined using a Wilcoxon rank-sum test.

Gene ontology
Gorilla (http://cbl-gorilla.cs.technion.ac.il/) (Eden et al., 2007, 2009) was used for gene ontology analysis. For gene ontology analysis

of differentially expressed RNAs, an unranked list of differentially expressed RNAs was compared to an unranked list of all RNAs with

expression (population avg. TPM > 0.5). For gene ontology analysis of methylated RNAs or differentially methylated RNAs to a list all

methylated RNAs. FDR values < 5.0x10-2 were considered significant.

Distribution of individual m6A sites
First, the total number of high-confidence m6A sites for each mRNA identified within the SMART-seq2 scDART-seq dataset was

found (Figure 4A). To investigate the relationship between total sites in an mRNA and its expression within the entire population,

the total number of m6A sites in each mRNA was correlated with the log10 of the mean TPM value for the mRNA from all cells in

the population. mRNAs with an average TPM value of at least 1 are shown (Figure S5F). The number of m6A sites methylated on

each mRNA per cell was assessed by finding the number of different, unique m6A sites assigned to each mRNA that were asso-

ciated with each SMART-seq2 cell ID. The percentage of m6A sites methylated per mRNA per cell was calculated as (# of sites

methylated on each mRNA within each cell ID/# of total sites on mRNA in population) * 100 (Figure S5C). The average percent-

age of cells each m6A site is methylated in was calculated as (# of cells in which m6A site is detected/# of cells with expression)

* 100. For calculation of percent of cells with methylation, an mRNA was considered expressed when its single-cell TPM value is

R 0.5 (Figures 4B and 4D). Histograms of the number of sites per mRNA per cell show the number of single cells containing the

indicated number of m6A sites in the mRNA that are associated with the same cell ID (Figures 4G and 4J). Figure S5B shows the

total number of m6A sites on an mRNA across the entire population of SMART-seq2 cells, correlated with the percentage of

cells in which that mRNA is methylated. The percentage of cells with methylation is calculated as (# of cells with at least 1

m6A site in mRNA/# of cells with expression of mRNA) * 100. Single cell expression was defined as an mRNA having a TPM

value of R 0.5 in that cell.

mRNA m6A site distribution graphs
To generate graphs showing the distribution of m6A site frequency along transcripts, a BigWig file was first created with the 4th col-

umn containing the percentage of cells in which that site is methylated (Of the total number of cells in which that RNA is methylated).

The R package wiggleplotr (version 1.18) (https://bioconductor.org/packages/release/bioc/html/wiggleplotr.html) was then used to

visualize the distribution of the sites along the transcript using the BigWig files to inform the height of each bar. Intronswere shortened

for ease of visualization.

Comparison of %C2U values with MAZTER-seq and SCARLET
First, the absolute %C2U value of the annotated cytidine following methylated adenosines identified by MAZTER-seq or

SCARLET (Garcia-Campos et al., 2019; Liu et al., 2013) was calculated from all cells in the SMART-seq2 scDART-seq dataset.

To do this, the percentage of total reads in which the annotated cytidine was called as a ‘‘T’’ (positive strand sites) or ‘‘A’’ (nega-

tive strand sites) was calculated. That number was correlated to the -log10 of the unnormalized MAZTER-seq cutting efficiency

identified in HEK293T cells (Garcia-Campos et al., 2019). Due to noise of many sites containing very low %C2U in scDART-seq

and low m6A estimates in MAZTER-seq, sites were filtered to include only a high-stringency set. This set consists of sites with a

cutting efficiency of less than 90% in the MAZTER-seq dataset (> 10% m6A estimate), and 10%-95% population average %

C2U estimates from scDART-seq data. The percentage of m6A/A estimates from seven sites in the MALAT1 RNA with m6A es-

timates as measured by SCARLET (Liu et al., 2013) were compared to the %C2U calculated of the adjacent cytidine from the

coverage in all SMART-seq2 scDART-seq cells. These sites in the MALAT1 RNA were chosen as they were measured in

HEK293T cells.

Analysis of %C2U in single cells
The %C2U values from the list of all high-confidence m6A sites identified in bulk, 10x Genomics scDART-seq, and SMART-seq2

scDART-seq datasets was compared (Figures 5D and S6A). The %C2U was calculated only from sites in cells in which methylation

was detected in scDART-seq data, omitting values from cells in which these sites were not identified as methylated. Similarly, to
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compare the average%C2U in cells with APOBEC1-YTH expression, the single-cell TPM values were correlated to the mean%C2U

of all m6A sites identified within the same cell (Figure S6C). The correlation between APOBEC1-YTHmut expression and%C2U in Fig-

ure S3J shows the%C2U at all called high-confidence scDART-seq sites compared to transgene expression. Figure S6D shows the

distribution of all %C2U values for all bulk DART-seq sites that are also found in SMART-seq2 scDART-seq data. Shown is the pop-

ulation average pseudobulk %C2U for all SMART-seq2 sites in all SMART-seq 2 cells. Similarly, Figure S6E shows the population

averaged %C2U in SMART-seq2 cells (y,-axis) for all sites identified in both bulk and SMART-seq2 datasets. Sites are stratified

by the%C2U observed in bulk DART-seq (x-axis). Figure 5F shows all the same sites as Figure 5E, but instead of population average

%C2U, the%C2Uwithin each SMART-seq2 single cell (regardless of called methylation status) is shown as a data point. Histograms

showing the distribution of%C2U values across cells (Figures 5H and S6G) show the distribution of the number of cells containing an

identified m6A site with the indicated %C2U value. Any cell without a called, high-confidence m6A site (0%-10% C2U, or less than

1.5-fold higher than APOBEC1-YTHmut-expressing cells), but with expression of the parent mRNA (TPMR 0.5) is binned at 0 to indi-

cate a lack of confident methylation in that cell.

Differential methylation analysis across cell cycle phases
To analyze differential methylation, cell cycle assignments obtained from reCATwere used for all SMART-seq2 APOBEC1-YTH cells.

For each RNA, the number of cells with detectable expression within each cell cycle phase was found (single-cell TPMR 0.5). Then

the number of cells with expression in each phase was normalized to the total number of cells with expression. This proportion (al-

ways sums to 1 for all 3 phases) defines the expected distribution of methylation based on the proportion of cells with expression in

each phase. Then, the number of cells in which the RNA contains at least 1m6A site was calculated. A chi-square test was performed

to test whether the distribution of the number of cells with methylation within each phase of the cell cycle significantly differs from the

expected distribution based on gene expression. A post-hoc exact test was also performed to identify the specific phases with dif-

ferential methylation, and p-values less than 0.05 were considered significant. Significance = RNAs that were methylated in fewer

than 25 total cells were eliminated from the analysis. Percentage of cells with methylation for all RNAs was then calculated within

each phase of the cell cycle using (# cells with at least 1m6A site/total cells with expression) * 100. An RNAwas considered expressed

if its single-cell TPM value was R 0.5.

Clustering by m6A using SMART-seq2 scDART-seq cells
To cluster SMART-seq2 scDART-seq cells usingm6Amethylation information, an inputmatrix was used that consists of the identified

C2U editing ratio (values 0-1) at each m6A site (Columns) identified in all cell IDs (Rows). For cells in which a site was not identified as

methylated, a C2U editing ratio of 0 was used. This editing matrix was used as raw data input and loaded into Seurat using the Crea-

teSeuratObject function. Then the following steps were performed using Seurat. The values were log-normalized using the Normal-

izeData function, and 2,000 variable features were found using the FindVariableFeatures function, using the ‘‘vst’’ selection method.

The data was then scaled using ScaleData, followed by PCA. The RunUMAP function (first 20 PCA dimensions) was used

for dimensionality reduction. The FindNeighbors and FindClusters functions were used to identify cells in different clusters. Different

resolutions were tested and a final resolution of 0.29 was used as it identified distinct clusters that contained significantly differentially

methylated sites. Differentially methylated sites were identified using the FindAllMarkers function, using the default Wilcoxon rank-

sum test. Sites were considered significantly differentially methylated if the adjusted p-value < 0.05 and the magnitude of the log2-

fold-change of the editing ratio between the me-clusters had an absolute value of 0.32 (1.25-fold) or greater. Differentially expressed

RNAs were found by comparing the RNA expression values using FindAllMarkers between cells assigned to each me-cluster. RNAs

were considered differentially expressed if they had an adjusted p-value of < 0.05 and the magnitude of the log2-fold-change of the

expression between the me-clusters had an absolute value of 0.32 (1.25-fold) or greater.

Clustering by m6A using 10x Genomics scDART-seq cells
To cluster 10x Genomics scDART-seq cells using m6A methylation information, an input matrix was used that consists of the iden-

tified C2U editing ratio (values 0-1) at each m6A site (Columns) identified in all cell IDs (Rows). For cells in which a site was not

identified as methylated, a C2U editing ratio of 0 was used. This editing matrix was used as raw data input and loaded into Seurat

using the CreateSeuratObject function. Then the following steps were performed using Seurat: The values were log-normalized

using the NormalizeData function, and 2,000 variable features were found using the FindVariableFeatures function, using the

‘‘vst’’ selection method. The data were then scaled using ScaleData, followed by PCA. The RunUMAP function (first 20 PCA di-

mensions) was used for dimensionality reduction. The FindNeighbors and FindClusters functions were used to identify cells in

different clusters. Different resolutions were tested and a final resolution of 0.05 was used as it identified distinct clusters that con-

tained significantly differentially methylated sites. Differentially methylated sites were identified using the FindAllMarkers function,

using the default Wilcoxon rank-sum test. Sites were considered significantly differentially methylated if the adjusted p-value <

0.05 and the magnitude of the log2-fold-change of the editing ratio between the me-clusters had an absolute value of 0.5849

(1.5-fold) or greater. Differentially expressed RNAs were found by comparing the RNA expression values using FindAllMarkers be-

tween cells assigned to each me-cluster. RNAs were considered differentially expressed if they had an adjusted p-value of < 0.05

and the magnitude of the log2-fold-change of the expression between the me-clusters had an absolute value of 0.32 (1.25-fold) or

greater.
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Statistical analysis and plotting
All statistical analysis and plotting was performed in RStudio. T-tests, Wilcoxon rank-sum tests (except for scRNA-seq gene expres-

sion analysis), chi-square tests (comparisons of cell cycle distribution), Pearson correlation coefficients, and p-values for correlations

were calculated using the ‘‘base’’ package. Post-hoc exact tests after chi-square tests were performed with the chisq.theo.mult-

comp function in the ‘‘RVAideMemoire’’ package. All UMAP visualizations were generated using package ‘‘Seurat’’. The R package

‘‘Eulerr’’ was used to make Venn diagrams. All other charts were generated using the ‘‘ggplot2’’ package.
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