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SUMMARY
Granulomas are lumps of immune cells that can form in various organs. Most granulomas appear unstruc-
tured, yet they have some resemblance to lymphoid organs. To better understand granuloma formation,
we performed single-cell sequencing and spatial transcriptomics on granulomas from patients with sarcoid-
osis and bioinformatically reconstructed the underlying gene regulatory networks.We discovered an immune
stimulatory environment in granulomas that repurposes transcriptional programs associated with lymphoid
organ development. Granuloma formation followed characteristic spatial patterns and involved genes linked
to immunometabolism, cytokine and chemokine signaling, and extracellular matrix remodeling. Three cell
types emerged as key players in granuloma formation: metabolically reprogrammed macrophages, cyto-
kine-producing Th17.1 cells, and fibroblasts with inflammatory and tissue-remodeling phenotypes. Pharma-
cological inhibition of one of the identified processes attenuated granuloma formation in a sarcoidosismouse
model. We show that human granulomas adopt characteristic aspects of normal lymphoid organ develop-
ment in aberrant combinations, indicating that granulomas constitute aberrant lymphoid organs.
INTRODUCTION

Granulomas form in response to infections by bacteria and fungi,

but they also contribute to diseases such as sarcoidosis, beryl-

liosis, and rheumatoid arthritis.1,2 Granulomas can cause fibrosis

and organ damage, resulting in major disease burden.3–6 While

granuloma formation is an evolutionary adaptive process that

helps the immune system contain certain infections or foreign

objects in the body, granulomatous inflammation can also

emerge without a known initial trigger.7,8

Granulomas are complex structures that comprise innate and

adaptive immune cells as well as structural cells including fibro-

blasts and endothelial cells.2 Their cellular composition is similar

across granulomatous disorders, while themicroanatomic distri-

bution of these cells and their cytokine profile differ widely. Mac-

rophages are the most common type of immune cell in granu-

lomas. They can become tightly linked and form structures

called ‘‘epitheloid cells’’ or even fuse into multinucleated giant
Immunity 56, 289–306, Feb
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cells.9,10 Furthermore, macrophages in granulomas can undergo

metabolic dysregulation that results in enhanced inflamma-

tion,11,12 and they often interact with various T cell subtypes

such as Th2 cells in granulomas in helminth infections,13 inter-

feron (IFN)-g-producing Th1 cells in tuberculosis,14 as well as

Th1 and Th17 cells in Crohn disease.15 The granuloma border

is encompassed by fibroblasts that produce extracellular matrix

(ECM) components, contributing to fibrosis and loss of organ

function. Recent studies suggest that a network of interactions

between immune cells and structural cells helps maintain granu-

lomatous inflammation and organization.16,17

To dissect the molecular and cellular processes of granuloma

formation, we focused on cutaneous sarcoidosis as a non-infec-

tious granulomatous disease,18,19 providing a model with no

obvious biological justification for or benefit of granuloma

formation. Granulomas in sarcoidosis appear to be caused by

environmental stimuli,20–22dysregulated immune response,12,23,24

and genetic factors.25–28 There are few options for targeted
ruary 14, 2023 ª 2023 The Authors. Published by Elsevier Inc. 289
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Figure 1. Macrophages, T cells, and fibroblasts are the main cell types in skin granulomas

(A) Schematic of single-cell and spatial profiling for patients with sarcoidosis.

(B) UMAP of scRNA-seq transcriptome profiles from lesional and non-lesional skin. Cells are color-coded according to their assigned cell types based on

automated label transfer from a published reference of cell types in healthy skin.31

(C) UMAP of scRNA-seq transcriptome profiles color-coded by sample origin.

(D) Spatial transcriptomics data of one representative patient analyzed for lesional and non-lesional tissue signatures. Top: H&E staining of lesional skin; the

dotted line indicates the basal membrane between dermis and epidermis; black lines and stars depict the granuloma area. Scale bar: 500 mm. Bottom: proportion

of the lesional tissue signature (red) and non-lesional tissue signature (blue) for each spot in the spatial transcriptomics data.

(E) Immunofluorescence protein staining of skin granulomas for the macrophage marker CD68 (red; APC), the T cell marker CD3 (light blue; PE-TR), the fibroblast

marker CD90 (green; FITC), and nuclei staining with DAPI (dark blue). Scale bars: 500 mm (main panel) and 50 mm (zoom-in panels).

(F) Schematic of data analysis and data integration strategy. Data in (B) and (C) are from 12 independent patients.

See also Figure S1 and Tables S1 and S2.
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therapy, and broad immunosuppressive therapies come with

various side effects.29,30 Sarcoidosis and other granulomatous

diseases thus constitute an unmet medical need.

To unravel the gene regulatory programs and cell-cell interac-

tions underlying granuloma formation, we combined single-cell

RNA sequencing (scRNA-seq) and spatial transcriptomics with

in-depth analysis of cellular marker proteins in granulomas and

matched non-lesional skin. For 12 patients with sarcoidosis at

baseline of a closely monitored clinical study, we collected

scRNA-seq profiles and spatial transcriptomics data. Our anal-

ysis of the molecular and cellular architecture of granulomas

identified transcriptional programs associated with lymphoid or-

gan development. We specifically investigated granuloma-asso-

ciated (‘‘GA’’) macrophages, Th17.1 cells, and fibroblasts, which

were interconnected by paracrine cell-cell communication net-

works inside granulomas. We identified pathomechanisms that

were shared across individuals and organs, providing potential

targets for therapeutic intervention.

Overall, our study uncovered a mix of developmental pro-

grams that underlie granuloma formation, and it highlights the

interplay of innate, adaptive, and structural cells in the creation

and maintenance of granulomas as a form of aberrant lymphoid

organs.
290 Immunity 56, 289–306, February 14, 2023
RESULTS

Macrophages, T cells, and fibroblasts are the main cell
types in skin granulomas
To study cell composition and gene regulation in granulomas, we

performed scRNA-seq on paired biopsies of lesional and non-

lesional skin from 12 patients with histologically validated and

clinically well-documented persistent cutaneous sarcoidosis

(Figure 1A; Table S1). We included 8 female and 4 male patients

with a median age of 54 years. Our cohort captures a wide spec-

trum of skin morphologies, including papules, nodules, plaques,

subcutaneous lesions, and tattoo-associated sarcoidosis

(Table S1). Overall, �56,000 single-cell transcriptomes passed

quality control (Figure S1A; Table S2; supplemental website:

http://granuloma-map.bocklab.org) and were integrated into a

joint map, clustered, and subjected to automated cell-type

annotation.

We identified eight main cell types shared across patients:

lymphoid cells, myeloid cells, keratinocytes, mast cells, fibro-

blasts, endothelial cells, pericytes, and melanocytes (Figures 1B,

S1B, and S1C). We detected widespread transcriptional changes

in lesional comparedwith non-lesional skin (Figure 1C). To confirm

that the transcriptional state of cells derived fromnon-lesional skin

http://granuloma-map.bocklab.org
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is similar to unperturbed skin, we compared our transcriptional

profileswithpublisheddataof skinbiopsies fromhealthydonors.32

We observed consistent clustering of cells from non-lesional skin

with healthy control skin, which supports our use of matched

non-lesional skin frompatientswith sarcoidosis asa suitable refer-

enceof ‘‘normal’’ skin towhichwecompared the lesional skinsam-

ples (Figures S1D and S1E).

To map the tissue context of the granulomas, we performed

spatial transcriptomics and immunofluorescence protein stain-

ing of skin biopsies from all 12 patients (Figure 1A; Table S2).

We deconvoluted the spatial transcriptomics profiles into re-

gions of lesional and non-lesional skin by using gene signatures

derived from our scRNA-seq data (Figures 1D and S1F). Immu-

nofluorescence protein staining identified CD3+ T cells, CD68+

macrophages, and CD90+ fibroblasts as main cell types within

granulomas (Figure 1E), confirming and extending our scRNA-

seq data analysis (Figures 1B and 1C). Together, these single-

cell and spatial maps allowed us to systematically investigate

themain cell types in sarcoidosis granulomas and their interplay,

using integrative bioinformatic methods (Figure 1F).

Specific macrophage, T cell, and fibroblast cell subsets
accumulate in granulomas
We identified 20 cell clusters based on transcriptional similarity,

which we labeled according to their expression of knownmarker

genes (Figures 2A and S2A). Seven non-immune (mainly struc-

tural cells) clusters and 13 immune cell clusters were observed

in lesional and non-lesional skin. The structural cells included

blood endothelial cells (characterized by the expression of genes

such asACKR1, PECAM1, and VWF), lymphatic endothelial cells

(PDPN and PROX1), fibroblasts (THY1 and FAP), keratinocytes

(KRT14), melanocytes (MLANA), and smooth muscle cells

(MCAM). Among the immune cells, we distinguished dendritic

cells (CD1a and CD1c), cytotoxic T cells (CD3, CD8, and

GZMK), helper T cells (CD3 and CD4), regulatory T cells (CD3,

CD4, and IL2RA), natural killer (NK) cells (FCGR3A, GNLY, and

GZMK), B cells (CD79A and IGKC), macrophages (CSF1R,

CD14, CD68, and CD163), and mast cells (KIT and TPSAB1)

(Figure 2B).

Cells from cluster 0 (lesional macrophages), cluster 1 (lesional

helper T cells), and cluster 9 (lesional fibroblasts) were almost

exclusively found in lesional skin. By contrast, endothelial cells,

epithelial cells, melanocytes, mast cells, dendritic cells, and

certain lymphoid cell subsets showed no such differences (Fig-

ure 2C). This indicates that lesional skin is enriched for

macrophages, helper T cells, and fibroblasts with a unique tran-

scriptional cell state, but not for other cell types.

To assess the localization of these cell subsets, we performed

UMAP dimensionality reduction and unsupervised clustering of

the spatial transcriptomics data, resulting in four clusters

(Figures 2D and S2B). Cluster 0, 1, and 2 were shared across

all samples, whereas cluster 3 contained mainly smooth muscle

cells and was restricted to those samples that included vascular

tissue (Figure S2C). We histologically annotated these clusters

as granulomatous dermis (cluster 0), unaffected dermis (cluster

1), and epidermis (cluster 2) (Figures 2D, 2E, and S2C). Deconvo-

lution of cell-type composition showed that the lesional subsets

of macrophages, helper T cells, and fibroblasts were mainly

present in granulomatous dermis (cluster 0), whereas the non-le-
sional subsets were present in unaffected dermis (cluster 1)

(Figures 2E and 2F). We confirmed this observation by projecting

the gene expression profiles of lesional and non-lesional macro-

phages, helper T cells, and fibroblasts onto the spatial transcrip-

tomics profiles across all samples. We observed high activity of

lesional gene sets inside granulomas, while non-lesional gene

sets were primarily expressed in the surrounding dermis

(Figures 2G and S2D).

We further compared our data for skin granulomas with pub-

lished bulk RNA-seq data for granulomas in lung,33 orbital adi-

pose tissue, lacrimal gland tissue,34 and progressive fibrotic

lung granuloma tissue.35 Gene signatures of these granulomas

were consistently enriched in lesional skin compared with non-

lesional skin, indicating that certain regulatory pathways of gran-

uloma formation are shared across organs (Figure S2E).

In summary, scRNA-seq and spatial transcriptomics uncov-

ered a gene expression profile reminiscent of granuloma-

induced cellular activation, which we observed in lesional mac-

rophages, helper T cells, and fibroblasts. The following sections

focus more deeply on macrophages (Figure 3), T cells (Figure 4),

and structural cells (Figure 5), characterizing each cell type’s

contribution to granuloma formation and maintenance.

GA macrophages display a strong proinflammatory
signature
Skin macrophages are mainly located in the dermal compart-

ment of the skin. Their biological roles include the removal of

pathogens and of debris from infected and dead cells.36 More-

over, macrophages constitute the dominant immune-modula-

tory cell type in granulomas and are regarded as a major driver

of granuloma formation.2 They contribute to the tightly packed

structure of granulomas and promote adaptive immune

response and tissue fibrosis.2,18

Investigating the role of macrophages in skin granulomas,

we performed dimensionality reduction and unsupervised clus-

tering of the single-cell transcriptome profiles of all macro-

phages. This analysis resulted in two main subclusters. The cells

in cluster 0 were associated with lesional skin, whereas the cells

in cluster 1 were predominantly derived from non-lesional skin

(Figures 3A and S3A). Automated cell-type assignment identified

various types of myeloid cells in cluster 1. By contrast, cluster

0 comprised only two macrophage subsets (Figure S3B). Differ-

ential gene expression analysis revealed transcriptional profiles

that are indicative of chronic activation of the myeloid cells in

cluster 0. For example, we found higher mRNA expression of

CD14, FCGR3A (coding for CD16), and APOC1 but reduced

levels of genes related to interleukin-1 (IL1A, IL1B, IL1R1, and

IL1R2).37 Based on these results, we refer to the myeloid cells

associatedwith cluster 0 as ‘‘granuloma-associated (GA)macro-

phages’’ and to the cells of cluster 1 as ‘‘homeostatic macro-

phages’’ (Figures 3A, 3B, and S3A; Table S3).

GA macrophages showed high mRNA expression of ACE,

CHI3L1,CHIT1,CYP27A1, andCYP27B1 (Figure 3B), consistent

with bulk gene expression data of cutaneous sarcoidosis.38,39

ACE (coding for angiotensin-converting enzyme) is used in clin-

ical practice as a serum marker for sarcoidosis activity.40 GA

macrophages also expressed elevated levels of S100A8 and

S100A9 (Figures 3B and S3C); these two genes jointly code for

calprotectin, which is secreted by macrophages and neutrophils
Immunity 56, 289–306, February 14, 2023 291
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Figure 2. Specific macrophage, T cell, and fibroblast cell subsets accumulate in granulomas

(A) UMAP of scRNA-seq transcriptome profiles, with color-coded cell clustering annotated based on marker gene expression.

(B) Dot plot showing expression of selected marker genes for the cell subsets from (A).

(C) Boxplot displaying the frequency of the cell subsets in lesional and non-lesional skin, based on the scRNA-seq data. *p < 0.05, **p < 0.01.

(D) UMAP of spatial transcriptome profiles from lesional skin, with color-coded clustering of assay spots in the spatial transcriptomics data. Spot clusters were

annotated based on histological assessment.

(E) Spatial transcriptomics data of one representative patient annotated with granuloma-associated spot clusters. Left: H&E staining of lesional skin (from

Figure 1D). Scale bar: 500 mm. Right: localization of spot clusters (from D) in the same sample.

(F) Boxplots showing the cellular composition of the spot clusters from (D), based on the scRNA-seq-derived cell subsets (from A).

(G) Localization of scRNA-seq-derived cell signatures from (A) for macrophages (cluster 0 [red] and 3 [blue]), helper T cells (cluster 1 [red] and 2 [blue]), and

fibroblasts (cluster 9 [red] and 4 [blue]) for the sample shown in (E). Data in (A)–(D) and (F) are from 12 independent patients.

See also Figure S2 and Table S2.
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Figure 3. Granuloma-associated macrophages display a strong proinflammatory signature

(A) UMAP of scRNA-seq transcriptome profiles of macrophages from lesional and non-lesional skin, with color-coded cell clustering annotated based on

preferential association with lesional (cluster 0) or non-lesional skin (cluster 1).

(B) Clustered scRNA-seq heatmap for differentially expressed genes between granuloma-associated (GA) macrophages (cluster 0) and homeostatic macro-

phages (cluster 1).

(C) UMAP of scRNA-seq transcriptome profiles as in (A) but clustered with higher granularity (clustering resolution: 0.5 instead of 0.15).

(D) Clustered scRNA-seq heatmap for differentially expressed genes between GA0 macrophages and GA1 macrophages (from C).

(E) Violin plot showing the expression of selected genes in GA macrophages and homeostatic macrophages.

(legend continued on next page)
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during inflammation.41 Moreover, GA macrophages highly

expressed IFNGR1 and showed an upregulation of genes asso-

ciated with IFN-g-activated macrophages42 (CCL5, CXCL9,

CXCL10, CSF2RB, FCGR1A, HLA-A, HLA-B, HLA-DQA1,

IFI27, IRF1, IRF8, and STAT1), with cell lysis and the lysosome

(genes coding for cathepsins, LAMP2, and LYZ), and with ECM

components (FN1, OSM, and SPP1) (Figures 3B and S3C).

Among the upregulated genes, we observed an enrichment for

gene sets associated with energy generation and metabolism,

antigen processing and presentation, organization of the ECM,

mTORC1 signaling, and IFN-g signaling. By contrast, downregu-

lated genes showed an enrichment for signaling via IL-1, IL-10,

TNF-a, and NF-kB, and for apoptosis-related pathways (Fig-

ure S3D; Table S4). In support of this non-conventional inflam-

matory macrophage phenotype, we found inflammation-associ-

ated transcription factors upregulated in GA macrophages and

expressed inside granulomas (Figures S3E and S3F); this

included RFX5, TCF7L2 (coding for TCF4), and STAT family

members. Our observations in human patient samples are

consistent with a mouse model of granuloma formation that

identified the checkpoint kinase mTORC1 in macrophages as

an inhibitor of NF-kB signaling and apoptosis, leading to persis-

tent granuloma formation.12 Indeed, we observed increased ac-

tivity of the mTORC1-dependent transcription factors SREBF1

and SREBF2 in GA macrophages (Figures S3E and S3F).

The metabolic signature of GA macrophages also resembles

conditions associated with tumor microenvironments, where

hypoxic conditions and extracellular acidity contribute to cancer

progression.43–45 HIF1A as well as hypoxia-related genes were

upregulated in GA macrophages (Figures 3B and S3G;

Table S3), and we detected a previously published hypoxia

gene signature in areas of granulomatous dermis (Figure S3H).46

GA macrophages appeared to rely on oxidative phosphorylation

and glycolysis to produce energy, and upregulation of pathways

involved in pyruvate and lactate production likely contribute to

the creation of an acidic milieu in granulomas (Figure S3D;

Table S4).

To further characterize the GA macrophages, we re-clustered

all macrophages and identified two lesional subclusters: GA

macrophage cluster GA0 and GA1 (Figure 3C). We detected

higher expression of several sarcoidosis-related genes (ACE,

CHI3L1, CHIT1, CYP27A1, and CYP27B1) in cluster GA0

(Figures 3D and 3E), and we localized the GA0 macrophage

gene signature exclusively to sarcoidosis granuloma (Figure 3F).

Immunofluorescence protein staining confirmed granuloma-

specific expression of chitinase 1 by GA0 macrophages (Fig-

ure S3I). Furthermore, we found increased expression of metal-

loproteinases (MMP9, MMP12, and MMP14) in cluster GA0;

these genes play a role in the degradation of the ECM.47,48

Conversely, the same genes appear to be downregulated in

cluster GA1 (Figures 3D and 3E). These results suggest func-

tional heterogeneity between GA1 and GA0 macrophages

regarding their ability to regulate immune cell trafficking and

maintenance within granulomas.
(F) Spatial transcriptomics data of one representative patient annotated with GAm

Bottom: localization of GA0 (blue) and GA1 (orange) macrophage gene signature

(G) UMAP (from A) annotated with the expression of selected genes. Data in (A)–

See also Figure S3 and Tables S3 and S4.
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GA0macrophages also expressed theCSF1 gene (Figure 3G),

which encodes the macrophage colony stimulating factor

(M-CSF), an essential factor for macrophage survival, differenti-

ation, and proliferation. While M-CSF is normally produced by

structural cells (e.g., fibroblasts, endothelial cells, and smooth

muscle cells), macrophages can also secrete M-CSF and

thereby increase local tissue inflammation. High levels of CSF1

further correlated with elevated expression of the chitin regulator

CHIT1, the Th17 differentiation-inducing genes CCL20 and

IL23A, the matrix metalloproteinase gene MMP12, and the cell

surface receptor gene DCSTAMP (Figure 3G). MMP12 is known

to cleave and degrade ECM components including type 1 and

type 4 collagens, laminins, entactin, and fibronectin,49 thus facil-

itating cell migration through structures such as the basal

laminae. DCSTAMP is essential for cell-cell fusion of non-osteo-

clast multinucleated giant cells,50,51 suggesting that these in-

flammatory macrophages of the GA0 subcluster are molecularly

equipped to form multinucleated giant cells.

Our data revealed a highly inflammatory environment inside

the granulomas that is shaped by GAmacrophages. Thesemac-

rophages support adaptive immune responses and ECM remod-

eling, thereby contributing to a microenvironment of persistent

inflammation in granulomas.

T cells with a Th17.1 phenotype are enriched in
granulomas
Tissue-resident CD3+ T cells constitute the main cell type of

adaptive immunity in the skin. Under homeostatic conditions,

most of them are CD4+ helper T cells located in perivascular

areas of the dermis.52,53 These cells have protective functions

during infection, but they can also have pathological effects.2

In granuloma formation, CD4+ helper T cells amplify local innate

immune response by recruiting effector cells to the site of inflam-

mation and supporting their activity.54 Immunofluorescence pro-

tein staining identified CD3+ T cells both inside granulomas and

in their immediate vicinity (Figure S4A).

Our scRNA-seq data identified seven clusters of lymphocytes,

including helper T cells (clusters 0, 1, and 6), regulatory T cells

(cluster 2), cytotoxic CD8 T cells (cluster 3), and NK cells (cluster

5). T cells of cluster 4 displayed a mixed phenotype with both

helper T cell and cytotoxic T cell characteristics (CD3, CD4,

CD8, and GZMK); we refer to them as ‘‘other T cells’’

(Figures 4A and S4B). Helper T cells of cluster 0 comprised

lesional and non-lesional skin cells, whereas cells of cluster 1

were predominantly derived from lesional skin (Figure 4A). We

thus refer to cluster 0 as homeostatic helper T cells and to cluster

1 as GA helper T cells. These observations suggest that granu-

lomas contain a variety of T cell subsets, with GA helper T cells

constituting a granuloma-specific cell subset.

We compared the transcriptional profiles of GA helper T cells

with those of homeostatic T cells. Higher expression in GA helper

T cells was observed for genes encoding transcription factors

(RORC, STAT1, STAT5A, and TBX21), cytokines and cytokine re-

ceptors (CSF2, IFNG, and IL23R), and chemokines and
acrophage gene signatures. Top: localization of spot clusters (from Figure 2E).

s (from C) in the same sample.

(E) and (G) are from 12 independent patients.



Figure 4. T cells with a Th17.1 phenotype are enriched in granulomas

(A) UMAP of scRNA-seq transcriptome profiles of lymphoid cells from lesional and non-lesional skin. Left: color-coded and annotated based onmarker genes and

preferential association with lesional (cluster 1) or non-lesional skin (cluster 0). Right: color-coded by sample origin.

(B) Violin plot showing the expression of selected genes in different lymphoid cell subsets.

(C) Volcano plot showing differential gene expression for transcription factors in GA helper T cells, compared with homeostatic helper T cells.

(D) Spatial transcriptomics data of one representative patient analyzed for granuloma-specific gene regulation in T cells. Top: localization of spot clusters (as in

Figure 2E). Bottom: expression of the transcription factor genes RORC and TBX21 (encoding T-bet) in the same sample.

(E) Immunofluorescence protein staining of skin granulomas for CCR6 (pink; PE), CD3 (light blue; AF750), and DAPI (dark blue). Scale bars: 500 mm (main panel)

and 50 mm (zoom-in panels). Data in (A)–(D) are from 12 independent patients.

See also Figure S4 and Tables S3 and S4.
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chemokine receptors (CCL20, CCR6, and CXCR3) (Figures S4C

and S4D; Table S3). The lymphotoxin beta gene (LTB) was also

more highly expressed, consistent with previous in vivo studies

that linked ectopic expression of lymphotoxins to lymphoid-like

structures in inflamed tissue.55,56 GA helper T cells in cluster 1

showed highermRNA expression of the immune regulatory genes

PDCD1 (encoding PD-1) and CTLA4, indicative of chronic T cell

stimulation and consequent T cell exhaustion. Moreover, we

observed increased expression of genes involved in cell lysis
(CTSH, GZMA, and GZMH), suggesting that these GA helper

T cells may have cytotoxic properties (Figure S4C). Gene set

enrichment analysis, comparing cluster 0 with cluster 1, identified

upregulation of pathways associated with IFN-g signaling, glycol-

ysis, TCR signaling, leukocyte migration, and Notch signaling, as

well as downregulation of pathways involved in autophagy, corti-

costeroid response, and cell division (Figure S4E; Table S4).

The GA helper T cells thus appear to have acquired a chroni-

cally activated Th17.1 phenotype. Th17.1 cells are characterized
Immunity 56, 289–306, February 14, 2023 295
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by IL-23 and IL-12 driven conversion from Th17 toward a Th1

phenotype.57,58 These cells activate neutrophils and other

myeloid cells by producing high amounts of IFN-g (IFNG) and

GM-CSF (CSF2) (Figure 4B). Th17.1 cells depend on the joint ac-

tivity of transcription factors T-bet (encoded by TBX21) and

Rorgt (encoded by RORC),57 which were indeed co-expressed

in GA helper T cells (Figure 4C) and granulomatous skin (Fig-

ure 4D). Th17.1 cells are recruited to the site of inflammation

via the CCL20-CCR6 axis, where CCL20 is produced by myeloid

cells and its receptor CCR6 is expressed on the T cells (Fig-

ure 4B). Immunofluorescence protein staining detected CCR6

expression on CD3+ T cells that were localized inside the granu-

lomas (Figures 4E and S4F).

Our results indicate that persistent stimulation within granu-

lomas leads to the differentiation of helper T cells toward a

Th17.1 phenotype that promotes macrophage activation and

inflammation. Th17.1 cells were previously observed in bron-

choalveolar lavage fluid from patients with lung sarcoid-

osis,22,59,60 indicating similar T cell responses in granulomas of

other organs. The spatial organization of CD3+ T cells in granu-

lomas and the expression of LTB by GA helper T cells suggest

parallels with the formation of tertiary lymphoid structure (TLS)

generation, despite certain differences such as the lack of B cells

and plasma cells in granulomas (Figures 2A–2C). In summary,

GA helper T cells appear to induce macrophage activation and

perform cytotoxic functions in an MHC class II-restricted fashion

(complementary to CD8 cytotoxic T cells61), ultimately leading to

T cell exhaustion in this inflammatory environment.

Structural cells promote local inflammation and tissue
remodeling in granulomas
Structural cells, such as endothelial cells and fibroblasts, provide

shape and metabolic support to tissues and organs.62,63

These cell types are characterized by organ-specific gene

expression and contribute broadly to immune regulation and

response to pathogens.64 In granuloma formation, fibroblasts

are thought to promote fibrosis in response to inflammatory trig-

gers, while endothelial cells are frequently observed in the pe-

riphery of granulomas where they provide lymphatic and blood

microvasculature.65

Among the endothelial cells, we identified two large (cluster

0 and 1) and three smaller subpopulations (Figure S5A). Endo-

thelial cells were transcriptionally more similar between lesional

and non-lesional skin than it was the case for macrophages or

T cells (Figure 2A). Nevertheless, cluster 0 was primarily associ-

ated with lesional skin (‘‘GA endothelial cells’’), whereas cluster 1

was enriched in non-lesional skin (‘‘homeostatic endothelial

cells’’) (Figure S5B). Differential gene expression analysis re-

vealed subtle differences indicative of GA endothelial cells

contributing to ECM remodeling, focal adhesion, and cell migra-

tion from the circulation into the granulomas (Figure S5C;

Table S3).

Among the fibroblasts, we identified three clusters (Figure 5A).

Cluster 0 was predominantly associated with non-lesional skin,

cluster 1 was dominated by lesional skin, and cluster 2 contained

a mix of cells from both sources (Figure S5D). We thus refer to

cluster 0 as ‘‘homeostatic fibroblasts’’ and to cluster 1 as ‘‘GA

fibroblasts,’’ while cluster 2 (‘‘other fibroblasts’’) was excluded

from further analysis. In GA fibroblasts, we observed higher
296 Immunity 56, 289–306, February 14, 2023
expression of the oncostatin M receptor gene (OSMR), which

promotes the expression of proinflammatory factors,66 and of

FAP, PDPN, and THY1, which are also expressed in fibroblasts

isolated from chronically inflamed tissues67–69 (Figures 5B and

S5E; Table S3). Overall, we observed greater cellular heteroge-

neity in GA fibroblasts than in homeostatic fibroblasts, in part

due to the presence of two distinct subsets among GA fibro-

blasts (Figures 5B and 5C).

First, ‘‘immune-interacting fibroblasts’’ expressed genes

involved in cell recruitment and retention (CCL19, CXCL9,

CXCL10, and VCAM-1), attraction and activation of macro-

phages (CCL5, CHI3L1, and CHI3L2), antigen presentation

(HLA-A, HLA-B, HLA-C, HLA-F, and CD74), and TGF-beta

signaling (TGFB1, TGFB3, and TGFBI) (Figures 5B and S5E).

Consequently, gene set enrichment identified an upregulation

of immune functions and cellular communication (Figure S5F;

Table S4).

Second, ‘‘tissue-remodeling fibroblasts’’ were characterized by

high expression of genes that encode components of the ECM

(collagen genes, FN1, LOXL1, POSTN, SPARC, and TNC) as

well as regulators of the ECM (MMP9 and TIMP1-3) and of angio-

genesis (VEGFA and VEGFC) (Figures 5B and S5E). We also de-

tected increased expression of WNT2 and RUNX2, two genes

involved in cell migration, tumor invasion, and proliferation70,71

(Figure 5B). Thus, we observed an enrichment for the biological

process of collagen and proteoglycan formation, ECM formation,

and lymph angiogenesis (Figure S5F).

In lesional skin, GA fibroblasts located adjacent to granulomas

showed high mRNA expression of the proinflammatory marker

FAP (Figures 5D and S5G). Homeostatic fibroblasts were

detected outside granulomas, whereas gene signatures of im-

mune-interacting fibroblasts were detected in close proximity

of these structures, and tissue-remodeling fibroblasts were pre-

dominantly located inside granulomas, suggesting that ECM

constituents are secreted within these inflamed structures (Fig-

ure 5D). The importance of ECM remodeling in granulomas

was further supported by high expression of collagen IV, both

in tissue-remodeling fibroblasts (Figures 5D and S5H) and in

granuloma-surrounding endothelial cells (Figures S5C and

S5H), and by macrophage-specific mRNA expression of metal-

loproteinases (MMP9 and MMP12) that are known to degrade

ECM proteins including collagen IV (Figures 5B and S5E). A dy-

namic equilibrium of matrix deposition and degradation may

facilitate lymphocyte trafficking while enhancing immune cell

adhesion and retention within granulomas.

To identify transcriptional regulators in fibroblasts that

contribute to granuloma formation, we compared GA fibroblasts

with homeostatic fibroblasts (Figure 5E). GA fibroblasts were

characterized by the expression of immune-associated tran-

scription factors including IRF8, RELB, and STAT2. We also

detected higher expression ofSPI1 (coding for PU.1), which con-

trols fibroblast polarization and pro-fibrotic functions.72

Together with BATF3 and IRF8 (both more active in GA fibro-

blasts), PU.1 promotes re-programming of fibroblasts into anti-

gen-presenting cells.73 Moreover, analysis of the two GA fibro-

blast subsets identified higher mRNA levels of transcription

factors associated with development (HOXC6, HOXC9, NR2F2,

and TBX15) and IFN response (IRF3, IRF5, IRF8, IRF9, and

STAT2) in immune-interacting compared with tissue-remodeling
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Figure 5. Structural cells promote local inflammation and tissue remodeling in granulomas

(A) UMAP of scRNA-seq transcriptome profiles of fibroblasts from lesional and non-lesional skin, with color-coded cell clustering annotated based on preferential

association with lesional (cluster 1) or non-lesional skin (cluster 0).

(B) Clustered scRNA-seq heatmap for differentially expressed genes between granuloma-associated (GA) fibroblasts and homeostatic fibroblasts.

(C) UMAP of scRNA-seq transcriptome profiles as in (A) but color-coded and annotated with differential gene signatures from (B).

(D) Spatial profiling data of one representative patient annotated with fibroblast subsets. Top left: immunofluorescence protein staining of skin granulomas for

FAP (red; APC) and DAPI (dark blue); the basal membrane between dermis and epidermis is indicated with a dotted line. Top center: localization of spot clusters

(as in Figure 2E). Top right, bottom left, and bottom center: localization of gene signatures (fromC) in the spatial transcriptomics data for the same sample. Bottom

right: immunofluorescence protein staining of the same sample for FAP (red; APC), collagen IV (yellow; PE), and DAPI (dark blue). Scale bars: 500 mm.

(E) Volcano plot showing differential gene expression of transcription factors in fibroblast subsets. Top: comparison of GA fibroblasts and homeostatic fibroblasts

(from A). Bottom: comparison of immune-interacting fibroblasts and tissue-remodeling fibroblasts (from D). Data in (A)–(C) and (E) are from 12 independent patients.

See also Figure S5 and Tables S3 and S4.
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fibroblasts. IRF5 in particular is known to promote inflammatory

macrophage polarization.74 Differential expression of these tran-

scription factors is likely to contribute to the observed innate-like

functions and the inflammatory phenotype in skin granulomas.

Our results highlight fibroblasts and their role in ECM remodel-

ing as promising therapeutic targets in granulomatous diseases.

We identified two types of GA fibroblasts: immune-interacting fi-

broblasts that are involved in the attraction, activation, and

retention of immune cells; and tissue-remodeling fibroblasts

that contribute to the shape and structure of granulomas. More-

over, for endothelial cells we uncovered a characteristic spatial

distribution inside granulomas. This is reminiscent of the forma-

tion of ‘‘high endothelial venules’’ that facilitate lymphocyte entry

into lymphoid structures.75 Together, these results underline

the contribution of structural cells to granuloma formation and

maintenance.

Cellular crosstalk of immune and structural cells
defines the granuloma structure
Our single-cell and spatial profiling identified multiple subsets of

macrophages (Figure 3), T cells (Figure 4), and fibroblasts (Fig-

ure 5) that are localized inside granulomas. To understand the

interplay of these cell types in granuloma formation, we used

this dataset to predict cell-cell interactions based on ligand-re-

ceptor expression76 and to analyze the cellular crosstalk (Fig-

ure S6A; Table S5).

GAmacrophages, T cells, and fibroblasts expressed numerous

chemokines and chemokine receptors that predict cell-cell inter-

actions (e.g.,CXCR3withCXCL9,CXCL10,CXCL11, andCCL19;

CCR5 and CCR1 with CCL5; and CCR7 with CCL19). We also

confirmed several inflammation-linked interactions discussed in

previous sections (CCR6 with CCL20; GMCSFR with CSF2; and

CSF1R with CSF1), which were significantly enriched (Figure 6A;

Table S5) and observed inside granulomas, based on the spatial

transcriptomics data (Figures 6A, 6B, 6D, and S6B).

Many interactions were cell-type specific. GA helper T cells

expressed IFNG that acts on IFNGR1-expressing cells such as

macrophages and structural cells (Figure 6A; Table S5). GA help-

er T cells also expressed LTB, whereas the corresponding re-

ceptor LTBR was expressed in macrophages, fibroblasts, and

endothelial cells; this interaction wasmost prevalent inside gran-

ulomas (Figures 6A and S6B). In lymphoid organ formation, LTB

leads to the secretion of VEGF-C by fibroblasts, promoting

endothelial cell development and inducing expression of adhe-

sion molecules on endothelial cells.77 Indeed, we detected LTB

pathway activity in GA fibroblasts, where it appears to induce

vascular endothelial growth factors (VEGFA and VEGFC) and

various collagens, which can promote angiogenesis and

vascular supply by acting on VEGFR1 (FLT1), VEGFR2 (KDR),

and integrins in endothelial cells (Figure S6B). Furthermore, we

detected PECAM1 (coding for CD31) expression in endothelial

cells, which predicts interactions with CD38-expressing GA

macrophages and GA helper T cells within granulomas (Fig-

ure 6B), and this interplay was confirmed by immunofluores-

cence protein staining (Figure 6C).

Beyond cellular crosstalk mediated by secreted factors, we

also identified gene pairs that control structural interactions

and adhesional support to neighboring cells.64 Various integrins

were expressed in fibroblasts (CD44 and ITGA9), T cells (ITGA4,
298 Immunity 56, 289–306, February 14, 2023
coding for integrin a4, also called CD49d), and endothelial cells

(ITGAV, ITGA5, and ITGA9), whichmediate binding to ECM com-

ponents (FN1, SPP1, and TNC) and collagens (Figures 6D and

S6B; Table S5). For example, the integrin aV (ITGAV), which is

expressed by endothelial cells and macrophages (Table S5),

promotes interstitial migration along fibronectin fibers.78 By

contrast, ITGA4 is highly expressed in GA helper T cells; it codes

for a protein that mediates exfiltration of leukocytes from the

vasculature into tissue and binds TNC, VCAM-1, and osteopon-

tin (SPP1).79 Osteopontin signaling also promotes differentiation

of Th1 and Th17 cells and prolongs their survival.80 These inter-

actions are supported by expression of SPP1-CD44 and FN1-

a4b1 inside granulomas (Figures 6A and 6D), which we validated

by immunofluorescence protein staining (Figure 6E). These re-

sults suggest that aberrant production of ECM components by

fibroblasts and macrophages leads to ECM remodeling, which

is expected to contribute to the proinflammatory environment

of granulomas andmay create tracks for cell migration that guide

immune cells inside the granulomas.

We also observed significant enrichment of several immune

regulatory mechanisms. First, we detected high expression of

DPP4 in GA fibroblasts and GA helper T cells (Figure 6A). This

gene encodes CD26, a cell surface enzyme that induces post-

translational modification of chemokines, such as CXCL9 and

CXCL10, and alters leukocyte trafficking.81 Indeed, we observed

frequent co-localization of DPP4 and CXCL10 expression inside

granulomas (Figure S6B). Second, the immune regulatory gene

CTLA4 was highly expressed in T cells, and its interaction part-

ners CD80 and CD86 were expressed on GA macrophages

within granuloma structures (Figures 6A and S6B). Third, high

expression of PDCD1 (which encodes the immune checkpoint

receptor PD-1) and CD274 (which encodes the corresponding

ligand PD-L1) was observed inside granulomas (Figure 6A),

and the co-localization of the corresponding proteins was

confirmed by immunofluorescence protein staining (Figure S6C).

PD1-expressing T cells and PD-L1-expressing macrophages

were increased in granulomas, compared with non-inflamed

skin (Figure S6D), which may over time contribute to the exhaus-

tion of T cells82 inside granulomas. Finally, IL23 and IL23R were

also highly expressed in granulomas and may help create a

cellular environment that favors the Th17.1 cell phenotype

(Figures 6A and S6B).

Our data thus predict a dense mesh of cell-cell interactions

between macrophages, T cells, and structural cells inside gran-

ulomas, which likely contributes to the proinflammatory environ-

ment and to the attraction and retention of immune cells that

drive sarcoidosis pathology. Aggregating the observations

from our study into an overview of the cellular and molecular

properties of granulomas (Figure 7A), we highlight three regula-

tory processes as critical for granuloma formation: (1) angiogen-

esis and immunometabolism, (2) cytokine and chemokine

signaling, and (3) ECM remodeling.

Granulomas share key characteristics with TLSs
Our data uncovered similarities between granulomas (Fig-

ure 7A) and TLSs—which are lymphoid aggregates in non-

lymphoid tissues that form in the vicinity of tumors or sites of

infection and contribute to an effective immune response.75

We validated the global transcriptional similarity between
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Figure 6. Cellular crosstalk of immune and structural cells defines the granuloma structure

(A) Bar plot showing co-expression for selected ligand-receptor pairs based on the spatial transcriptomics data for granulomatous dermis (green) and unaffected

dermis (orange). ****p < 0.0001.

(B) Spatial profiling data for one patient analyzed for ligand-receptor-mediated cell-cell interactions. Top: localization of spot clusters (as in Figure 2E). Bottom:

gene expression based on the spatial transcriptomics data for the ligand-receptor pair CD38 (red) and CD31 (blue).

(C) Immunofluorescence protein staining of skin granulomas for CD68 (red; APC), CD3 (light blue; AF750), CD38 (yellow; PE), CD31/PECAM1 (green; FITC), and

DAPI (dark blue). White arrows indicate endothelial cells. Scale bars: 500 mm (main panel) and 50 mm (zoom-in panels).

(D) Spatial profiling data of a second patient analyzed for ligand-receptor-mediated cell-cell interactions. Left: localization of spot clusters (as in Figure 2E). Center

and right: gene expression based on the spatial transcriptomics data for the ligand-receptor pairs SPP1 (red) and CD44 (blue) as well as FN1 (red) and in-

tegrin a4b1.

(E) Immunofluorescence protein staining of skin granulomas for CD68 (red; APC), CD3 (light blue; PE-TR), SPP1 (light pink; AF750), ITGA4 (green; FITC), and DAPI

(dark blue). Scale bars: 500 mm (main panel) and 50 mm (zoom-in panels). Data in (A) is from 12 independent patients.

See also Figure S6 and Table S5.
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granulomas and TLSs by investigating an established TLS

signature comprising 12 chemokines83 and found it highly ex-

pressed in granulomas (Figures 7B and 7C). Specifically,

CCL5, CXCL9, and CXCL10 were upregulated in GA macro-

phages, CCL4 and CCL5 in GA T cells, and CCL5, CCL19,

CXCL9, CXCL10, as well as CXCL11 were upregulated in GA fi-

broblasts (Figure 7D). We also observed granuloma-specific

activity of the CCL19-CCR7/CXCR3 pathway, which is involved

in T cell homing to lymphoid organs (Figures 7E and S7A). We
further validated this observation with two additional TLS sig-

natures84,85 and again found high similarity between granu-

lomas and TLSs (Figures S7B–S7D).

These results suggest that granulomas employ some of the

same biological processes that underlie TLS formation. Yet, we

also observe characteristic differences. For example, helper

T cells in granulomas foster macrophage activation rather than

attenuate inflammation as observed in cancer (Figure S7E). We

therefore conclude that granuloma formation constitutes a
Immunity 56, 289–306, February 14, 2023 299



Figure 7. Granulomas share key characteristics with tertiary lymphoid structures

(A) Schematic of themolecular and cellular architecture of granulomas, based on single-cell and spatial profiling of lesional and non-lesional skin from 12 patients

with sarcoidosis.

(B) Spatial transcriptomics data of one representative patient analyzed for characteristics of lymphoid organs. Left: localization of spot clusters (as in Figure 2E).

Right: expression of a published 12-chemokine gene signature associated with tertiary lymphoid structures (TLSs).83

(C) Expression of the same gene signature as in (B) for the spatial transcriptomics spot clusters. Left: dot plot showing the expression of the signature’s individual

genes for each of the spot clusters (from Figure 2D). Right: violin plot showing the expression distribution of the gene signature across spot clusters.

(D) Dot plot showing the expression of the signature’s individual genes for each of the scRNA-seq cell clusters (from Figure 2A).

(E) Gene expression based on the spatial transcriptomics data (same patient as in B) for the signature genes that encode ligands (red: CCL19, CXCL9, and CCL5)

and receptors (blue: CCR3, CCR7, and CCR5).

(F) Therapeutic targeting of extracellular matrix remodeling in a mouse granuloma model. Top left: schematic of the granulomamodel. TSC2fl/fl CD11c Cre+ mice

received the MMP12 inhibitor FPA-014 by oral gavage (n = 7 with 10 mg/kg; n = 11 with 30 mg/kg; n=13 with vehicle control). TSC2fl/fl CD11c Cre� mice (n = 6)

were used as genetic controls. Right and bottom: lesion severity assessed by the thickness of the front paw, hind paw, and tail. For each mouse, the average of

five individual measurements was taken. The plots show mean values across all treated mice, with error bars representing the standard error of the mean of five

independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data in (C) and (D) are from 12 independent patients.

See also Figure S7 and Table S6.
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deregulated and aberrant form of lymphoid organ, utilizing

similar regulatory mechanisms but failing to recapitulate the tight

control of physiologically normal TLSs.

To generalize our observations beyond the skin, we compared

bulk RNA-seq data of granulomas in lung,33 orbital adipose tis-

sue, lacrimal gland tissue,34 and progressive fibrotic lung granu-

loma tissue35 with our scRNA-seq analysis of skin granulomas.

We observed shared expression of regulator genes expressed

across multiple cell types, such as CXCR4, HLA-DRB1, HLA-

DQA1, JUNB, LYZ, PARP14, SOCS3, SOD2, and TYMP. Certain

cell-type-specific geneswere also shared bygranulomas in other

tissue, including genes involved in Th17.1 signaling (CSF2,

CSF2R, and STAT1), macrophage activation (CHIT1, LYZ, and

CSF1R), TLS formation (CCL5, CCL18, andCXCL9), andECM re-

modeling (ADAMDEC1, MMP9, MMP12, CHI3L1, SPP1, and

POSTN) (Figure S7F). To assess whether these processes were

specific to GA inflammation or broadly shared with other inflam-

matory conditions, we compared our gene expression data with

gene signatures of idiopathic pulmonary fibrosis and non-spe-

cific interstitial pneumonia (NSIP). We did not observe strong

overlaps, indicating that the observed regulatory mechanisms

are indeed specific to GA inflammation (Figure S7G).

Exploring the translational and future therapeutic potential of

our observations, we pharmacologically targeted thematrixmet-

alloproteinase MMP12 with the investigational drug FPA-014,

using a mouse model of granuloma formation (Figure 7F).12

The MMP12 gene, which codes for macrophage elastase, was

expressed in granulomas from several organs (Figure S7F) and

strongly upregulated in GA macrophages in our dataset

(Figures 3D and 3G). MMP12 may play a role in GA ECM forma-

tion and immune cell activation, and its expression has been

shown to correlate with clinical progression in lung granu-

lomas.33,47 Treating mice with the MMP12 inhibitor FPA-014

over a 4-week period resulted in significantly reduced granu-

loma-induced skin swelling of the extremities and the tail,

compared with control treatment (Figure 7F). These results sup-

port a functional contribution of matrix metalloproteinases in

granuloma formation and maintenance, likely mediated by their

role as ECM modulators and immune cell activators.

In summary, our study mapped the granuloma-specific pro-

files of innate, adaptive, and structural cells with single-cell

and spatial resolution. We identified macrophages with an acti-

vated phenotype and altered cell metabolism at the core of the

granulomas, shaping an inflammatory microenvironment and at-

tracting other immune cells and structural cells. GA helper T cells

with a Th17.1 phenotype were found to interact with and

enhance macrophage activation by secreting IFN-g and GM-

CSF. Fibroblasts appear to shape the structure of granulomas

by regulating the ECM together with macrophages. These three

cell types account for the vastmajority of cells in granulomas and

are predicted to maintain close cellular crosstalk. They collec-

tively create an aberrant form of TLSs that is fueled by persistent

inflammation and immune cell activation (Figure 7A).

DISCUSSION

Granuloms have an important role in pathogen control, but their

inappropriate formation and maintenance can give rise to

chronic diseases such as sarcoidosis. Here, we charted the
cellular and molecular landscape of granulomas of the skin,

combining scRNA-seq, spatial transcriptomics, immunofluores-

cence protein staining, and integrative bioinformatics for 12 well-

characterized patients with sarcoidosis. We characterized the

major GA cell types and subsets, and we mapped the spatial

and regulatory landscape of cell-cell interactions between

macrophage, T cells, and fibroblasts.

GA macrophages were characterized by metabolic reprog-

ramming toward increased glycolysis and oxidative phosphory-

lation—metabolic pathways involved in acute inflammation as

well as tissue regeneration and remodeling.86 We additionally

observed upregulation of mTOR signaling, consistent with a

recent mouse model of sarcoidosis that is based on induced

mTOR activity.12 Both in our human data and in the mouse

model, macrophages downregulated apoptosis signaling, which

may contribute to granuloma persistence and chronic inflamma-

tion. Moreover, macrophages and fibroblasts jointly contribute

to a granuloma-specific microenvironment resembling that of

solid tumors, with hypoxia-related gene pathways indicating an

acidic environment and enhanced metabolism.87

T cells constitute the second major cell type in granulomas.

We found high expression of integrins regulating activation and

cell migration of T cells inside granulomas, and we detected

cytotoxic properties of helper T cells. Furthermore, we observed

helper T cells with a Th17.1 phenotype, consistent with previous

observations.22,59 These Th17.1 cells produce high amounts of

IFN-g, GM-CSF, and LTB, which contribute to the continued

activation of immune and structural cells inside granulomas.

Fibroblasts are the most prevalent non-hematopoietic cell

type in granulomas. We identified two subsets of GA fibroblasts:

immune-interacting fibroblasts and tissue-remodeling fibro-

blasts. The immune-interacting fibroblasts appear to act like a

non-hematopoietic immune cell64,88 and contribute broadly to

the activation, attraction, and retention of both immune and

structural cells in granulomas. By contrast, the tissue-remodel-

ing fibroblasts promote ECM remodeling, together with GAmac-

rophages, thereby shaping the characteristic granuloma

microenvironment.89

Collectively, our single-cell and spatial analyses uncovered

similarities between granulomas and lymphoid organs (most

notably TLSs), both in their spatial organization and the ex-

pressed chemokine profile. This similarity is not unexpected

given that biological processes underlying granuloma formation,

such as infections and chronic inflammation, are also known to

trigger the formation of TLSs.75 While TLSs typically have a

defined cause and subside their activity once this cause is

resolved,85 we propose that granulomas constitute a form of

aberrant lymphoid organ that uses similar mechanisms as

TLSs to form but lacks self-limitation, which makes it prone to

become chronic and highly damaging to the host.

While our dataset focuses on granulomas of the skin, we vali-

dated and extended our results to granulomas in other organs,

based on bulk RNA-seq datasets. Key mediators of granuloma

formation were shared across organs, and we selected one

such protein—the matrix metalloproteinases MMP12—for func-

tional validation. We found that pharmacological inhibition in a

mouse model of sarcoidosis interfered with granuloma forma-

tion, consistent with genetic evidence in a separate mouse

model.47 We anticipate that our dataset and methodology can
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help identifying promising strategies for interfering with granu-

loma formation in sarcoidosis and potentially with other granu-

lomas of non-infectious etiology.

In summary, we found that granulomas repurpose transcrip-

tion regulatory programs of normal lymphoid organ develop-

ment and are driven by three key processes: changes of immu-

nometabolism, altered cytokine and chemokine pathways, and

regulation of integrins and ECM. Our analyses establish an inte-

grated molecular and spatial landscape of non-infectious gran-

ulomas and provide a rich dataset for therapeutic targeting of

the biological processes underlying granuloma formation.

Limitations of the study
While this study provides a thorough characterization of the

in vivo architecture of human granulomas, it is subject to certain

limitations. First, sarcoidosis is known to show great variability

across individuals,19 which our relatively small patient cohort

cannot fully reflect. Second, we focused on granulomas of the

skin, with validation against bulk RNA-seq data of granulomas

in four other tissues. It will be interesting in the future to dissect

the interplay of granulomas across different tissue types in more

detail. Third, the role of ECM remodeling in sarcoidosis remains

contradictory. Our pharmacological targeting of matrix metallo-

proteinases provides an initial functional validation of inhibited

ECM remodeling as a potential therapeutic approach. In

contrast, interfering with ECM components in a murine tubercu-

losis granuloma model has been shown to aggravate the dis-

ease.90 Clearly, additional work in several preclinical models

will be needed to better assess the future potential for treating

different granuloma etiologies.
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A., Fernández Navarro, J., and Lundeberg, J. (2020). Single-cell and

spatial transcriptomics enables probabilistic inference of cell type

topography. Commun. Biol. 3, 565. https://doi.org/10.1038/s42003-

020-01247-y.

106. Cecchini, M.J., Hosein, K., Howlett, C.J., Joseph, M., and Mura, M.

(2018). Comprehensive gene expression profiling identifies distinct and

overlapping transcriptional profiles in non-specific interstitial pneumonia

and idiopathic pulmonary fibrosis. Respir. Res. 19, 153. https://doi.org/

10.1186/s12931-018-0857-1.

107. Ji, A.L., Rubin, A.J., Thrane, K., Jiang, S., Reynolds, D.L., Meyers, R.M.,

Guo, M.G., George, B.M., Mollbrink, A., Bergenstråhle, J., et al. (2020).
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Department of Dermatology

N/A
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PermaFluor Thermo Fisher Scientific Cat#: TA-030-FM
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MMP12 inhibitor FPA-014 Foresee Pharmaceuticals N/A
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Deposited data

De-identified patient scRNA-seq

and spatial transcriptomics data

This paper GEO Accession: GSE192461

Raw scRNA-seq and spatial

transcriptomics data

This paper EGA Accession: EGAS00001006970

Raw microscopy images This paper Zenodo archive: https://doi.org/10.5281/

zenodo.7584110

Experimental models: Organisms/strains

Mouse: TSC2fl/flCD11c Cre+ Weichhart Lab, Medical University

of Vienna

JAX: 027458

JAX: 008068

Oligonucleotides

HTO cDNA PCR additive primer: v2:

GTGACTGGAGTTCAGACGTGTGC
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Biolegend: https://www.biolegend.com/

en-us/protocols/totalseq-a-antibodies-

and-cell-hashing-with-10x-single-cell-3-

reagent-kit-v3-3-1-protocol

HTO_add_v2

SI-PCR primer: AATGATACGGCGA

CCACCGAGATCTACACTCTTTCCC

TACACGACGC*T*C

Biolegend: https://www.biolegend.com/

en-us/protocols/totalseq-a-antibodies-

and-cell-hashing-with-10x-single-cell-3-

reagent-kit-v3-3-1-protocol

10x_SIPCR
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ATACGAGATCGAGTAAT GTGACT

GGAGTTCAGACGTGT*G*C

Biolegend: https://www.biolegend.com/

en-us/protocols/totalseq-a-antibodies-

and-cell-hashing-with-10x-single-cell-3-

reagent-kit-v3-3-1-protocol

10x_D701

10x_D702: CAAGCAGAAGACGGC

ATACGAGATTCTCCGGAGTGACT

GGAGTTCAGACGTGT*G*C

Biolegend: https://www.biolegend.com/

en-us/protocols/totalseq-a-antibodies-

and-cell-hashing-with-10x-single-cell-3-

reagent-kit-v3-3-1-protocol

10x_D702

10x_D703: CAAGCAGAAGACGGC

ATACGAGATAATGAGCGGTGACT

GGAGTTCAGACGTGT*G*C

Biolegend: https://www.biolegend.com/

en-us/protocols/totalseq-a-antibodies-

and-cell-hashing-with-10x-single-cell-3-

reagent-kit-v3-3-1-protocol

10x_D703

10x_D704: CAAGCAGAAGACGGC

ATACGAGATGGAATCTCGTGACT

GGAGTTCAGACGTGT*G*C

Biolegend: https://www.biolegend.com/

en-us/protocols/totalseq-a-antibodies-

and-cell-hashing-with-10x-single-cell-3-

reagent-kit-v3-3-1-protocol

10x_D704

Software and algorithms

Graphpad Prism v9.3.1 GraphPad Software https://www.graphpad.com/scientific-

software/prism/

Inkscape v1.2 Inkscape https://inkscape.org
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TissueQuest Software v6 Tissue Gnostics https://tissuegnostics.com/products/

single-cell-analysis/tissuequest

Seurat v3 Stuart et al.91 https://github.com/satijalab/seurat

SCANPY v1.8.1 Wolf et al.92 https://github.com/scverse/scanpy/tree/

2e98705347ea484c36caa9ba10de1987b09081bf

scVI v0.9.0 Lopez et al.93 https://docs.scvi-tools.org/en/0.15.1/user_guide/

models/scvi.html

Limma v3.46.0 Ritchie et al.94 https://bioconductor.org/packages/release/bioc/

html/limma.html

Sctransform v0.3.2 Hafemeister and Satija95 https://github.com/satijalab/sctransform

CellPhoneDB v2.1.7 Efremova et al.96 https://github.com/ventolab/CellphoneDB

SCENIC v1.1.2 Aibar et al.97 https://github.com/aertslab/SCENIC

pySCENIC v0.11.2 Van de Sande et al.98 https://github.com/aertslab/pySCENIC

Cell Ranger v3.0.2 10x Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/overview/welcome

Space Ranger v1.2.0 10x Genomics https://support.10xgenomics.com/spatial-gene-

expression/software/overview/welcome

Loupe Browser v5.0.0 10x Genomics https://www.10xgenomics.com/products/loupe-

browser/downloads

Source code This paper Zenodo archive: https://doi.org/10.5281/

zenodo.7523056

Other

Digital thickness gauge K€afer FD 50/25

Resource website for the sarcoidosis

publication

This paper http://granuloma-map.bocklab.org
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Georg

Stary (georg.stary@meduniwien.ac.at).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The scRNA-seq and spatial transcriptomics data have been deposited in GEO in the form of countmatrices that are not person-

ally identifiable and are publicly available. The accession number is listed in the Key Resources Table. An overview of all data is

provided by the following website: http://granuloma-map.bocklab.org. The raw scRNA-seq and spatial transcriptomics data

will be available from the European Genome-phenome Archive as controlled access. The accession number is listed in

the Key Resources Table. To access the raw sequencing data, interested researchers need to apply via a data access com-

mittee and commit themselves not to pursue re-identification of the study participants, in compliance with legal, regulatory, and

ethical requirements. The raw imaging data have been deposited in Zenodo and are publicly available. The DOI is listed in

the Key Resources Table.

d A stable long-term archive of the source code underlying the presented analyses has been deposited in Zenodo and is publicly

available. The DOI is listed in the Key Resources Table. The source code is also available from the following website: http://

granuloma-map.bocklab.org.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Patients and sample collection
This study included patients diagnosed with active chronic cutaneous sarcoidosis who enrolled in an interventional clinical trial at the

Medical University of Vienna (EudraCT Number: 2017-004930-27). All patients participated voluntarily and provided written informed
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consent. The research complies with national law and has been approved by the ethics commission of the Medical University of

Vienna (ECS 2242/2017). Only samples collected at baseline of the clinical trial (i.e., before any experimental intervention) were

used in this study. Samples were taken as 6 mm punch biopsies of lesional and non-lesional skin (the latter with no signs of inflam-

mation). Sarcoidosis was histologically and clinically confirmed by trained dermatologists. Fresh biopsies were divided into two parts

and immediately digested according to a collagenase IV skin digestion protocol99 to generate single-cell suspensions, or embedded

in optimal cutting temperature (OCT) compound for experiments requiring cryosectioning. Patient characteristics, study inclusion

criteria, and sample properties are documented in Table S1.

Flow cytometry and cell sorting
Single-cell suspensions of lesional and non-lesional skin were stained for surface markers as previously described31 and viable

CD45+ and CD45- cells were sort-purified on a BD Biosciences FACS Aria III using FACS Diva software. Detailed information on

the antibodies used in this study (clone, dilution, etc.) are providedin the Key Resources Table.

Single-cell RNA sequencing
Single-cell RNA-seq (scRNA-seq) libraries were generated using the Chromium Controller and the Next GEM Single Cell 3’ Reagent

Kit (v3 or v3.1, 10x Genomics) according to the manufacturer’s instructions. Single cell suspensions obtained from lesional and non-

lesional skin were incubated with commercially available DNA-labeled antibodies (TotalSeq-A, Biolegend) together with an antibody

against CD45 and a cell viability dye at 4 �C for 30 min. Following incubation, cell suspensions were washed three times with PBS

containing BSA. After the final wash, cell suspensions were resuspended in PBS containing BSA and a viability dye for discrimination

between live and dead cells. Next, 10,000 viable CD45+ cells and 10,000 viable CD45- cells were sort-purified from lesional and non-

lesional skin. Those four cell fractions were pooled for processing as a single sample according to the manufacturer’s protocol, while

the antibody-linked barcodes enabled sample-specific demultiplexing of the sequencing data. Libraries were sequenced by the

Biomedical Sequencing Facility at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, using

the Illumina HiSeq 3000/4000 platform, except for two libraries that were sequenced on the NovaSeq 6000 platform: (P12_V06 and

P13_V06). Raw sequencing data were pre-processed and demultiplexed using Cell Ranger (v3.0.2, 10x Genomics). Sequencing sta-

tistics are provided in Table S2.

Spatial transcriptomics
Spatial transcriptomic libraries were generated using the Visium Spatial Gene Expression Reagent Kit (10x Genomics). Skin biopsies

were embedded in OCT and stored as sectioning blocks at -80 �C until further processing. Before undertaking the full protocol, a

tissue optimization experiment was performed with the Visium Spatial Tissue Optimization (10x Genomics) using cryosections of

patient skin biopsies with imaging of fluorescence signal, which identified 18 minutes as the optimal permeabilization time. Skin

biopsies from 12 patients with sarcoidosis were then processed for spatial transcriptomics analysis following the manufacturer’s

instructions. Samples were cut in a precooled cryostat at 10 mM thickness and placed onto the designated capture area of the slide.

Next, the slides underwent fixation and H&E staining with immediate imaging on an Olympus IX83 live imaging microscope

equipped with a Hamamatsu ORCA-Flash4.0 sCMOS camera using tenfold magnification. This was followed by permeabilization

for 18 minutes, reverse transcription, and second strand synthesis, all performed on the slide. An aliquot of the cDNA was used

to determine the optimal number of cDNA amplification cycles (i.e., the Cq value of an individual sample at 25%of peak fluorescence

intensity) using KAPA SYBR FAST qPCR kit (KAPA Biosystems). Libraries were prepared according to the manufacturer’s instruc-

tions and sequenced by the Biomedical Sequencing Facility at the CeMM Research Center for Molecular Medicine of the Austrian

Academy of Sciences, using the Illumina NovaSeq 6000 platform. Raw sequencing data were preprocessed and demultiplexed using

Space Ranger (v1.2.0, 10x Genomics). Sequencing statistics are provided in Table S2.

Immunofluorescence protein staining of patient samples
Multicolor immunofluorescence protein staining for cell surface markers was performed on 7 mm cryosections. One part of 6 mm

punch biopsy samples of human skin was embedded in Tissue-Plus OCT Compound (Scigen Scientific), deep-frozen in liquid nitro-

gen, and stored at -80 �C until further processing. OCT-embedded tissue samples from patients (Table S2) were cut into 7 mm sec-

tions and mounted on SuperFrost PLUS adhesion slides (Thermo Fisher Scientific). Air dried sections were fixed in acetone (Sigma

Aldrich) for 10 min and stored at -20 �C until immunofluorescence protein staining and imaging, done as previously described.99

Slides were scanned using a Z1 Axio Observer microscope equipped with an LD Plan-Neofluar 20x/0.4 objective (Zeiss) and a

TissueFAXS imaging system, and analyzed using TissueQuest software (Tissue Gnostics). Epidermis, blood vessels, and apocrine

glands were excluded from the analysis. The dermal compartment was divided into granuloma areas and areas containing no gran-

ulomas. Analyses were performed on two representative sections as replicates. Statistical analysis of the imaging data was per-

formed using GraphPad Prism (v9.0). To determine statistically significant differences between twomatched groups, we used paired

two-tailed Student’s t-test.

Sarcoidosis mouse model and MMP12 treatment
TSC2fl/fl mice12 were crossed with mice expressing Cre recombinase under the control of the CD11c promoter to delete the TSC2

gene specifically in CD11c expressing cells.100 The resulting TSC2fl/fl CD11c Cre+ mice developed spontaneous sarcoid-like
e4 Immunity 56, 289–306.e1–e7, February 14, 2023



ll
OPEN ACCESSArticle
granulomas and swelling of the paws and the tail.12 Themice were age-matched across five experimental batches and had access to

food andwater ad libitum. To assess the effect of MMP12 treatment, 20 to 24 weeks old female TSC2fl/fl CD11c Cre+mice were orally

gavaged with the MMP12 inhibitor FPA-014 (Foresee Pharmaceuticals) at a low dose of 10 mg/kg (n=7), a high dose of 30 mg/kg

(n=11), or with vehicle control (n=13, distilled water), every day for four weeks. Moreover, TSC2fl/fl CD11c Cre- mice (n=6) were

used as genetic controls. After four weeks of treatment, the mice were sacrificed and the thickness of the front paw, hind paw,

and tail were measured using a digital thickness gauge (K€afer FD 50/25) as an external indication of granuloma lesion severity. An

average of five consecutive measurements was taken for the left front paw, left hind paw, and tail of each mouse. Mice were bred

and maintained at the Medical University of Vienna in accordance with institutional policies and federal guidelines. These experi-

ments were approved by the Austrian ethics committee for animal experiments (GZ.BMBWF 2020-0.547.514).

Preprocessing and analysis of scRNA-seq data
The scRNA-seq data were processed using Cell Ranger (v3.0.2, 10x Genomics). Raw sequencing data were demultiplexed and con-

verted to FASTQ format using the Cell Ranger commandmkfastq. FASTQ files were aligned to the human reference genome assem-

bly GRCh38, and count matrices were generated per sample using genome annotation v93 and the Cell Ranger command count.

Each cell was annotated with the sample origin (lesional or non-lesional skin) as part of sample demultiplexing. The demultiplexing

was based on a Gaussian mixture model fitted to hashtag antibody counts, inferring the probability that a given antibody read count

derives from background or constitutes positive signal.

For each sample, quality control was performedwith thresholds for the followingmetrics: (i) minimumnumber of detected genes, (ii)

maximum fraction of mitochondrial reads, and (iii) maximum fraction of ribosomal genes. The thresholds were determined for each

sample following manual inspection of the distribution of each quality control metric (Table S2). Cells that did not meet these criteria

were discarded. The gene count matrices of the remaining cells were aggregated using the Cell Ranger command aggrwithout depth

normalization.

Automated cell type assignment was performed with the scANVI101 method for label transfer, using a recently published healthy

skin dataset31 as the reference. To reduce the number of features for both the reference and query datasets, we first selected for the

genes expressed in more than 10% of the cells or in at least five cells with an average count greater than 1.5; we then used the

highly_variable_genes function of Scanpy (v1.8.1)92 with the Seurat method (v3)91 to identify the top 3000 most variable genes in

either dataset. To further refine the cell type assignment, we performed a subsequent scANVI analysis on all cells labeled ‘‘Th’’

and ‘‘Melanocytes,’’ as manual inspection indicated greater diversity within these cell subsets than reflected by the original labels

from the reference dataset.

To integrate the individual samples and to perform dimensionality reduction and clustering, we used the scVImethod (v 0.9.0)93 and

the same feature selection strategy as described above for the scANVImethod. To generate a neighbor graph and a 2D visualization

of the latent space, the UMAP102 method was run on the latent space inferred by scVI. Clustering was performed using the Leiden

method103 on the UMAP graph (clustering resolution 0.7). The same analysis was performed separately and independently for all

myeloid cells (clustering resolution 0.15 and 0.5), lymphoid cells (clustering resolution 0.3), and fibroblasts (clustering resolution

0.15), in order to enable cell subset identification. To integrate a previously published scRNA-seq dataset for healthy skin,32 we

used the scVI method and the top 3000 most variable genes across both datasets.

Cell type labels were then assigned to each cluster based on the scANVI automatic annotation. Marker genes were detected by

differential gene expression analysis between an individual cell cluster and all the other cells. We used limma (v3.46.0)94 on counts

normalized using the sctransform method (v0.3.2),95 limited to the top 2000 most variable genes and controlling for quality metrics

(ribosomal fraction, mitochondrial fraction) as well as the experimental batch that each sample was part of. The identified marker

genes allowed formanual validation and improvement of the automatic assignments, especially for the lymphoid compartment where

high heterogeneity was observed.

Differential gene expression analysis was performed by comparing the granuloma-associated cluster with the homeostatic cluster

for each cell type except for the endothelial cells (where we compared lesional and non-lesional cells because endothelial cells were

not split into two clusters by the Leiden algorithm). The differential expression analysis was implemented using limma applied to gene

counts normalized using the sctransformmethod (v0.3.2),95 controlling for quality metrics (ribosomal fraction, mitochondrial fraction)

as well as the experimental batch that each sample was part of. We included only those genes that were expressed in at least 25%of

cells or had an average normalized log count of at least two (the average was computed considering only those cells were the gene

was expressed).

For visual inspection and validation, the heatmaps and gene expression plots were generated using the expression data normal-

ized on total counts per cell and standardized by gene expression mean and variance across cells. The heatmaps were clustered

using hierarchical clustering on differential genes that weremanually selected based on biological interpretability, while also present-

ing with an adjusted p-value lower than 10-50 and a log-fold-change greater than 0.1. A complete list of all differentially expressed

genes is provided in Table S3. Top differential genes were defined as those with an adjusted p-value lower than 10-50, a log-fold-

change greater than 0.3, and detection of the gene in the top 5% of either fold-change or p-value. For all the genes that were tested

for differential expression (ranked by fold change), we ran gene set enrichment analysis104 against the following databases: "MSigDB

ontology (C5), hallmark (H), and curated (C2)." A list of enriched pathways is provided in Table S4.
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To dissect the cell-type-specific crosstalk of immune cells and structural cells, we quantified the enrichment of known ligand-re-

ceptor pairs using CellPhoneDB (v2.1.7)96 applied to the gene counts transformed with the sctransformmethod (v0.3.2).95 A full list of

cell-cell interactions identified with CellphoneDB is provided in Table S5.

To reconstruct gene-regulatory networks we used the SCENIC software (v1.1.2).97 SCENIC identifies regulons (i.e., transcription

factors and their target genes) and assesses the activity of these discovered regulons in individual cells. These cellular activity pat-

terns are then used to find clusters of similar cells. Regulon analysis was ran using pySCENIC (v0.11.2)98 on the SCT-normalized

counts, batch-corrected using ComBat, and differential regulon activity was detected using a t-test between groups.

Preprocessing and analysis of spatial transcriptomics data
Rawbase calls from the sequencer were demultiplexed and converted to FASTQ format using theCell Ranger (v3.0.2, 10xGenomics)

commandmkfastq. FASTQ files were aligned to the human reference genome assembly GRCh38 and a count matrix was generated

based on genome annotation v32 using the Space Ranger (v1.2.0, 10x Genomics) command count.

For each spatial transcriptomics sample, quality control was performed by manually selecting spatial transcriptomics spots that

appeared intact and did not show signs of folded tissue, using the Loupe Browser (v5.0.0, 10x Genomics). For those spots, we per-

formed additional quality control based on inspection of the (i) number of detected genes, (ii) fraction of mitochondrial reads, and (iii)

fraction of ribosomal. All the selected spots passed these criteria, and no additional filtering was needed (Table S2). The gene count

matrices of the selected spatial transcriptomic spots were aggregated using the Space Ranger command aggr without depth

normalization.

To integrate the various samples and to perform dimensionality reduction and clustering, we used the scVImethod93 (v0.9.0; model

trained with 2000 epochs). To reduce the number of genes to compare, we first selected those genes that were expressed in more

than 10% of spots or that were expressed in at least 5 spots with an average count greater than 1.5. Out of these genes we selected

only those that were among the top 2000most variable genes as identified by the highly_variable_genes function in Scanpy (v1.8.1)92

with the Seuratmethod (v3).91 As described above for the scRNA-seq data, the UMAPmethod was run on the latent space from scVI

(n neighbours = 15, min_dist = 0.1), and clustering was performed using the Leiden method (resolution = 0.15) on the UMAP graph.

To infer the composition of the spatial transcriptomic spots, we used the stereoscopemethod105 in the scVI suite, with the cluster

labels and the tissue labels. We removed rare cell types and corrected for possible over-representation of rare immune cell subsets in

the scRNA-seq dataset by selecting only those cells that belong to cell types with a frequency higher than 10% in the immune cell

compartment and higher than 2% in the structural cell compartment.We selected the top 6500most variable genes in the scRNA-seq

dataset when transferring cluster labels and the top 4000 variable genes when transferring lesional and non-lesional skin labels.

To obtain normalized data for the visualizations, we trained an scVI model individually for each sample using all genes. The liter-

ature-derived gene signatures were extracted from the following tables and figures of the original publications: hypoxia signature46:

Table S5; 12-chemokine signature83: Figure 2B; TLS-melanoma signature84: Figure 3A; TLS-hallmark signature as reviewed in85; lung

granuloma33: Figure 3; Table 3; orbital adipose tissue granuloma34: Table 2; lacrimal gland tissue granuloma34: Table 3; progressive

fibrotic lung tissue granuloma35: Figure 1; IPF signature106: Table S1; NSIP signature106: Table S3. A list of included genes for each

gene signature is provided as Table S6. Expression levels of gene signatures (the granuloma tissue signatures in Figure S2E, hypoxia

signature in Figure S3H, 12-chemokine signature in Figure 7B, TLS signatures in Figures S7B and S7C, fibrotic IPF and inflammatory

NSIP signatures in Figure S7G) in the spatial transcriptomics data were calculated as the average z-score of the normalized gene

expression of all genes in the respective signature. The contributions of individual genes to a given signature were calculated as

the average z-score of normalized gene expression across all spatial transcriptomics spots in the cluster. For displaying selected

ligand-receptor pairs in the spatial transcriptomics data, we used the maximum z-score of normalized gene expression if the inter-

acting partner was a protein complex made from several genes.

The validation of increased co-expression among ligand-receptor interaction partners in the granulomas was inspired by a pub-

lishedmethod.107 Based on spatial transcriptomic clusters from Figure 2D, we defined thismetric as the difference betweenmeans of

ligand-receptor average expression distributions in granulomatous dermis (cluster 0) compared to unaffected dermis (cluster 1). We

then calculated the null distribution by reshuffling the spot labels in each sample and recalculating the difference in means per area

across 106 perturbations. The p-value for a given interaction in a given sample was defined as the number of permutations in which

the randomized value was higher than the observed value. Afterward, all p-values were adjusted for multiple testing using the Bon-

ferroni method across all interaction pairs and samples. To evaluate if the co-expression patterns were significant across patients, we

additionally trained the scVImodel on all genes and aggregated samples and calculated the average ligand-receptor co-expression

values using the normalized data. For each interaction, we performed an unpaired t-test with Bonferroni correction between co-

expression values in cluster 0 versus 1 (granulomatous dermis versus unaffected dermis). All statistical comparisons were performed

using the add_stats_annotation function from the statannot package in R (https://doi.org/10.5281/zenodo.6607135).

Statistical analysis of immunofluorescent protein staining
GA-associated cell subsets were localized in lesional sarcoidosis skin cryosections using immunofluorescent protein staining. Ac-

quired images were imported into TissueQuest (v6, TissueGnostics) which identifies cells based on nuclei staining and quantifies

cell populations based on the expression of cell surface markers. Image analysis was performed on two representative lesional

skin sections as replicates with DAPI staining nuclei of all dermal cells. Lesional skin sections were divided in epidermal and dermal

regions and only the dermal regions were included in the final analyses. Apocrine glands were excluded from all analyses to avoid the
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high autofluorescent signal associatedwith these structures. The threshold of a positive signal for each surface or intracellular marker

was set manually after comparison to the respective isotype control staining on separate lesional skin sections. For all markers, the

same thresholds for the intensity of the fluorescent signal identifying a cell as ‘‘positive’’ or ‘‘negative’’ were used.We localized dermal

macrophages, T cells and fibroblasts using CD68, CD3, and CD90 as cell-type-defining surface markers. Next, granulomas were

identified as compact cell structures with a strong positive signal for CD90+ fibroblasts on the outside and a dense composition

of CD68+ macrophages, with T cells scattered between macrophages and fibroblasts. The dermal compartment was further subdi-

vided into two groups: the first group comprised dermal regions containing granulomas, and the second group included dermal re-

gions containing no granulomas. These regions were close to each other, and we used the outer fibroblast layer of granulomas as the

respective subclassification line. The following parameters were determined for each dermal subgroup: cell count per mm2, mean

intensity of the marker of interest (detailed in the respective figure legends), and relative percentage of the parent population. Sta-

tistical analysis was performed using a paired t-test between the two dermal subgroups or an unpaired t-test when comparing

the dermal subgroups and patient matched non-lesional skin. The following cell populations were compared between dermal regions

containing granulomas and dermal regions containing no granulomas: CD3+CCR6+ T cells, CD68+CHIT1+ macrophages,

CD3+PD1+ T cells, and CD68+PDL1+ macrophages. Moreover, CD3+CCR6+ T cells were compared between dermal regions con-

taining granulomas, dermal regions containing no granulomas, and dermal regions of patient matched non-lesional skin. Data are

represented as dot plots showing the mean and standard error of the mean, with each dot representing one replicate of one cryo-

section. Details for the statistical tests used in each experiment can be found in figure legends and the methods section. Statistical

significance testing was performed with Graphpad prism (v9.3.1), and p-values were annotated as follows: *p<0.05, **p<0.01,

***p<0.001, ****p<0.0001.
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