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Single-cell RNA sequencing coupled to TCR
profiling of large granular lymphocyte leukemia
T cells
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Neal S. Young1

T-cell large granular lymphocyte leukemia (T-LGLL) is a lymphoproliferative disease and bone

marrow failure syndrome which responds to immunosuppressive therapies. We show single-

cell TCR coupled with RNA sequencing of CD3+ T cells from 13 patients, sampled before and

after alemtuzumab treatments. Effector memory T cells and loss of T cell receptor (TCR)

repertoire diversity are prevalent in T-LGLL. Shared TCRA and TCRB clonotypes are absent.

Deregulation of cell survival and apoptosis gene programs, and marked downregulation of

apoptosis genes in CD8+ clones, are prominent features of T-LGLL cells. Apoptosis genes are

upregulated after alemtuzumab treatment, especially in responders than non-responders;

baseline expression levels of apoptosis genes are predictive of hematologic response.

Alemtuzumab does not attenuate TCR clonality, and TCR diversity is further skewed after

treatment. Inferences made from analysis of single cell data inform understanding of the

pathophysiologic mechanisms of clonal expansion and persistence in T-LGLL.
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T-cell large granular lymphocyte leukemia (T-LGLL) is a
lymphoproliferative disease usually presenting with cyto-
penia, and typically characterized by clonal expansion of

terminally differentiated effector-memory cytotoxic T lympho-
cytes (CTL). T-LGLL has been hypothesized to be driven by
chronic antigen exposure, resistance to Fas-FasL-mediated
apoptosis, and constitutive activation of signaling proteins in
the Janus-kinase (JAK) and other survival pathways1–3. JAK-
STAT pathway activation is present in almost all cases, and gain-
of-function mutations in STAT3 and STAT5B have been identi-
fied in about half of patients3. Sequencing of the antigen-binding
region (complementarity-determining region 3, CDR3) and
measurement of the variable β chain (Vβ) of the T cell receptor
(TCR) by flow cytometry provides clinical evidence of T cell
clonal expansion in T-LGLL4,5. Vβ flow cytometry and TCRγ-
polymerase chain reaction (PCR) analysis are well correlated, but
current panels of monoclonal antibodies only include about 75%
of the Vβ spectrum4. Application of next-generation sequencing
(NGS) to both Vβ and Vα chains has not been routine, and paired
chain information is lost in the sequencing of bulk cell popula-
tions, which can only be paired using statistical algorithms6,7.
Therefore, high-resolution profiling of the TCR repertoire in
T-LGLL is lacking. Efforts to characterize the transcriptome of
clonal CTL using whole peripheral blood or after enrichment of
specific clones by flow cytometry have not provided satisfying
resolution and scale, due to heterogeneity among patients.

T-LGLL is treated successfully with a variety of immunosup-
pressive drugs, mainly cyclosporine, and lymphocytotoxic agents,
such as methotrexate; inhibition of JAK-STAT signaling also
appeared effective in a pilot trial1. While therapies directed at the
T-LGLL cell populations are efficacious, the basis for response
and lack of response in some cases is unknown. Peculiarly,
improvement in blood counts can occur without eradication of
the CTL clones, which frequently persist after discontinuation of
treatment, as in our recent study of alemtuzumab, a monoclonal
anti-lymphocyte antibody, in refractory T-LGLL1.

Single-cell TCR V(D)J sequencing coupled with RNA
sequencing enables profiling of paired TCRα and TCRβ chains at
single-cell resolution at high-throughput7,8, as well as coupled
global gene expression in the same cell, making it possible to
characterize T cell clonal expansion in steady state and in disease,
and to track transcriptome changes of the same clone over the
course of the disease and with treatment7,9–13. Studies employing
single-cell RNA sequencing (scRNA-seq) analysis have helped to
define immune cell subsets in tumors and in checkpoint inhibitor
treatment14–17, and in autoimmune diseases18, but no such stu-
dies have been performed in T-LGLL.

We applied single-cell TCR sequencing (scTCR-seq) coupled
with scRNA-seq to CD3+ T cells obtained from a relatively large
cohort of T-LGLL patients, who have been well characterized
clinically and by conventional laboratory testing as part of a
clinical protocol to a prospectively test therapy with alemtuzumab
in refractory disease. We sought to characterize the TCR reper-
toire and to define pathophysiologic mechanisms at the single-cell
level. Further, we wished to determine mechanisms of action of
an immune therapy in this disease. Our approach should be
applicable to other syndromes characterized by a T cell patho-
physiology but more subtle clonal expansion.

Results
scRNA-seq of T cells in T-LGLL patients demonstrates
expansion of CD8+ effector T cells. To depict a landscape of
phenotype, functional state, and clonality of T cells in T-LGLL
patients, we constructed an atlas comprising ~500,000 CD3+

T cells collected from 13 patients (M/F, 7/6; median age 51 years,

range 26–85) whose blood samples were obtained before and
after a 3–6 months course of alemtuzumab, and from blood
donated by seven matched healthy controls (Supplementary
Table 1). Our study is schematized in Fig. 1a. Sequencing metrics
are shown in Supplementary Data 1.

To enable systematic comparison across patients' pre- and post-
treatment, we merged data from all individuals and different time
points19 (Supplementary Methods and Results). Batch effects were
corrected by the sva package20, as demonstrated by a high entropy-
based measure for quantifying mixing of samples. We further
verified cell annotation and sample mixing by expression of
signature genes in CD4+ and CD8+ T cells21 (Fig. 1b and
Supplementary Fig. 1). CD4+ and CD8+ T cells were expected to
constitute the majority of enriched CD3+ T cell populations, and
they clustered distinctively. We observed a large degree of variation
in CD4/CD8 compositions among individuals: CD8+ subsets
ranged 32.6–87.5% in patients prior to alemtuzumab treatment,
and there was a generally elevated CD8+ subset in T-LGLL
patients (Fig. 1c, d). We then verified that major T cell subsets
were identifiable in each patient using PhenoGraph clustering11.
We annotated clusters by genome-wide correlations between
cluster mean expression and previously characterized transcrip-
tional profiles of sorted bulk datasets (GSE93777 in GEO) 22,
and identified naive, central memory, and effector memory T cell
clusters (Fig. 1e). Annotations were confirmed and refined using
the expression of canonical markers (Supplementary Fig. 2). There
was variable composition of subclusters among patients, with
effector memory T cells more prevalent in patients (Fig. 1f, g), in
agreement with the known expansion of phenotypical effector
memory T cells23.

Loss of TCR repertoire diversity in T-LGLL. TCR clonality has
been historically measured using TCRVβ monoclonal antibodies in
flow cytometry and CDR3 sequencing4,24. We first studied resolu-
tion of scTCR-seq in identifying clonality in T-LGLL. Among all
patient samples, we detected at least one productive α-chain in
27–89% (median 61%), and at least one productive β-chain in
79–98% (median 95%) of cells, of which 27–80% (median 58%) of
cells had only one productive α-chain, and 60–95% (median 87%)
had only one productive β-chain. There were 6–73% (median 45%)
cells with paired productive αβ chains, and some cells with multiple
TCRα- and/or β-chains (Supplementary Table 2). These data are
similar to previous single-cell results based on TCR sequence7. α
chains are less likely to be detected by all current approaches of
TCR sequencing7, partially due to lower expression of TRAV genes
than of TRBV genes (Supplementary Fig. 3a).

Here, we define “expanded clones” as ≥10 T cells with identical
TCRα- and β-chains25. The top three expanded TCR clones
comprised up to 70% of a sequenced CD3+ T cell population in
patients, but there was variablity among cases (Fig. 2a). scTCR-
seq in the current study showed agreement with results in the
same cases from flow cytometry and CDR3 sequencing in
defining top clones, but provided much higher resolution (Fig. 2b).
There was a positive correlation (R= 0.503) between reads for
each Vβ/Vα in TCR sequencing, matching Jβ/Jα (defined in
www.imgt.org) and values with flow cytometry. By plotting the
number of cells of each V and J gene match, patients showed
clonal expansion (Fig. 2c and Supplementary Figs. 4 and 5)4.
Unlike the multiclonal T cell repertoire of healthy donors, plots of
patients’ results showed dominance of one or a few specific
CDR3 sequences, indicative of the expected clonal expansion of
CTLs in T-LGLL. The Gini index measures equality of
distribution26,27; for TCR diversity, a Gini index ranges between
zero to one, and is positively correlated with T cell clonality.
There was a significantly higher Gini index of TCR in patients’
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samples (0.340 ± 0.217) compared with the index in healthy
donors (Fig. 2d; 0.091 ± 0.043, P= 0.014, t-test). We also
calculated a Shannon’s entropy (H) index to evaluate the diversity
of the TCR repertoire of each sample27. The H index, which
positively correlates with T cell diversity, was significantly lower
in patients than in healthy donors (Fig. 2e). These results
indicated markedly less diversity of the TCR repertoire in
T-LGLL. Loss of TCR repertoire diversity was also demonstrated
by the abnormal size distribution of CDR3 and a larger scale
power-law distribution of clone sizes (Fig. 2f–h and Supplemen-
tary Figs. 6–9).

Absence of common TCRA and TCRB clonotypes in T-LGLL
patients. Clonal T-LGLL expansion has been hypothesized to
derive from chronic antigenic stimulation, and we examined for
evidence of CDR3 homology that might implicate a potential
common antigen. We used the circlize package (https://cran.r-
project.org/web/packages/circlize) to visualize shared TCR usage
among subjects24,28, and observed that junctions in circuit plots
were shared between subjects at low levels, similar to healthy donors
(Fig. 3a, b; P= 0.41, t-test). Two samples shared TCR clones with
an identical nucleotide CDR3 sequence, shown as arcs within circus
plots. Dominant clones in patients were expressed at low levels in a
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Fig. 1 A T cell landscape in T-LGLL patients. a A scheme of experimental study design. b A t-distributed Stochastic Neighbor Embedding (t-SNE) plot of
single-cell gene expression of T cells in all patients and healthy donors, colored by CD4+ and CD8+ T cell clusters. c Density scatter plots of CD4 and
CD8A expression in T cells, generated using scRNA-seq results. x-axis, CD4 gene expression; y-axis, CD8A gene expression; dots were colored by cell
density. d A CD8+/CD4+ T cell ratio was compared between patients (n= 13) and healthy donors (n= 6). Data are presented as mean values ± SEM; two-
sided unpaired Mann–Whitney test. P value= 0.0092. e The same t-SNE plot in (b), color coded for CD4+ and CD8+ T cell subsets. f Pie charts showing
percentages of T cell subsets in individual patients and healthy donors; color scheme as in (e). g Percentages of effector memory T cells were compared to
patients (n= 13) and healthy donors (n= 6). Data are presented as mean values ± SEM; two-sided unpaired Mann–Whitney test, P value= 0.0167.
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few other patients, but they were also present in healthy donors
(including for top 200, top 500, and top 1000 clones among indi-
viduals; Fig. 3c and Supplementary Figs. 10 and 11). In comparison
with three independent datasets6,24,29, TCR usage overlapped with
dominant sequences in our patients and were also present in
healthy donors; dominant TCR clones were shared only at low
levels among 20 T-LGLL patients who have been recently repor-
ted (Supplementary Figs. 12 and 13 and Supplementary Data 2).

Collectively, these results imply CD8+ T cell clonal expansion to be
subject-specific, or “private” to individual patients, and TCR usage
as not disease-specific. Such a lack of common TCR clonotypes
among T-LGLL patients has been previously observed5.

Homologous T-LGLL specific CDR3 and effects on transcrip-
tional phenotypes. Due to the lack of common clonotypes among
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T-LGLL patients, we grouped enriched CDRs in order to identify
clustered groups of TCRs present in many different samples,
which might be selected for binding to a potential common
antigen. For more comprehensive evaluation of CDR3
motifs, detailed in silico analysis was performed on top 500
combined TCRB CDR3 sequences. We used GLIPH (grouping of
lymphocyte interactions by paratope hotspots) to identify
‘TCR specificity groups’: clusters of distinct TCR sequences that
are likely to recognize common antigens via shared motifs in
CDR3 sequences30. We identified 49 TCR specificity groups with
more than five different CDR sequences (Fig. 4b, Supplementary
Figs. 14 and 15 and Supplementary Table 3). Top TCR specificity
groups occupied a confined region in a t-SNE projection (Fig. 4a).
Analagous to T cells of a given clonotype (sharing identical TCR
sequences) having a similar transcriptional phenotype, T cells
expressing distinct TCRs but within a TCR specificity group
tended to have more transcriptome similarity (a shorter distance
in a t-SNE plot) compared to those with randomly grouped TCRs
(Fig. 4c; P < 0.0002, unpaired t-test). The pairwise distances of cells
in a t-SNE plot (based on transcriptome) positively correlated with
TCR sequence dissimilarity (Damerau-Levenshtein distance;
Supplementary Fig. 16a). These results suggested clonally expan-
ded T cells highly correlated to transcriptional phenotypes.

We sought convergence groups (CRGs) that were shared
by subjects and thus more likely to reflect selection by potential
common antigens. Within individual CRGs, we graphed
percentages of cells from top five patients (only among samples
obtained prior to treatment) whose TCRs comprised the majority
of the CRG. Top eight CRGs with highest cell numbers were
enriched in effector memory and CD45RO+CD8+ clusters
(Fig. 4a and Supplementary Figs. 16b, c and 17). A sequence
CRG_CASSPGTNYGYTF was dominant in cells from UPN15;
there were 73% of cells in CRG-CASRAGETEAFF that were
contributed by these five patients, and they displayed high usage
of TRBV5-6 and TRBJ2-2; in the remaining top CRGs, cells from
the five patients contributed the most cell numbers constituted
74–90% of individual CRGs. From these findings, we inferred that
CD8+ T cell expansion in T-LGLL might be driven by similar
antigens across some but not most patients31. To understand
common transcriptional signatures of clonally expanded T cells in
each CRGs, we compared gene expression of T cells in a specific
CRG with that of all other cells, and plotted top CRG-specific
genes of those 49 TCR specificity groups (Supplementary Fig. 18a
and Supplementary Data 3), followed by Gene Ontology (GO)
term enrichment of differentially expressed genes in each CRGs.
T cell activation and immune response genes, and cell cycle genes,
were upregulated in the majority of CRGs. We inferred that
expanded clones were activated, and may have acquired growth,
survival and functional advantages due to upregulation of cell
cycling and immune response genes (Supplementary Fig. 18b and
Supplementary data 4).

Among top CRGs, top four CRGs enriched in patients
rather than in healthy donors were CRG-CASSPGTNYGYTF,
CRG-CASIVGSYNEQFF, CRG-CASRAGETEAFF and CRG-
CASSLVGGSYEQYF (Supplementary Fig. 19a). Some CDR3s in
CRG-CASIVGSYNEQFF and CRG-CASRAGETEAFF groups
were present in clones with sizes larger than ten in 10X donor
3 (included in 10x Genomics sample VDJdb datasets and is CMV
seropositive)32. These CRGs were overrepresented in T-LGLL
patients who were seropositive for CMV than among others in
our cohort. A recent study30 has identified five CMVpp65 amino
acid motifs (TGT, ATN, FQ, SSA and QTG) of CDR3s in CMV-
seropositive individuals with HLA*0201. In our samples, these
motifs of HLA-A*0201, CMV+ CDR3s were more represented in
expanded clones of CMV+ subjects than in CMV− cases (Fisher
test; P= 0.033). These results added to validity of our current
analysis and to a hypothesis that chronic CMV antigen
stimulation is a potential driver of T cell clonal expansion33.

We input β-chain CDR3 sequences of T-LGLL patients into
TCRmatch34,35 in order to identify epitopes and related antigens.
Within the expanded TCR sequences from T-LGLL patients,
there were four epitopes derived from common viral pathogens:
EBV, CMV and influenza A virus (Supplementary Fig. 19b and
Supplementary Data 5-1). We specifically examined for putative
antigens of dominant clones (top 10 clones) in T-LGLL patients
using TCRmatch (Supplementary Data 5-2). However, among
these very top clones, the majority of TCR sequences could not be
mapped to any epitopes of any antigen. Further, the majority of
top clones in patients with monoclonal expansion could not be
mapped to any epitopes in TCRmatch. However, our analysis was
not comprehensive, as inevitably limited by the small number
of subjects and epitopes in reference databases, compared with
the potential huge number of TCRs. In addition, matching our
CDR3 sequences with virus-specific CDR3 sequences in a second
database VDJdb32 showed that most CDR3s derived from CMV
and other common viruses. Good correlation of CDR3 composi-
tions (grouped by viruses) in patients and in healthy donors
indicated that clonal expansion could not be explained by
exposure to common viruses (Supplementary Fig. 20 and detailed
in Supplementary Results).

TCR usage and activation states contribute to T cell pheno-
types. Our data (Fig. 4a) indicated that, at least in part, TCR
utilization impacted T cell phenotypes. Using integrated data
from all individuals and at all time points, we used diffusion
maps11,12 to visualize T cell phenotype variation, and to highlight
expression of components related to T cell activation and T cell
terminal differentiation, in order to examine their contribution to
T cell phenotypes using regression analysis11. We observed T cell
activation to be the most informative contributing component on
dimension 1, and there was a continuous pattern of altered T cell
activation (Fig. 4d, e). Other components, including T cell

Fig. 2 Loss of TCR repertoire diversity in T-LGLL patients. a Dot plot showing frequency of a sum of top 3 clones in individual patients and healthy donors.
Dot sizes are proportional to frequency of top 3 clones. Pie charts on the right show medium percentages of a sum of the top 3 clones (red parts) in
patients (top) and healthy donors (bottom). Two-sided unpaired t-test. P value= 0.0008. b Three-dimensional dot plot showing high correlation of
frequency of 21 TRVB detected by flow cytometry (x-axis), scTCR-seq (y-axis) and immuno-seq (z-axis) in individual patients with an average correlation
coefficient of 0.503. c Skyscraper plots showing Vβ/Vα and matching Jβ/Jα in healthy donor 1 (HD1) and representative patients (UPN10 and UPN13). Gini
index (d) and Shannon index (e) of TCR clonality were compared in patients (n= 13) and healthy donors (n= 7). Data are presented as mean values ±
SEM; two-sided unpaired Mann–Whitney test. P value= 0.0167 (d) and P value= 0.0047 (e). f CDR3 lengths of representative HD1 and patient UPN10
were plotted, with CDR3 lengths in amino acid (aa) on the x-axis and frequency (CDR3 size) on the y-axis (overlapped curves showing CD8+ and CD4+

T cells in red and blue, respectively). g Clone sizes were plotted in HD1 and UPN10, with log clone sizes on the x-axis and log cumulative frequency on the
y-axis. h Slope values of power-law fitting plots were compared in all patients (n= 13) and healthy donors (n= 7); plots of all individuals are shown in
Supplementary Figs. 6 and 7. Data are presented as mean values ± SEM; two-sided unpaired Mann–Whitney test. P value= 0.0018.
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terminal differentiation, proinflammatory, and cytolytic effector
pathways, contributed in the same direction as did T cell acti-
vation on dimension 1, perhaps due to a moderate overlap of
genes in each pathway but also likely from coordination of genes
of related functions (Supplementary Fig. 21a–d). When denoted
by colors with T cell subpopulation signature genes in CD8+

T cells, the differentiation trajectory appeared from naive T cells
to central and effector memory T cells (Supplementary Fig. 21e,
f). By correlation analysis, 22% of variation across T cell phe-
notypes was attributed to TCR expression, and TCR expression
showed a continuous increase on dimension 2 in the diffusion

map (Fig. 4e)8,12. Together, these results suggested that T cell
phenotypes were contributed by a combination of antigenic TCR
stimulation and environmental stimulation. On the same diffu-
sion map with color coding of expanded and nonexpanded
clones, expanded clones clustered at the left side of dimension 1,
indicating an impact of clonal expansion on the transcriptome in
T-LGLL (Fig. 4f). In patients and healthy donors, there was
positive correlation between TCR diversity and T cell activation,
but not with TCR expression (Fig. 4g). In summary, CTL
expansion in T-LGLL associated with decreased TCR diversity
and increased T cell activation.
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Deregulation of cell survival and apoptosis gene programs in
T-LGLL. To understand deregulated gene programs in T-LGLL,
we first compared gene expression in patients prior to alemtu-
zumab and healthy donors, and utilized gene set enrichment
analysis to explore global changes in gene programs in
T-LGLL3,36,37. Upregulated genes in patients were highly enri-
ched in the immune response and signaling pathways of cell
survival (hallmark gene sets including interferon response,
PI3K_AKT_MTOR and IL6_JAK_STAT3 signaling) and cell
proliferation (mitotic spindle), while genes less expressed in
T-LGLL were enriched in the apoptosis pathways (wnt beta_ca-
tenin signaling, MYC_targets, and apoptosis) (Fig. 5a and Sup-
plementary Data 6). Downregulation in apoptosis gene sets was
particularly marked in CD8+ T cells. These results, consistent
with earlier publications, indicated imbalance of immune acti-
vation, cell survival and cell apoptosis gene programs in
T-LGLL2,3. We then utilized Gene Ontology38 to study enriched
functional terms of top differentially expressed genes in T-LGLL.
Upregulated genes were highly enriched in immune response and
cell activation (Supplementary Figs. 22 and 23). Our group pre-
viously measured expression of 84 genes in the JAK-STAT
pathway by RT-qPCR in patients included but not limited to the
current patient cohort, and we again observed activation of these
genes in T-LGLL patients; results from scRNA-seq and qPCR
showed good correlation (R= 0.31, P < 0.0001; Supplementary
Fig. 24). Cell apoptosis genes including TNF, CASP10, and
ATM were downregulated (GO:0006915 apoptotic process,
GO:0008219 cell death and GO:0012501 programmed cell death),
anti-apoptosis genes (CFLAR, JAK2, and BCL2L1) were upregu-
lated, although Fas and FasL were overexpressed in patients
(Fig. 5b). These results support previously proposed mechanisms
of dysregulation of apoptosis and constitutive activation of sur-
vival pathways in T-LGLL3,23. We mapped top differentially
expressed genes to a protein-protein interaction network using
STRING data39, followed by jActiveModulesTopo40,41 to identify
biologically meaningful gene subnetworks (Fig. 5c). In this sub-
network, CD8A was the most distinct hub gene, indicative of
activation of cytotoxic T cells and immune responses.

To understand the biology of expanded clones in T-LGLL, we
compared gene expression of expanded clones versus remaining
cells in individuals in a pair-wise manner in individuals, and top
differentially expressed genes were used for pathway analysis by
Genomatix36. Higher expressed genes in expanded clones were
markedly enriched in immune response and cell activation
(Fig. 5d), and deregulation of apoptosis pathways was apparent as
several key genes in the apoptosis cascade (FOS, BCL2, and
BIRC3) were underrepresented in expanded clones. In summary,
expanded clones were highly activated and may have acquired
growth, survival and functional advantage, partly due to
deregulation of apoptosis. The expression characteristics of
expanded clones suggest targets for novel therapeutics.

We specifically examined the expression of T cell exhaustion
genes and T cell co-inhibitory receptor expression in T-LGLL
samples, as these pathways are frequently abnormal in cancers.
We consistently observed augmented T cell exhaustion in T-
LGLL, using two different reference gene lists42,43, but variable
alterations of co-inhibitory and co-stimulatory receptors in T cells
(Fig. 5e, f)2,9,44.

Immunosuppressive treatment modulates clonality and gene
expression in T-LGLL. By comparing T cell subsets before and
after treatments (3 and 6 months) with the monoclonal antibody
alemtuzumab, we observed that there was no attenuation of
CD8 dominance or of T cell expansion dominated by effector
T cells. Alemtuzumab did not significantly change T cell subset

proportions nor inflammatory cytokines; the proportion of
CD45RO+CD8+ T cells increased (Supplementary Fig. 25). We
examined changes in T cell clonality after alemtuzumab. Many
rearranged CDR3 junctions were shared predominantly within
subjects, before and after treatment, but not between subjects.
Larger clones appeared more likely to persist after treatment
(Fig. 6a and Supplementary Fig. 26). Immunosuppression did not
attenuate TCR clonality; treatment further skewed TCR diversity,
as evidenced by a lower H diversity index compared with prior to
treatment (Fig. 6b).

We explored for transcriptomic changes after alemtuzumab by
pair-wise comparison of gene expression. Globally, we observed
decreased expression of some immune gene sets, including TNF,
NFkB, KRAS, IL2 and STAT5, while MYC and cell cycle (G2M
checkpoint, DNA repair and mitotic spindle) genes were to
be upregulated (Supplementary Fig. 27a). However, pathway
analysis of top differentially expressed genes showed many
immune pathways were upregulated (Supplementary Fig. 27b).
STAT3 was one prominently downregulated genes after treatment
and the hub gene in the subnetwork (identified by jActiveMo-
dulesTopo) of genes downregulated post-alemtuzumab. Several of
its neighboring genes, including TNFRSF10A, CDKN1B, CXCR4,
IL6ST, IL2RA, and FOXO1 (all involved in apoptosis), were
also downregulated, but average expression of apoptosis genes
(GO: 006915) was upregulated after treatment (Fig. 6c). Genes
involved in T cell differentiation and proteasome activity were
downregulated after treatment. Except for antibody-dependent
cytotoxicity and lymphodepletion, alemtuzumab treatment
appeared to modulate the STAT3 pathway and to inhibit T cell
differentiation; all likely contribute to restrict expansion and
activation of residual lymphocytes.

To further characterize clone dynamics after alemtuzumab, we
broadly classified the kinetics of T cell repertoire patterns into
three groups, based on proportional changes of clones: increased
(clone size increased > 20%), unchanged (clone size remained
±20%), and decreased clones (clone size decreased >20%). In 12
T-LGLL patients for whom there were paired data, we observed
26 increased clones (size changes ranging 11–3104), 7 unchanged
clones, and 24 decreased clones (size changes ranging 31–4950).
The majority of expanded clones persisted after treatment, in
responder and non-responder cases. Dynamic changes of top
clones in individual patients (Fig. 6d and Supplementary
Figs. 28–32) showed four general patterns after treatment: (I)
top clones increased or decreased, with new dominant clones
(UPNs 1, 13, and 17); (II) top clones replaced by new dominant
clones (UPNs 8, 14, 19, and 24); (III) subtle changes of dominant
clones (UPNs 4 and 10); (IV) dominant clones further expanded
(UPNs 12, 15, and 18). None of these patterns correlated with
response to treatment1.

To understand how treatment modified CTL clone behavior,
we compared gene expression before and after treatment of the
same clone in a pair-wise manner, for clones following the three
dynamic patterns. With treatment, increased clones showed
upregulation of genes enriched in immune response and cell
activation (IFNγ, KRAS, MTOCR, IFNα, and JAK/STAT3
pathways), but genes involved in immune response, lymphocyte
activation, and cell metabolism (translation initiation, protein
localization, respiratory electron transport and cell cycle) were
downregulated in unchanged and decreased clones (Fig. 6e and
Supplementary Figs. 33 and 34). With immunosuppressive
therapy, clones that had increased in sizes retained active
immune functions and cell metabolism, while genes with these
functions in stable and decreased clones were depressed23. In
brief, paired scRNA-seq and scTCR-seq showed that alemtuzu-
mab modulated T cell clonality and global transcriptome
signatures in T-LGLL. Given minimal alterations in T cell subsets
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and extensive changes within TCR clones following treatment, we
inferred transcriptome alterations in a single cell subset to reflect
features of the pathogenesis of T-LGLL.

After alemtuzumab, increased plasma cytokines in T-LGLL
patients were similar to pre-treatment levels (Supplementary
Figs. 35 and 36). Changes of T cell subsets and TCR clonality also
did not differ in responders and non-responders. We sought a

discriminator of response to alemtuzumab in dynamic gene
expression changes with treatment. We compared gene expres-
sion before and after treatments in a pair-wise manner in
responders and non-responders, respectively, and observed cell
apoptosis genes increased more significantly in responders than
in non-responders (Fig. 6f, left). Next, to identify predictors for
response to alemtuzumab in our cohort, gene expression of
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responders and non-responders at baseline was compared. Genes
involved in immune response and cell activation (KRAS,
IL6_JAK_STAT3, and TP53 pathways) were highly expressed in
responders. Expression of genes in cell apoptosis (GO: 0006915
and REACTOM_5357801; Fig. 6f, right). Less skewed activation-
induced-cell-death might predict the response to an immuno-
suppressive therapy, and apoptosis of T cells was a contributor to
success of treatment. Alemtuzumab efficacy appeared to be a
result of increased expression of apoptosis genes and consequent
suppression of clonal expansion.

Discussion
We utilized coupled T cell transcriptome and TCR repertoire
analyses at single-cell resolution to characterize T cell clonal
expansion and gene expression in patients with T-LGLL, who had
been treated with alemtuzumab in a phase 2 clinical research
study. Our results confirmed the clonal expansion of T cells and
the lack of common TCR clonotypes in T-LGLL, with paired α
and β chain information from single cells. We defined expanded
clones (more than ten T cells with an identical TCR clonotype),
which usually are diluted in bulk samples, and identified several
potential common convergence groups of CDR3 sequences that
were more prevalent in T-LGLL patients, but there were no
apparent common antigens, at least using currently available
databases. TCR repertories in T-LGLL followed the power law
distribution, and there was a combined effect of TCR usage and
activation states on T cell phenotypes. We noted absence of a
common clonotype among patients, as clones dominant in some
cases were present in other cases only at low levels, and the same
clonotypes also were found in healthy controls. We confirmed
deregulation of cell survival and apoptosis gene programs in
T-LGLL. We defined four patterns of clonal kinetics with treat-
ment, which correlated to treatment responses. Aleumtuzumab
did not attenuate clonal expansion of T cells but increased
apoptosis in these cells. Immune activation persisted after treat-
ment, but baseline expression and the extent of apoptosis gene
dysregulation correlated with response to treatment, regardless of
clonal dynamic pattern.

An (unknown) initiating antigen has been hypothesized to be
the etiology of T-LGLL2, but we and others have not observed
shared clonotypes in CD8+ T-LGLL, even in large patient cohorts
and among HLA-matched individuals5. In GLIPH, some com-
mon CDR3 convergence groups were shared, by only a few
patients. Imputation of potential antigens corresponding to
common expanded CDR3 clusters was not successful due to
limits of current reference databases. The majority of top CRGs
shared common transcriptome features, particularly upregulated
immune activation and cell cycling; these features were also
observed in clones that increased after alemtuzumab, concordant
with a presumed survival and functional advantage for expanded
clones in the stressful environment induced by a monoclonal
antibody therapy.

The mechanism of action of alemtuzumab in T-LGLL remains
uncertain. Hematologic response is accompanied by reduced total
T cell numbers, but persistence of abnormal clones and high

cytokine levels1. Cytopenias in T-LGLL likely are due to cellular
rather than humoral mediation of hematopoietic cell destruction,
and alemtuzumab may act by diminution rather than elimination
of pathogenic clones. Indeed, we and others have observed per-
sistent pathogenic T cell clones despite effective treatment; for
example, in one study reversal of clonal expansion occurred only
some years following therapy24. More skewed TCR diversity after
treatment was initially surprising. However, the T cell repertoire
appeared dynamic; fluctuations in clonal dominance, as imputed
from CDR3 sequences, were present in about one-third of
patients24. Increased clonality post-treatment may be alternatively
interpreted as the absence of attenuation of clonal expansion,
especially due to the high resolution of scTCR-seq. Apparently,
decreased clonal diversity may not entail progressive clonal
expansion. A broadly reactive monoclonal antibody likely reduces
small as well as large clones, and reductions in T cells could be
disproportional were there a survival advantage to the pathogenic
LGL clone. Indeed, our data implied expanded clones to exhibit
an immune activation profile and proliferative genetic programs.

We observed activation of multiple genes in survival signaling
pathways and global deregulation of apoptosis in T-LGLL, con-
sistent with published findings2,3, with the central hub of this
survival network of STAT3. STAT3 has a critical function in
repressing apoptosis, and inhibition of STAT3 signaling induces
apoptosis and decreases survivin expression45. Alemtuzumab
treatment reduced STAT3 expression, increased apoptosis, and
inhibited T cell differentiation. Suppression of the JAK/STAT3
pathway has been effective in clinical trials in immune-mediated
diseases1,46. In addition to antibody-dependent cytotoxicity,
lymphocytopenia after alemtuzumab treatment may be attribu-
table to inhibition of lymphocyte differentiation and suppression
of lymphocyte survival. Among discrete changes of gene expres-
sion, increased expression of apoptosis genes with treatment was
more pronounced in responders than in non-responders, and
responders tended to have higher expression levels of apoptosis
genes at baseline. Activation of the apoptosis signaling pathways
would be a reasonable mechanism of alemtuzumab efficacy,
slowing but not halting CTL proliferation.

Our results and their interpretation of data have limitations.
First, the clinical spectrum and sample size of our cohort were
necessarily limited, given the rarity of patients, pretreatment
before enrollment, the broad clinical heterogeneity of T-LGLL
(STAT3 mutations and HLA background) and the cost of
experiments. Second, conclusions concerning common epitopes
and potential antigens of TCRs were limited by available data-
bases. Third, the effects of MYC in cell proliferation and apop-
tosis were contextual. We interpret MYC to be pro-apoptotic in
T-LGLL, but its function might be better assessed in vitro. Exactly
how alemtuzumab treatment altered STAT3 signaling could also
be sought in tissue culture. Fourth, we based our analysis exclu-
sively on T cell compartment, excluding other cell types. In
future, if feasible additional single-cell work in larger cohorts with
multiple cell types would be desirable.

Consistent and complementary results were obtained by the
Helsinki group utilizing high throughput transcriptome and TCR

Fig. 5 Dysregulated gene programs in T-LGLL. a Gene Set Enrichment Analysis (GSEA) plots of differentially expressed genes in T-LGLL patients
compared with those in healthy donors. GESA based on a Kolmogorov Smirnov test. b Boxplots showing expression of pro-apoptosis and anti-apoptosis
genes in T-LGLL patients (n= 13) compared with those in healthy donors (n= 7). Shown are 25–75% response ranges (top and bottom lines of boxes) and
minima and maxima (bars). A the two-sided unpaired t-test. c A network of upregulated genes involved in the immune response and cell survival, and
downregulated genes involved in apoptosis in T-LGLL patients. d Bar chart showing top GO terms enriched in upregulated genes in expanded clones
compared to those in non-expanded clones in T-LGLL, Fisher’s exact test. e GSEA plots of T cell exhaustion genes in T-LGLL patients compared with those
in healthy donors. T cells in patients consistently expressed higher levels of exhaustion markers, gene lists were from two previous publications42,43. GESA
is based on a Kolmogorov Smirnov test. f T cells in patients did not consistently express higher levels of co-stimulators or lower levels of co-inhibitors.
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profiling of single cells from T-LGLL patients, and appear in a
companion article47. Both works complement prior studies and
advanced modeling of T cell clonal expansion, and they should
provide a comprehensive database of clones and transcriptomes
useful in the understanding of cellular and molecular dynamics of
T-LGLL and other immune-mediated diseases.

Methods
Patient enrollment and sample collection. Blood samples were obtained from 13
T-LGLL patients (www.clinicaltrials.gov NCT00345345) as detailed in Supple-
mentary Methods. Patients were treated with alemtuzumab. Seven age- and sex-
matched healthy donors were enrolled as controls after written informed consent1.
Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Hypaque
density gradient centrifugation followed by lymphapheresis. Isolated PBMCs were
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cryopreserved in liquid nitrogen according to standard protocols until use. T cells
were enriched with the EasySep Human T cell Isolation kit (Catalog #100-0695,
Stemcells Technologies).

Flow cytometry analysis of the TCR Vβ repertoire. TCR Vβ repertoires of
patients and healthy donors were determined using flow cytometry with the IOTest
Beta Mark TCR Repertoire kit (Beckman Coulter), coupled with anti-human CD3
monoclonal antibody in Qdot605 (1:50 dillution, clone UCHT1, Catalog #Q10054,
ThermoFisher), anti-human CD4 in V500 (1:50 dillution, clone RPA-T4, Catalog #
560768, BD Biosciences) and anti-human CD8 in Alexa Fluor 750 (1:50 dillution,
clone 37006, Catalog # FAB1509S-025, R&D system). Data acquisition was per-
formed on a Becton Dickinson Fortessa and data were analyzed using FlowJo
software (Tree Star Inc.).

Whole transcriptome amplification (WTA), cDNA library preparation, and
sequencing. scRNA-seq and scTCR-seq analyses were performed using the 10x
Genomics Single Cell Immune Profiling Solution V1.0 according to the manu-
facturer’s protocols (10x Genomics V(D)J+ 5′ Gene Expression). The scRNA
libraries were sequenced on an Illumina HiSeq 3000 system using read lengths of
26 bp read 1, 8 bp i7 index, 98 bp read 2. The scTCR libraries were sequenced on an
Illumina HiSeq 3000 using read lengths of 150 bp read 1, 8 bp i7 index, 150 bp
read 2.

Preprocessing of paired scRNA-seq and scTCR-seq data. Gene expression of
patients’ samples was analyzed individually. Sequencing data from individual
samples (patients at baseline and after treatment of 3 and 6 months, and healthy
donors) were preprocessed separately using Cell Ranger 2.1.1, including fastq file
generation, read alignment, and gene-cell expression matrix calculation11. TCR
reads were aligned to the GRCh38 reference genome and consensus TCR anno-
tation was performed using the cellranger vdj program. Barcodes with a higher
number of Unique Molecular Identifier (UMI) counts more than simulated
background were considered as cell barcodes. For each barcode, cellranger per-
formed de novo assembly, and identified productive contigs and their corre-
sponding CDR3 regions and V, D, J, C genes.

Analysis of the scTCR-seq repertoire. Shannon entropy and Gini index for
diversity analysis were calculated with the R package of tCR (https://imminfo.github.io/
tcr/)48. To identify epitopes and related antigens, we input β-chain CDR3 sequences of
T-LGLL patients into TCRmatch34, a tool that uses comprehensive k-mer matching
approach to identify similar sequences annotated in the Immune Epitope Database
(IEDB)35. Specifically, we downloaded the docker version of TCRmatch, and all
annotations of IEDB, which collected the published TCRs and corresponding epitopes
and antigens. TCRmatch calculated the similarity of the input TCR sequence with
those in IEDB, and a similar TCR and a corresponding epitope were retrieved. CDR3β
amino acid sequences of the top 500 most abundant CDRs of all patients were pooled
and used to construct clone network analysis using GLIPH30.

Data dimensionality reduction and clustering with PhenoGraph. Doublets were
removed before further analyses. Cells with UMIs (molecular tags that can be
applied to detect and quantify the unique transcripts) over 10,000 (potential
doublets) and under 500 (potential fragments), or a mitochondrial proportion
higher than 10% (potential apoptotic) were excluded. Downstream analyses were
performed using the R software package Seurat (http://satijalab.org/seurat/, v2.3.4).
Raw reads in each cell were first scaled by library sizes to 10,000 and then log-

transformed. To improve downstream dimensionality reduction and clustering,
regression out in the Seurat package was used to remove unwanted sources of
variation brought by the number of UMIs and percentages of mitochondrial
genes19. Highly variable genes identified with y.cutoff= 0.5 and selected genes
(~1300) were used for principal component analysis (PCA) of high-dimensional
data. Top 30 principal components were selected for unsupervised clustering of
cells with a Graph-based clustering approach11.

Dimensionally reduction and clustering were performed by PCA and visualized
with t-distributed stochastic neighbor embedding (t-SNE). We applied sva/Combat
for batch correction and found that samples were well mixed after correction, by
evaluation with an entropy-based approach. R-package “Rtsne” was used to run the
t-SNE algorithm for the batch-corrected data using, the parameters: initial
dimensions= 10 and perplexity= 31.

Cell cluster annotation. We downloaded raw data of GSE93777 to obtain sig-
nature genes for the identification of naive, central, and effector T cell
populations22. Top 250 most population-specific genes were as signatures of sub-
types. We used this gene set to define cell types at cell and cluster levels. CD4+,
CD8+, and related subtypes were assigned to each cluster based on significance in
overlap between T cells and cluster-specific genes (a Fisher’s exact test).

Diffusion component analysis. A diffusion map was used as a nonlinear
dimensionality reduction technique to identify major non-linear components of
variation across cells associated with biological processes11. The regression analysis
between the AUC scores (calculated with signature genes of biological processes,
such as differentiation and T cell activation) was performed against an order of
cells by diffusion maps to examine their contributions on components of
diffusion maps.

Gene ontology, pathway, and network analyses. Differentially expressed genes
were defined with FindMarkers in Seurat. Gene ontology analysis was performed
with the R package topGO v2.26 using the algorithm elim, a minimum node size of
10 and genes that passed the filtering threshold38, and further included in the
STRING network, as a background gene list39. Gene Set Enrichment Analysis
(GSEA; http://software.broadinstitute.org/gsea) is a widely used pathway analysis
tool that determines whether pre-defined gene sets show statistically significant,
concordant differences between two biological states. Cytoscape was used to
visualize differentially expressed genes and their interactions40.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and analyzed sequencing data in this study have been deposited in the NCBI’s Gene
Expression Omnibus (under series accession code GSE168859) and Sequence Read
Archive (under accession code SRP310547). All other relevant data supporting the
findings of this study are available within the article and its Supplementary Information
files or from the corresponding author upon reasonable request. Source data are provided
with this paper.

Code availability
Code supporting this study is available at a dedicated Github repository [https://
github.com/shouguog/TLGL] and Zenodo (https://doi.org/10.5281/zenodo.5713623).

Fig. 6 Immunosuppressive treatment modulates clonality and gene expression in T-LGLL. a Shown were circos plots, where segments in circles
represent individual cells yielding rearranged TCR sequences among patients or between two visits of patients. Black lines indicate arcs connecting cells
sharing identical CDR3 sequences. Left and right plots show sharing of identical CDR3 sequences among UPNs 1, 8, and 12, and UPNs 13, 14 and 15,
respectively. Red and blue curves are proportional to clone sizes in samples before and after treatment, respectively. b Gini index and a Shannon index of
TCR clonality were compared in patients (pre- and post-treatment) and with healthy donors. Gini index was still significantly higher (0.547 ± 0.215,
P < 0.001) and Shannon index significantly lower (5.21 ± 2.25, P= 0.002) when compared with those of healthy controls. A two-sided Wilcoxon test
between patients’ samples before and after treatment (n= 12); two-sided unpaired Mann–Whitney between patients (n= 13) and healthy donors (n= 7);
P values shown in the figure. c A module of downregulated genes identified by jActiveModulesTopo in T-LGLL patients after treatment, including STAT3;
dynamic changes of expression levels of STAT3 and apoptosis genes (GO: 006915) pre- and post-treatment in T-LGLL patients (n= 12). Shown are
25–75% response ranges (top and bottom lines of boxes) and minima and maxima (bars). P values with two-sided paired t-test were shown in figures.
d Shown are percentages of top ten TCR clonotypes from pre- and post-treatment samples at different time points. Black lines indicate top ten clones pre-
treatment; blue lines indicate top ten clones post-treatment those were not among top ten pre-treatment. e Expression changes of immune activation
genes and cell cycle genes of increased, decreased and stable clones after alemtuzumab. f Left, expression changes of apoptosis genes (averaged) in
responders and non-responders after treatment with alemtuzumab. x-axis, two time points, pre- and post-treatments; y-axis, adjusted expression levels of
apoptosis genes to set pre-treatment values of apoptosis gene expression as zero in both responders and non-responders. Right, expression levels of
apoptosis genes before treatment in responders (Resp) and non-responders (Non-resp); two-sided unpaired t-test; P < 0.0001 [as software generated
P < 0.0001, exact P value not available].
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