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Ao Chen,1,7,15,16,19 Yidi Sun,2,19,* Ying Lei,1,10,19 Chao Li,2,19 Sha Liao,1,15,16,19 Juan Meng,2,19 Yiqin Bai,4,19 Zhen Liu,5,19

Zhifeng Liang,2,19 Zhiyong Zhu,1,19 Nini Yuan,2,19 Hao Yang,2,19 Zihan Wu,6,19 Feng Lin,1 Kexin Wang,2 Mei Li,1

Shuzhen Zhang,2 Meisong Yang,1 Tianyi Fei,2 Zhenkun Zhuang,1,8 Yiming Huang,2 Yong Zhang,1,8 Yuanfang Xu,2

Luman Cui,1 Ruiyi Zhang,2 Lei Han,1 Xing Sun,2 Bichao Chen,1 Wenjiao Li,1 Baoqian Huangfu,1,8 Kailong Ma,1

Jianyun Ma,5 Zhao Li,1 Yikun Lin,2 He Wang,2 Yanqing Zhong,2 Huifang Zhang,2 Qian Yu,2 Yaqian Wang,2 Xing Liu,1

Jian Peng,1 Chuanyu Liu,1 Wei Chen,1 Wentao Pan,6 Yingjie An,2 Shihui Xia,2 Yanbing Lu,2 Mingli Wang,2 Xinxiang Song,2

Shuai Liu,1 Zhifeng Wang,1 Chun Gong,1,3 Xin Huang,1 Yue Yuan,1 Yun Zhao,2 Qinwen Chai,2 Xing Tan,2 Jianfeng Liu,2

Mingyuan Zheng,2 Shengkang Li,1,9 Yaling Huang,1 YanHong,1 Zirui Huang,1Min Li,1Mengmeng Jin,2 Yan Li,2 Hui Zhang,2

Suhong Sun,2 Li Gao,5 Yinqi Bai,1 Mengnan Cheng,1 Guohai Hu,3 Shiping Liu,1,10 Bo Wang,3 Bin Xiang,5 Shuting Li,2

Huanhuan Li,2 Mengni Chen,2 ShiwenWang,2 Minglong Li,2 Weibin Liu,1 Xin Liu,1 Qian Zhao,1 Michael Lisby,7 JingWang,1

Jiao Fang,2 Yun Lin,1 Qing Xie,1 Zhen Liu,2,13 Jie He,2 Huatai Xu,4 Wei Huang,2 Jan Mulder,11,18 Huanming Yang,1

Yangang Sun,2 Mathias Uhlen,11,18 Muming Poo,2,13 Jian Wang,1,3 Jianhua Yao,6,* Wu Wei,4,5,* Yuxiang Li,1,17,*
Zhiming Shen,2,13,* Longqi Liu,1,10,* Zhiyong Liu,2,13,* Xun Xu,1,12,* and Chengyu Li2,13,14,20,21,*
1BGI-Shenzhen, Shenzhen 518103, China
2Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology,

University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
3China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
4Lingang Laboratory, Shanghai 200031, China
5CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences,

Chinese Academy of Sciences, Shanghai 200031, China
6Tencent AI Lab, Shenzhen 518057, China
7Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
8School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
9Guangdong Bigdata Engineering Technology Research Center for Life Sciences, Shenzhen 518083, China
10BGI-Hangzhou, Hangzhou 310012, China
11Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17121, Sweden
12Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
13Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
14School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
15BGI Research-Southwest, BGI, Chongqing 401329, China
16JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
17BGI Research-Wuhan, BGI, Wuhan 430074, China
18Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
19These authors contributed equally
20Present address: Lingang Laboratory, Shanghai, China
21Lead contact

*Correspondence: ydsun@ion.ac.cn (Y.S.), jianhuayao@tencent.com (J.Y.), wuwei@lglab.ac.cn (W.W.), liyuxiang@genomics.cn (Y.L.),

zmshen@ion.ac.cn (Z.S.), liulongqi@genomics.cn (L.L.), zhiyongliu@ion.ac.cn (Z.L.), xuxun@genomics.cn (X.X.), tonylicy@lglab.ac.cn (C.L.)
https://doi.org/10.1016/j.cell.2023.06.009
SUMMARY
Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and
function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 ma-
caque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types
and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region
preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-
type composition and neighborhood complexity. Notably, we discovered a relationship between the regional
distribution of various cell types and the region’s hierarchical level in the visual and somatosensory systems.
Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further re-
vealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a re-
gion-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution,
development, aging, and pathogenesis of the primate brain.
Cell 186, 1–18, August 17, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

The brain comprises diverse cell types that are interconnected to

form specific neural circuits underlying cognition and behavior.

Primates tend to have a larger cortex relative to their body

size, in line with their higher cognitive and social abilities.1 The

macaque brain comprises over six billion cells, which could be

classified into hundreds of cell types based on their spatial,

molecular, morphological, or physiological features.2–6 These

diverse cell types are located in hundreds of distinct brain re-

gions defined by anatomical, histological, and functional charac-

teristics.7 Understanding the composition and spatial distribu-

tion of various cell types in the cortex is essential for

elucidating the organization principles of the primate brain.

Advances in single-cell transcriptome analyses have uncov-

ered the gene expression profiles of diverse cell types in the

brain of various species.3,8–14 Comparative studies also revealed

adaptations in neuronal types throughout evolution.8,11,12,15–18

Recently developed spatial transcriptomic technologies have

provided new tools for mapping the spatial distribution of gene

expression in the brain.19–27 Spatial transcriptome analysis of

thewhole primate brain at the single-cell resolution is highly chal-

lenging because of the heterogeneity and large brain size, as well

as the difficulty of preserving cellular organization in large and

thin tissue sections.

In this study, we employed a newly developed large-field-of-

view spatial transcriptome method, termed ‘‘stereo-seq,28’’

and developed a method for preparing centimeter-scale thin

sections of the monkey brain. In combination with a large-scale

single-nucleus RNA sequencing (snRNA-seq) analysis, we ob-

tained a comprehensive 3D single-cell atlas for the cortex of cyn-

omolgus monkey. This enabled a systematic analysis of the

cortical-layer- and region-specific distributions of cell types

and their molecular fingerprints and discovery of the relationship

between cell-type composition and hierarchical organization

of the visual and somatosensory systems. Cross-species

comparison also uncovered primate-specific cell types. The da-

taset is open for access via https://macaque.digital-brain.cn/

spatial-omics.

RESULTS

Transcriptomic taxonomy of cell types in the macaque
cortex
We first characterized single-cell taxonomy across the cortex of

three adult male cynomolgus monkeys, using a droplet-based

snRNA-seq method.29,30 A total of 1,493,240 cells from 143 re-

gions of the entire cerebral cortex of two monkeys were used

for snRNA-seq analysis and cell-type classification. The molec-

ular fingerprints of classified cell types were then used for cell-

type identification in the stereo-seq maps described below.

For the anatomical parcellation of brain regions, we also per-

formed immunostaining on sections adjacent to stereo-seq sec-

tions (Figures 1A and S1A–S1F).

For snRNA-seq analysis, we used cortical tissues from two

cynomolgus monkey brains. In monkey #1, 646,393 cells were

obtained from 50-mm coronal sections adjacent to those used

for stereo-seq. In monkey #2, 846,847 cells were obtained
2 Cell 186, 1–18, August 17, 2023
from dissected block-face cortical regions of the hemisphere

contralateral to that used for stereo-seq. Transcriptome profiles

of single cells from the two monkeys were integrated and sub-

jected to dimensionality reduction and clustering analysis. This

led to the identification of 264 cell clusters for 143 cortical re-

gions, which were grouped into 9 conventional lobes (prefrontal,

frontal, occipital, temporal, parietal, auditory, somatosensory,

cingulate, and insular; Figure 1B; Table S1). Most cell clusters

included cells from both monkeys and multiple cortical regions,

indicating the reproducibility of our clustering results (Fig-

ure S1G). The reliability of clustering was also validated by Jac-

card similarity analysis (Figure S1H) and random forest analysis

(Figure S1I).

We further constructed a three-level taxonomy tree using the

hierarchical clustering of these cell types (Figure 1B; Table S2).

Level 1 represents three major cell classes: glutamatergic

(969,794), GABAergic (268,097) and non-neuronal (97,298) cells.

Level 2 comprised subclasses of these threemajor classes, each

with distinct subclass marker genes (Figures 1B, S1J, and S1K).

Based on their gene expression profiles and localization in the

stereo-seq map (see section below), glutamatergic neuron sub-

classeswere annotated by their layer preferences (L for layer: L2,

L2/3, L2/3/4, L3/4, L3/4/5, L4, L4/5, L4/5/6, L5/6, and L6; see

STAR Methods). The glutamatergic neuron subclasses showed

substantial correspondence with the projection-property-in-

ferred subclasses identified by the Allen Institute16 (Figure S1L).

GABAergic neuron subclasses were annotated by 5 prominent

marker genes: lysosome-associated membrane protein 5

(LAMP5), vasoactive intestinal peptide (VIP), reelin (RELN), par-

valbumin (PV), and somatostatin (SST).12,15,16 We noted that

the interneuron marker gene calbindin (CALB1) is mainly ex-

pressed by SST and LAMP5 subclasses, and the calretinin

gene (CALB2) is mainly expressed by VIP and VIP_RELN sub-

classes (Figure S1K). The 6 non-neuronal subclasses included

astrocytes (ASCs), oligodendrocyte precursor cells (OPCs), oli-

godendrocytes (OLGs), microglia (MG), endothelial cells (ECs),

and vascular leptomeningeal cells (VLMCs), each annotated by

their specific marker genes (Figure S1K). Level 3 represents

further classification of subclasses, including 264 cell clusters

(termed hereafter ‘‘types’’). Each level 3 cell type was annotated

by level 1 and 2 labels and two top-rank differentially expressed

genes (DEGs, Table S2). For example, the third type of glutama-

tergic cells found in L2 that highly expressed ART3/GPC5 was

annotated as Glu L2.3-ART3/GPC5. For the sake of brevity,

the cell-type name was simply referred to without marker genes

in the figures, e.g., Glu L2.3-ART3/GPC5 as L2.3. This snRNA-

seq analysis incorporating spatial transcriptome information

yielded a comprehensive cell-type taxonomy of themacaque ce-

rebral cortex.

Spatial distribution of diverse cell types across the
macaque cortex
We used stereo-seq to capture mRNAs from all cells of each

brain section in close contact with a large silicon chip (up to

5 cm3 3 cm), which comprised regular 2D arrays of DNA nano-

balls (DNBs; size, 220 nm; center to center, 500 nm). We devel-

oped a section-flattening method after cryo-sectioning to obtain

even and smooth surface contact between large brain sections

https://macaque.digital-brain.cn/spatial-omics
https://macaque.digital-brain.cn/spatial-omics
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and stereo-seq chips (see STAR Methods). Stereo-seq analysis

was performed on 10-mm coronal sections from the freshly iso-

lated left hemisphere of three adult male cynomolgus monkeys.

In monkey #1, we obtained a total of 119 sections at 500-mm

spacing covering the entire cortex (Table S3), together with

two 10-mm sections adjacent to each stereo-seq section for im-

munostaining and several adjacent 50-mm thick sections for

regional microdissection and snRNA-seq analysis (see above,

Figure 1A). For biological replication, we also obtained 10-mm

sections from two other monkeys (19 sections from #2 and 23

sections from #3, 3-mm spacing; Table S3). The 10-mm section

thickness, together with section preservation procedures that

reduced mRNA diffusion, facilitated spatial transcriptome anal-

ysis at the single-cell resolution.

Each stereo-seq section was stained with a dye specific to nu-

cleic acid28 and a fluorescence-labeled lectin, concanavalin A

(ConA), that marks the plasma membrane (Figures 2A and

S2A). An artificial intelligence (AI)-assisted automatic segmenta-

tion method was developed for single-cell identification based

on nucleic acid and ConA images (see STAR Methods and

Table S4). The reliability of automatic identification was shown

by high recall and precision rates (Figures 2B and S2B). Using

this method, we obtained 266,310 segmented cortical cells per

section with an average of 819 unique molecular identifiers

(UMIs) and 458 genes per cell (Figure 2C; Table S3). The average

number of genes per cell was much higher than that in back-

ground (1.5 ± 0.9 genes/bin) and that in 10 mm 3 10 mm bins

(each containing 20 3 20 DNBs; 147 ± 82 genes/bin) across

entire sections (Figure 2C).

To register and annotate spatially resolved single cells in stereo-

seq spatial transcriptome maps, we applied a recently developed

supervision-based cell typing method31 (Figure S2C; see STAR

Methods). Using this method, we identified cell types for

42,076,954 cortical cells in the spatial transcriptome map. The

robustness of cell annotation is evidenced by high correlation

value between the gene expression profiles of annotated cell

types and those of snRNA-seq-defined cell types (Figure S2D).

Molecularly defined, single-cell resolved 3D cell-type maps of

the cortex were then constructed for all three monkeys, and

high consistency of these maps was observed between adjacent

sections and biological replicates (Figures 2D and S2E–S2H). Im-

ages of five representative cortical sections along anterior-poste-

rior (A-P) axis are shown in Figure 2D (lower), revealing the distri-

bution of 23 cell subclasses. As expected, we found thatmany cell

subclasses showed clear laminar preferences, as illustrated by a

zoomed-in image and the density profiles of all cell subclasses

along the axis perpendicular to the cortical sheet of secondary so-

matosensory area (SII; Figure 2E). The laminar distribution of

various cell subclasses agrees with the layer-specific profile of

the corresponding marker genes, C1QL2 for L2, ADCYAP1 for

L2/3, IL1RAPL2 for L4, HTR2C for L4/5/6, and RXFP1 for L5/6

(Figures 2F, S2I, and S2J).
Figure 1. Transcriptomic cell-type taxonomy of the macaque cortex

(A) Overall experimental design. For snRNA-seq, single nuclei from 143 cortical

monkey #2 (left top), together with sections adjacent to stereo-seq sections in m

(B) Uniform manifold approximation and projection (UMAP) of snRNA-seq cluste

See also Figure S1 and Tables S1 and S2.
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The brain-wide stereo-seq map of diverse cell types allowed

us to further examine cell-type compositions in each cortical re-

gion. Unsupervised clustering analysis revealed that 9 major

cortical lobes could be distinguished by their cell-type composi-

tions based on the stereo-seq map (Figure 2G) and snRNA-seq

data (Figure S2K). Cells close to each other tend to have higher

probabilities of forming synaptic connections.32,33 We noted that

different cell types were locally intermixed on the spatial tran-

scriptome map (Figure 2H), suggesting that differential local

circuits could originate from distinct local cell composition.

Therefore, we quantified the ‘‘neighborhood complexity’’ of local

cell-type composition in various cortical layers (see STAR

Methods) and found that the complexity in deeper cortical layers

was higher than that in upper layers (Figures 2I and S2L).

Notably, for the neighborhood complexity of each layer, we

found distinct differences among cortical regions, as illustrated

for a representative region from each of the 9 cortical lobes

(Figures 2J and S2L). Therefore, cell types exhibited neighbor-

hood-composition specificity in different layers and regions.

Cell-type composition and distribution correlate with
cortical hierarchy
Further analysis of our stereo-seq cell-type maps showed

marked cell density differences among various cortical regions,

with the highest density in V1 (�1,500 cells/mm2) and the lowest

density in the entorhinal cortex (Elc; �200 cells/mm2) (Fig-

ure S3A). In line with the notion that higher-level regions in the

anatomical hierarchy exhibit lower cell densities, we found a

significantly negative correlation between cell densities and hier-

archical levels that were previously defined for the primate visual

and somatosensory systems34 (Figures 3A, 3B, S3B, and S3C).

Unsupervised clustering analysis revealed that regions of the

same hierarchical level exhibited similar cell-type composition

profiles in both sensory systems (Figures 3C, 3D, and S3D).

To uncover cell types important for the observed hierarchy-

dependent variation in cell-type compositions, we calculated

Pearson’s correlation coefficients between the percentages of

each cell type and hierarchical levels of various cortical regions

(see STARMethods). This allowed us to identify sets of glutama-

tergic, GABAergic, and non-neuronal cell types that exhibited

negative or positive correlation with hierarchical levels

(Figures 3E, 3F, and S3E). The distribution of these cell types

could be visualized in the reconstructed 3D maps for monkey

#1 (Figure 3G). Interestingly, many negatively correlated gluta-

matergic cell types were common in both systems; i.e., they

were preferentially localized to the early sensory pathways

(labeled red in Figures 3E and 3F). Marker genes of these cell

types were enriched in the gene ontology (GO) terms of calcium

ion binding, trans-synaptic signaling, and ion channel activity

(Figures S3F and S3G). In contrast, only a single GABAergic

cell type showed negative correlation with the hierarchical level

in both systems (SST.18 ADAMTS6/ESM1). Furthermore, four
regions were isolated by micro-dissections of tissue sections from macaque

onkey #1 (left below).

ring and cell-type taxonomy of the macaque cortex.
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glutamatergic, five GABAergic, and one non-neuronal cell

types showed distributions that positively correlated with the hi-

erarchical level in both systems (Figure S3E). Genes highly ex-

pressed in the latter glutamatergic cell types were associated

with the GO terms of neuron projection and dendritic spine (Fig-

ure S3G). The consistency of hierarchy-associated cell types in

the two sensory systems implicates a general rule for cellular or-

ganization in the macaque brain.

Spatial organization of glutamatergic neurons
Glutamatergic neurons account for the largest population of neu-

rons in the macaque cortex (Figure 1B) and exhibited clear

laminar preference across regions (Figures 2D–2F and 4A),

consistent with previous findings in mice and primates.8,35–37

We calculated the relative percentage of a specific cell type

among 9 cortical lobes and Shannon entropy value (the extent

of cell dispersal) for each cell type. Both parameters indicated

that several cell types were predominantly in specific lobes

(Figure 4A).

Based on distribution profiles calculated from relative cell den-

sity, we found that all glutamatergic cell types showed some de-

gree of preferential distribution along A-P gradient (Figure 4B).

We further zoomed in to the regional distribution of each gluta-

matergic cell type (Table S5) and found that nine glutamatergic

cell types were highly localized to specific cortical regions

(Figures 4C, 4D, and S4A). Four glutamatergic cell types

(L4.4 KCNH8/PDE3A, L3/4.7 HPSE2/TENM2, L4.8 NTNG1/

PHACTR2, and L6.7 SEMA3E/HS3ST4) were predominantly

localized to V1, two (L2/3.7 COL5A2/TESPA1 and L3/4.10

PHLDB2/SNTG2) to F1, and three (L2.1 CCBE1/EPHA6, L2/3.9

FAM19A1/LRRTM4, and L4.3 ILRAPL2/TSHZ2) to the temporal

pole. Since the marker genes of these cells were identified by

snRNA-seq, their region-specific expression in the stereo-seq

map further validated the reliability of cell-type identification

in this study (Figures 4E, 4F, and S4B). For example, V1-specific

cell types were characterized by a high expression of

NTNG1, which is known to guide axon growth during neuronal

development, and its polymorphismwas associated with schizo-

phrenia.38 The region-specific expression of NTNG1 was also

validated by RNAscope (Figure 4G). Using neighborhood

composition analysis as described above (Figure 4H), we found

that these region-specific glutamatergic cell types also showed
Figure 2. Single-cell spatial transcriptome map of the macaque cortex

(A) Single-cell segmentation for stereo-seq analysis. (Aa) Total mRNA captured f

total mRNA of the enlarged area in (Aa). Right: enlarged orange and purple boxes s

(Ad) for the areas as in (Ab). (Ae) AI-assisted automatic segmentation based on nu

dots, mRNAs inside cells.

(B) Recall and precision rates of cell segmentation for the region shown in (Ab).

(C) Cumulative percentage of the distribution of genes captured per cell for all regis

for 10 mm 3 10 mm binned areas (‘‘10-mm bin’’).

(D) Spatial distribution of 264 cell types organized in 23 cell subclasses in all coron

A-P axis.

(E) Spatial map (bottom) and density profiles (top) of cell subclasses from SII (wh

(F) Spatial map of five example cell types and marker genes for an example sect

(G) UMAP plot of regional cell-type compositions.

(H) Spatial maps of cell subclasses in V1, 46d, and F1.

(I and J) Neighborhood complexity of cell types in various cortical layers for all re

See also Figure S2 and Tables S3 and S4.
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distinct clusters of neighborhood compositions and layer speci-

ficity for V1, F1, and temporal pole regions (Figure 4I). Taken

together, our results uncovered layer and region specificities in

the distribution and composition of glutamatergic cell types in

the macaque cortex.

Given that glutamatergic receptors are essential for driving in-

formation processing in cortical circuits and serve as potent drug

targets in many brain diseases,39 we further mapped the spatial

distribution of these genes and found that the subunits of AMPA,

Kainate, Delta, NMDA, and metabotropic glutamate receptors

showed differential expression patterns among various cortical

layers and regions (Figures 4J, S4C, and S4D). Notably, we

found that many glutamatergic receptor genes exhibited expres-

sion levels positively correlated with the hierarchical levels of

various cortical regions in both sensory systems (Figures 4J

and S4D). For example, GRIN2B expression increased with

hierarchical level in both visual and somatosensory systems, in

line with a computational analysis showing increasing NMDAR-

GluN2B expression along the cortical hierarchy in humans.40 In

addition, the association between subunit expression and hierar-

chy was layer specific; for example,GRIA4 showed positive cor-

relation only in L2/3, whereas GRM3 showed that correlation in

L4–L6 (Figures 4J and S4D).

Spatial organization of GABAergic neurons
We next examined the layer and regional specificities of

GABAergic cells and found that RELN subclass was predomi-

nantly located in L1/2, whereas LAMP5, VIP, and VIP_RELN sub-

classes were enriched in L2/3/4. PV and SST subclasses were

dispersed across L2 to L6, and chandelier subclass (CHC) was

enriched in L2 and L4 (Figure 5A). All GABAergic neuron types

were distributed across nine cortical lobes with various degrees

of specificity: the fraction of eachGABAergic subclasswas lower

in visual cortices (V1–V4); PV subclass was higher in motor

cortices (F1–F7) and the entorhinal area; and CHC, RELN, and

VIP subclasses were prominent in the prefrontal and cingulate

cortices (Figures 5B and S5A–S5C; Table S5). A similar distribu-

tion of CHC cells was found in the human cortex.41

The fine stereo-seq maps allowed us to uncover spatial het-

erogeneity within GABAergic subclasses. As an example, SST

cells were selectively distributed in L2/3, L3, L3/4/5, L5, and

L5/6 and exhibited distinct gene expression and GO terms
rom an example section (ear bar zero [EBZ] coordinate +12.01 mm). (Ab) Left:

howing mRNA aggregates. (Ac and Ad) Staining for nucleic acid (Ac) and ConA

cleic acid and ConA staining. Red circles, boundaries of segmented cells; blue

tered single cells, for regions outside the segmented cells (‘‘background’’), and

al sections (top) and five example sections (bottom) frommonkey #1 along the

ite box in D), color coded as in (D).

ion (EBZ +10 mm) of monkey #1.

gions (I) and nine example regions (J).



Figure 3. Association between cell-type distribution and cortical hierarchy

(A and B) Hierarchical levels of visual (A) and somatosensory (B) systems, as defined by Felleman and Van Essen.34 Right: cell densities in the indicated brain

regions ordered by hierarchical levels.

(C and D) Cell density UMAP, showing the region clusters of different hierarchical levels.

(E and F) Heatmaps showing the regional density of individual cell types exhibiting positive or negative correlation with the hierarchical level.

(G) 3D surface rendering of the percentages of each major class shown in (E) and (F).

See also Figure S3.
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(Figures S5D–S5G). We found two groups of SST cell types that

showed ‘‘complementary abundance’’ in the macaque cortex:

group 1 exhibited high density in the prefrontal and cingulate

cortices, whereas group 2 mainly populated in the occipital

and parietal cortices (Figure 5C). Group 1 showed higher density

in L2 and L5, whereas group 2 peaked only in L2 (Figure S5H).

The two SST groups were also distinguished by gene expression

patterns and GO terms (Figures 5D and S5I). All 143 cortical re-

gions could be clustered into 9 cortical lobes based on the rela-

tive density of these SST cell groups (Figure 5E).

Chandelier cells innervate the axon initial segments (AISs) of

pyramid neurons and could veto neuronal firing.42 Among the

three chandelier cell types, CHC.3 was the most abundant in

L2, whereas CHC.1 and CHC.2 were dispersed among all layers

and the most abundant in L4 (Figure 5F). Cell adhesion mole-

cules were specifically upregulated in CHC.3 (CDH6, CDH20,

and PCDH17), whereas kainite (GRIK1) and nicotinic (CHRNA5)

receptor genes were highly expressed in CHC.1 and CHC.2 cells

(Figure 5G). Neighborhood analysis showed that 30 out of 122

glutamatergic cell types were co-localized with all three CHC

types (Figure S5J; Table S6). Furthermore, the neighborhood

composition of glutamatergic cell types was similar between

CHC.1 andCHC.2 cell types and distinct from that of CHC.3 cells

(Figure 5H). In most cortical regions, glutamatergic neurons in

the neighborhood of CHC.1 and CHC.2 cells were mostly L4

and L4/5 subclasses, whereas those in the neighborhood of

CHC.3 were mostly L2/3 subclass (Figure S5K). Thus, distinct

chandelier cells are involved in forming local circuits and modu-

lating neuronal activity of different glutamatergic types.

The balance between output-controlling PV and input-control-

ling SST GABAergic neurons contributes to regional differences

in local circuit properties.43 We therefore examined L2/3 PV/

(PV + SST) cell density ratios and found that PV/(PV + SST) den-

sity ratio was the highest in motor cortices (F1–F3, F6, and F7)

and the entorhinal area and the lowest in the insular and auditory

cortices (Figure 5I). Previous studies in mouse suggested areal

hierarchy in relative density between PV and SST neurons.43

However, PV and SST density ratio in macaque did not show

any significant correlation with the hierarchical levels in either

sensory system (Figure S5L). To investigate the correlation be-

tween hierarchical level and PV/SST cell-type compositions in

the monkey cortex, we performed principal component analysis

(PCA) on the cell composition vector (the relative density of all PV

and SST cell types) in each cortical region. The first principal

component (PC1) of various regions exhibited a positive correla-
Figure 4. Layer and regional preferences of glutamatergic cell types

(A) Volume-normalized cortical layer distribution (top), relative percentage among

glutamatergic cell type across the macaque cortex.

(B) Spatial distribution of all glutamatergic cell types along the A-P axis (EBZ coo

(C and D) Distribution density (C) and images (D) of example glutamatergic cell

coronal coordinates from three monkeys.

(E) Dot plot showing the expression patterns of top marker genes for the region-

(F) Spatial expression pattern of the indicated marker genes for the region-speci

(G) RNAscope assay of NTNG1 in V1.

(H) Schematics showing the procedure of neighborhood composition analysis.

(I) UMAP of the neighborhood composition of the region-specific cell types show

(J) Expression levels of AMPA, NMDA, and metabotropic glutamate receptor sub

See also Figure S4 and Table S5.
tion with the hierarchical levels of both sensory systems (Fig-

ure 5J), suggesting that the PV and SST interneurons with

distinct soma- and dendritic-targeting properties are tightly

regulated to support the functions of various cortical regions.

Further examination of the cell types contributing significantly

to the PC1 revealed that PV.9 POSTN/ADAMTS20, SST.28

TRPC6/PLSCR5, and PV.12 POSTN/LRIG3 were enriched in re-

gions of high hierarchical levels, whereas SST.18 ADAMTS6/

ESM1, SST.9 SYTL5/ADAMTS6, and PV.5 POSTN/SULF1

were enriched in regions of low hierarchical levels (Figure S5M).

In addition, we found significant correlation between the gene

expression of neurotransmitter and neuromodulator receptors

in PV/SST neurons and hierarchical levels in both sensory sys-

tems (Figure 5K). Thus, both cell density and receptors ex-

pressed in PV and SST cells are tightly regulated in a manner

dependent on hierarchy in the monkey cortex.

Spatial organization of non-neuronal cells
Using snRNA-seq data, we identified 34 non-neuronal cell types

that belonged to 6 subclasses, ASC, OLG, OPC, MG, EC, and

VMLC, identified by various conventional marker genes (Fig-

ure S6A). These non-neuronal cell types also showed preferen-

tial laminar localization across cortical regions (Figure 6A). For

examples, EC and VLMC cell types were predominantly distrib-

uted in L1, OLG cells were enriched in L6, and ASCs were

dispersed throughout cortical layers (Figure 6A). Consistent

with previous reports,44 glutamate transporters (SLC1A2 and

SLC1A3) and GABA transporters (SLC6A11 and SLC6A1) were

highly expressed in almost all ASC types (Figure S6A). Notably,

we also identified two groups of ASCs, group 1 (ASC.1 GFAP/

APLNR and ASC.2 MSX2/TFAP2C) and group 2 (ASC.11

ADGRV1/GRAMD2), which were predominantly located in L1

and L6, respectively (Figures 6B and S6B). These two groups ex-

pressed different sets of genes (GFAP, SOX6, MSX1, and PAX6

in group 1;GRIN2A,GRIN2B,GRIN1,GRIA2,GRIA3, andGRIA4

in group 2) related to distinct GO terms (Figures 6C and S6C–

S6E). Further analysis revealed that the glutamatergic receptor

genes, including AMPA, Kainate, NMDA, and Delta families,

were all expressed at a higher level in the group 2 ASCs (Fig-

ure 6D). Thus, specific ASC types with different localization

may serve distinct cortical functions in the macaque brain.

In addition to the laminar preference, we also observed that

L6-enriched ASCs were more abundant in V1 than in prefrontal

cortex (PFC) (Figure 6B). Systematic evaluation of the regional

distribution of non-neuronal cell types showed that ASC, MG,
nine cortical lobes (middle), and regional distribution entropy (below) of each

rdinates).

types with distinct regional localization in V1, F1, and temporal pole at similar

specific cell types in (D).

fic cell types in (D).

n in (C).

unit genes in different layers along the hierarchical level in visual systems.
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and OLG cell types were distributed in a gradient along the A-P

axis (Figure 6E; Table S5). Among ASC cell types, ASC.10,

ASC.11, ASC.13, and ASC.16 were preferentially enriched in

the occipital lobe. By contrast, ASC.2, ASC.8, ASC.9, and

ASC.12were preferentially located in the prefrontal and temporal

lobes (Figure 6F). For MG cell types, we found that deep-layer-

enriched MG.1 CX3CR1/CLEC12A and superficial-layer-en-

riched MG.2 CD5L/CCL13 were also enriched in anterior and

posterior regions, respectively (Figure 6A and 6E).

For OPC andOLG cell types, we performed pseudo-time anal-

ysis of snRNA-seq data and found a lineage trajectory from

OPCs to mature OLGs (Figures S6F–S6H), consistent with previ-

ous reports in mouse and human.35,45 Furthermore, stereo-seq

data showed that OLGs were enriched in L6, whereas OPCs

(highly expressing PDGFRA and COL9A1) were mostly found

in L1 and L2 (Figure 6A). In addition, OPCs were widely distrib-

uted along the A-P axis and across cortical regions (Figures 6E

and 6F). Among OLG cell types, we identified two groups based

on their global distribution: group 1 cells (OLG.3 ANLN/CNDP1,

OLG.5 PLP1/ERMN, OLG.7 ANLN/MOBP, and OLG.8 PLP1/

OPALIN) and group 2 cells (OLG.6 PLP1/MOG and OLG.11

ANLN/MOG) were localized to medial and posterior regions

along the A-P axis, respectively (Figure 6E). Notably, among

group 1 OLG cells, OLG.7 ANLN/MOBP cell type showed

distinct localization in F1 region (Figures 6G and S6I), as further

confirmed by high expression levels of its marker genes in F1

across coronal sections (Figures 6H and S6I). Perineuronal

OLGs provide metabolic support to neurons,46 the F1-enriched

OLG cell type may serve for the higher energy demands of

neuronal firing in the F1 region of the macaque brain. The two

OLG groups also showed differential gene expression patterns

(PLP1, CNP, and TF in group 1; NRXN1, NRXN3, and GRIK2 in

group 2; Figure 6I). Taken together, these results regarding the

spatial distribution of various non-neuronal cell types and their

marker genes suggested distinct laminar- and region-specific

functions of these non-neuronal cell types in the monkey cortex.

Primate-specific cell types
Neocortex enlargement during evolution is a critical step for the

emergence of higher cognitive functions in primates.11,47 To

explore whether new cell types appear in the primate cortex,

we compared our macaque single-nucleus transcriptome data

on the prefrontal, motor, and visual cortices with those retrieved
Figure 5. Organization of GABAergic cell types

(A) Heatmap of volume-normalized cortical layer distribution of GABAergic cell t

(B) Spatial distribution (upper, 3D rendering) and 2D plot (lower) of 3 major GABA

(C) Side and medial views of the 3D visualization of two SST cell groups.

(D) Dot plot showing the expression of enriched genes in G1 and G2 SST groups

(E) UMAP clustering of SST cell-type compositions.

(F) Distribution images showing three CHC types.

(G) Dot plot showing the expression patterns of various marker genes for the thr

(H) Left: UMAP based on the neighborhood compositions of glutamatergic neuron

pair between CHC types.

(I) Relative density of PV vs. SST cell types in various cortical regions.

(J) Correlation between PC1 of PV and SST cell-composition vectors and region

(K) Expression levels of neurotransmitter and neuromodulator receptor subunit an

(left) and somatosensory (right) systems.

See also Figure S5 and Tables S5 and S6.
from published studies on both the human and mouse

cortices.12,16,48,49 We first focused on single-cell datasets of glu-

tamatergic neurons across species in each of the three cortices

and identified 8 glutamatergic cell subclasses (Car3, L2/3 IT, L4/

5 IT, L5 PT, L5/6 IT, L5/6 NP, L6 CT, and L6b) based on canonical

marker genes (Figures 7A–7C). Cross-species comparison

showed that macaques shared a larger number of marker genes

for each subclass with humans thanwith mice (Figure S7A). Spe-

cies-specific expression of a total of 1,630 genes was found for

all 8 cell subclasses among human, macaque, and mouse,

but conserved expression among all species was identified

for only 201 genes in the prefrontal cortex (Figure S7B), consis-

tent with previous findings based on single-cell RNA-seq ana-

lyses.12,15,35 Although these glutamatergic cell subclasses

were consistent across species, a group of L4/5 IT neurons pre-

sented in all three cortical regions (PFC, M1, and V1) was found

in macaques and humans, but not in mice (Figures 7A–7C and

S7C). Remarkably, a pairwise comparison of the transcriptome

profiles of cell types uncovered six glutamatergic L4 cell types

that were present in the PFC, F1, and V1 regions of macaques

and humans but not in mice (Figures 7A–7C, marked in red).

Spatial transcriptome map showed that these cell types were

preferentially distributed in L4 of most cortical regions (Fig-

ure 7D). Further cross-species comparison analysis using cells

only from the medial and orbital prefrontal cortices also revealed

the existence of primate-specific L4 cell types (Figures S7D–

S7F). These primate-specific cell types showed higher abun-

dance in the 46 and 10 regions of the macaque prefrontal cortex

(Figure S7G), suggesting that primate-specific cell types might

be associated with the emergence of new cortical regions in pri-

mates. Cross-species comparison of GABAergic and non-

neuronal cell types revealed the similarity of cell types in these

cortical regions between primates and mice (Figure S7H).

Tocharacterize themolecular fingerprints ofprimate-specificL4

glutamatergic types, we conducted differential expression anal-

ysis and found 226 highly expressed genes in the 6 primate-spe-

cific cell types (Figure 7E). Further GO analysis revealed that these

geneswere associatedwith axonogenesis and synapse organiza-

tion (Figure 7F). These genes also included L4/5 marker genes,

such asRORB, IL1RAPL2, and TSHZ2, top-ranked genes in these

primate-specific cell types (Figure 7E). In addition, we found that

53 out of the 226 genes, including FOXP2, EPHA3, and DCC,

showed much higher expression levels in the L4/5 IT subclass
ypes.

ergic subclasses along the A-P axis.

.

ee CHC types in (F).

s adjacent to three CHC cell types. Right: average UMAP distance of each cell

al hierarchy levels.

d transporter genes in PV or SST neurons along the hierarchical level in visual
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neurons of humans and macaques than in those of mice (Fig-

ure7G).Ofparticular interest isFOXP2,whichencodesa transcrip-

tion factor involved in developmental verbal dyspraxia.50 We

further quantified FOXP2 expression in each cortical layer of all re-

gions of the macaque cortex and found that this gene showed the

highest expression level in L4 formost cortical regions (Figure 7H).

However, for regions exhibiting noclear L4, suchas frontal and en-

torhinal cortices, FOXP2 expressionwas highest in L6 (Figure 7H),

consistent with a recent study showing the primate-specific

expression of FOXP2 at L4 in PFC.35 Similar high expression of

EPHA3 and DCC was also found in L4 of macaque and humans

(Figures 7G and 7H). For cortical regions without clear L4,

EPHA3 and DCC showed the highest expression levels in L2/3

and L5/6, respectively (Figure 7H). Our RNAscope assays vali-

dated the highest expression levels of FOXP2 and EPHA3 in L4

of V2, whereas in the V1 region, FOXP2 and EPHA3 showed

the highest expression levels in L6 and L2/3/5, respectively (Fig-

ure 7I). Consistently, previous in situ hybridization (ISH) studies

also showed the region-dependent laminar expression of these

genes in humans (https://human.brain-map.org/ish/specimen/

show/78721333?gene=60634). By contrast, ISH data revealed

that FOXP2 was only expressed in L6 of mice (https://mouse.

brain-map.org/experiment/show/72079884). Thus, the evolu-

tionary expansion of primate cortex was accompanied by the

emergence of primate-specific cell types located in L4anddistinct

laminar gene expression patterns in a region-dependent manner.

DISCUSSION

In this study, we have performed a comprehensive spatial tran-

scriptome analysis of the entire macaque monkey cortex with

single-cell resolution, using a recently developed stereo-seq

technology. Our brain-wide transcriptome analysis was based

on 161 coronal sections across the left hemisphere of three

male macaque brains. The reproducibility of our data was

confirmed by gene profiles and cell compositions mapped in

sections of similar coronal coordinates from three monkeys.

Our interactive web portal offers a useful resource for the

research community.

The discovery of a large number of transcriptome-defined

cell types within glutamatergic and GABAergic neurons raises

the question of their relationship with cell types defined by den-

dritic morphology,51–53 electrophysiological properties,51,54,55

and single-cell connectome.37,56–58 The integration of cell types

defined by various approaches represents an important issue to

be addressed,58 as illustrated by recent studies in mice51,54,59,60

and humans.11,61 The diversity of cell types based on gene
Figure 6. Distribution of non-neuronal cell types

(A) Heatmap of the volume-normalized cell density of non-neuronal cell types.

(B) Spatial distribution of ASC types in 5 representative cortical sections.

(C) Volcano plot showing DEG levels in L1- and L6-enriched ASC types.

(D) Dot plot showing the gene expression patterns of 3 layer-specific ASC types

(E) Density profiles of various non-neuronal cell types along the A-P axis.

(F) Heatmap showing the distribution of ASC and OLG cell types across cortical

(G and H) Images showing the distribution of F1-enriched OLG.7 (G) and marker

(I) Expression patterns of the indicated genes in various OLG types.

See also Figure S6 and Table S5.
expression profiles is bound to be reflected in the diverse cellular

structure and function. In particular, we found the L2/3 glutama-

tergic cells highly expressed ADCYAP1, a gene encoding pitui-

tary adenylate-cyclase-activating polypeptide (PACAP), a pep-

tide that drives cAMP signaling and serves as the ‘‘master

regulator’’ of stress signaling in the nervous system. It is known

that ADCYAP1 is enriched in the L3 pyramidal cells of the rhesus

monkey dorsolateral prefrontal cortex (dlPFC), based on laser

capture microdissection.62 Such layer-specific expression of

genes across various regions of the cortex calls for further

studies on their roles in cortical processing. It is noteworthy

that we found regional variations in the trends of parvalbumin

and calretinin neurons between our datasets and those previ-

ously reported using immunohistochemistry staining data63

(data not shown), whichmight be explained by the discrepancies

between RNA and protein levels within cells.64–67

Notably, our study revealed several rules of cellular organiza-

tion with respect to cortical hierarchy. First, all three major cell

classes contain cell types with their regional densities positively

or negatively correlated with the cortical hierarchy of the visual

and somatosensory systems. Second, many cell types showing

positive or negative correlation with hierarchy are shared by

these sensory systems. Third, the number of glutamatergic cell

types with negative correlation with hierarchy is much higher

than that of GABAergic cell types. Finally, the regional distribu-

tion of non-neuronal cell types only exhibits positive correlations

with the hierarchy level. These organization rules on cell-type

distribution may underlie the increasing complexity of informa-

tion processing with the hierarchy level and provide the basis

for further studying the specific roles of various cell types in

cortical functions at different hierarchy levels. Furthermore, the

increased expression of the glutamatergic receptor genes and

the decreasing density of various glutamatergic cell types along

the hierarchy level imply that the expression of these genes is

increasingly elevated in each cell with its hierarchy level, consis-

tent with the elevated spine density in neurons.68

Neocortical expansion in prefrontal, parietal, and temporal

cortices is an important step in primate evolution,69 and it is likely

to involve primate-specific gene expression patterns that under-

lie more complex cognitive functions. The primate brain is more

hierarchically organized than the mouse brain.70,71 The primate-

specific L4 cell types found in this study highly expressed the

neuropsychiatric risk gene FOXP2, ephrin receptor EPHA3,

and neurodevelopment-related gene DCC. Further comparison

of spatial transcriptomic maps among humans, non-human pri-

mates, and rodents will provide molecular insights into the evo-

lution and morphogenesis of the primate brain.
.

regions.

gene (H) in representative sections.
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As macaque models of brain disorders are now becoming

available,72 spatial transcriptomic analysis of these models will

help elucidate pathogenic mechanisms and identify therapeutic

targets for human brain disorders. Our results provide the first

comprehensive brain-wide spatial transcriptome of the ma-

caque cortex at the single-cell level and pave the way for future

molecular and cellular studies of brain organization during evolu-

tion, development, aging, and pathogenesis.

Limitations of the study
The average number of genes captured per cell (�500) by the

present method was higher than that found by using previously

reported methods,28 although it remained much lower than

that obtained by conventional snRNA-seq method. We have

partially circumvented the problem by using our snRNA-seq

data to assist cell-type identification. Technical improvement in

the mRNA-capturing capability and combination with protein

recognition may further elevate the sensitivity and precision of

the spatial-resolved cell taxonomy in the brain. The 3D spatial

transcriptome atlas at the single-cell resolution was based on a

total of 119 coronal sections with 500-mm spacing profiled in

this study covering all macaque cortical regions, which could

be extended to whole brain by adding sagittal sections. In addi-

tion, only male monkeys were used in this study, and the sexual

dimorphism of the gene expression patterns of the macaque

brain needs to be examined in the future.
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Antibodies

Anti-NeuN Antibody Sigma-Aldrich RRID: AB_2298772

Goat Anti-Mouse IgG Vector Lab RRID: AB_2336171

Biological samples

#1 Cynomolgus monkeys (6-year-

old, 4.2 kg)

This study N/A

#2 Cynomolgus monkeys (4-year-

old, 3.7 kg)

This study N/A

#3 Cynomolgus monkeys (7-year-

old, 10.6 kg)

This study N/A

Chemicals, peptides, and recombinant proteins

Normal Goat Serum Blocking Solution Vector Lab S-1000-20

VECTASTAIN� ABC-HRP Kit Vector Lab PK-4000

RNAscope� Wash Buffer Reagents Advanced Cell Diagnostic Cat.No.310091

RNAscope� Target Retrieval Reagents Advanced Cell Diagnostic Cat.No.322000

RNAscope� H2O2 and Protease Reagents Advanced Cell Diagnostic Cat.No.322381

RNAscope� Multiplex Fluorescent

Detection Reagents v2

Advanced Cell Diagnostic Cat.No.323110

RNAscope� Multiplex TSA Buffer Advanced Cell Diagnostic Cat.No.322810

550/570 nmm Opal 570 Reagent Pack Akoya FP1488001KT

TSA Vivid Fluorophore 650 Advanced Cell Diagnostic Cat.No.323273

DAPI Fluromount-G� SouthernBiotech Cat.No.0100-20

Probe Diluent Advanced Cell Diagnostic Cat.No.300041

20 3 PBS Buffer Sangon Biotech B548117-0500

Paraformaldehyde Sigma-Aldrich P6148-1KG

Tissue-Tek OCT Sakura 4583

AMPure XP Beads Vazyme N411-03

ssDNA reagent lnvitroge Q10212

20 3 SSC Ambion AM9770

Pepsin Sigma P7000

RNase inhibitor NEB M0314L

Exonuclease I NEB M0293L

Qubit� dsDNA Assay Kit INVITROGEN Q32854

EDTA INVITROGEN 15575-038

ConA Rhodamine Vector RL-1002

Deposited data

Public Single-nucleus RNA sequencing

data of human PFC

NCBI SRA SRA: PRJNA434002

Public Single-nucleus RNA sequencing

data of human F1

NeMO Archive nemo: dat-ek5dbmu

Public Single-nucleus RNA sequencing

data of human V1

GEO GEO: GSE97942

Public Single-cell RNA sequencing data of

mouse PL-ILA-ORB

NeMO Archive nemo: dat-jb2f34y

Public Single-nucleus RNA sequencing

data of mouse F1

NeMO Archive nemo: dat-ek5dbmu
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Public Single-cell RNA sequencing data of

mouse V1

NeMO Archive nemo: dat-jb2f34y

Public Single-nucleus RNA sequencing

data of human 32, 25, 13 regions

NeMO Archive RRID:SCR_016152

Raw data of stereo-seq and snRNA-

seq data

This study https://db.cngb.org/search/project/

CNP0002035

Processed data of stereo-seq and snRNA-

seq data

This study https://macaque.digital-brain.cn/

spatial-omics

Oligonucleotides

RNAscope� Probe- Mfa-TSHZ2-C1 Advanced Cell Diagnostic 1229081-C1

RNAscope� Probe- Mfa-EPHA3-C2 Advanced Cell Diagnostic 1229011-C2

RNAscope� Probe-Mfa-FOXP2-C3 Advanced Cell Diagnostic 1229021-C3

RNAscope Probe - Mmu-SST Advanced Cell Diagnostic 461681

Stereo-seq-TSO:

CTGCTGACGTACTGAGAGGC/rG//

rG//iXNA_G/

Sangon N/A

cDNA PCR primer:

CTGCTGACGTACTGAGAGGC

Sangon N/A

Stereo-seq-library-F: /5phos/

CTGCTGACGTACTGAGAGG*C*A

Sangon N/A

Stereo-seq-library-R:

GAGACGTTCTCGACTCAGCAGA

Sangon N/A

Stereo-seq-library-splint-oligo:

GTACGTCAGCAGGAGACGTTCTCG

Sangon N/A

Stereo-seq-read1: CTGCTGACGTAC

TGAGAGGCATGGCGACCTTATCAG

Sangon N/A

Stereo-seq-MDA-primer:

TCTGCTGAGTCGAGAACGTC

Sangon N/A

Stereo-seq-read2: GCCATGTCGTTC

TGTGAGCCAAGGAGTT

Sangon N/A

Software and algorithms

R https://cran.r-project.org/ V4.0.3

Seurat https://satijalab.org/seurat/ V4.1.1

SeuratDisk https://github.com/mojaveazure/

seurat-disk

V0.0.0.9020

Spatial-ID https://github.com/

TencentAILabHealthcare/spatialID

Nov 17, 2022

MetaNeighbor https://github.com/gillislab/

MetaNeighbor-BICCN

V1.10.0

clusterProfiler http://www.bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

V3.18.1

Monocle2 https://github.com/Scylardor/Monocle2 V2.20.0

pheatmap http://mirrors.ustc.edu.cn/CRAN/web/

packages/pheatmap/index.html

V1.0.12

ggplot2 https://cran.rstudio.com/web/packages/

ggplot2/index.html

V3.3.6

ggtree https://github.com/YuLab-SMU/ggtree V3.0.4

ggfx GitHub - thomasp85/ggfx: Filters and

Shaders for ’ggplot2’

V1.0.1

ggnet GitHub - briatte/ggnet: Network

visualization with ggplot2

V0.1.0

ggpubr GitHub - kassambara/ggpubr: ’ggplot2’

Based Publication Ready Plots

V0.5.0

(Continued on next page)
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org.Hs.eg.db https://bioconductor.org/packages/

release/data/annotation/html/org.Hs.eg.

db.html

V3.14.0

enrichplot https://bioconductor.org/packages/

release/bioc/html/enrichplot.html

V1.14.2

eulerr https://cran.r-project.org/web/packages/

eulerr/vignettes/introduction.html

V6.1.1

tidyverse https://www.tidyverse.org/ V1.3.2

ComplexHeatmap GitHub - jokergoo/ComplexHeatmap:

Make Complex Heatmaps

V2.10.0

python https://www.python.org/ V3.8.13

scanpy https://pypi.org/project/scanpy/ V1.9.1

numpy https://pypi.org/project/numpy/ V1.22.3

pandas https://pypi.org/project/pandas/ V1.4.3

bbknn https://github.com/Teichlab/bbknn V1.5.1

Metascape https://metascape.org/ N/A

ANTs https://github.com/ANTsX/ANTs V2.3.5

HCP workbench https://humanconnectome.org/software/

connectome-workbench

V1.5.0

Matlab https://www.mathworks.com/products/

new_products/release2019b.html

R2019b

scrattch.hicat https://github.com/AllenInstitute/

scrattch.hicat

v1.0.0
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Lead contact
Further information and requests for the resources and reagents may be directed to and will be fulfilled by the lead contact, Chengyu

Li (tonylicy@ion.ac.cn).

Materials availability
All materials used for stereo-seq and snRNA-seq are commercially available.

Data and code availability
d The processed data ready for exploration can be accessed and downloaded via https://macaque.digital-brain.cn/

spatial-omics. All raw data have been deposited to CNGB Nucleotide Sequence Archive (accession code: CNP0002035,

https://db.cngb.org/search/project/CNP0002035) and are publicly available as of the date of publication. Accession numbers

are listed in the key resources table.

d All data were analyzed with standard programs and packages, as detailed in the key resources table. Custom code of AI-as-

sisted single cell segmentation algorithm is available at https://github.com/TencentAILabHealthcare/Cell_Segmentation_

Fluorescence.

d Additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal care
Animal protocol was approved (ION-2019011) by the Biomedical Research Ethics Committee of CAS Center for Excellence in Brain

Science and Intelligence Technology, Chinese Academy of Sciences. Animal care complied with the guideline of this committee. Left

hemispheres were collected from three male cynomolgus monkeys (M. fascicularis; #1, 6-year-old, 4.2 kg; #2, 4-year-old, 3.7 kg; #3,

7-year-old, 10.6 kg).
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METHOD DETAILS

Tissue collection
The animals were deeply anesthetized with tiletamine hydrochloride, zolazepam hydrochloride (25 mg/kg, I.M) and xylazine hydro-

chloride (20 mg/kg, I.M). The brain was quickly perfused at room temperature with artificial cerebrospinal fluid (ACSF, 0.6 L/kg, and

perfusion speed 100 mL/min through the heart) bubbled with oxygen (influx with a mixture of 95% O2 and 5% CO2), followed with

prechilled bubbled ACSF (4�C, 100mL/min). Using a stereotaxic device and a micromanipulator (SMM-200, Narishige), we coronally

cut through central sulcus and divided the left hemisphere into anterior and posterior blocks. The isolated brain blocks were quickly

wiped dry with sterile gauze andmixed thoroughly with 4�COCT (4583#, Sakura). Subsequently the brain blockswere transferred to a

metal mold fully embedded with 4�C OCT, quickly frozen on dry ice, and then stored in -80�C refrigerator. To minimize RNA degra-

dation, all solutions were prepared with sterilized water containing diethyl pyrocarbonate (DEPC) (B501005-0005, Sangon Biotech),

and all instruments were washed with sterilized water containing DEPC and RNase Zap (AM9780, Invitrogen). The whole tissue

collection process was completed within 30 min.

Tissue cryosection and section flattening
Before cryosection, temperature of the cooling chamber was set to -20�C. The tools involved (chip, forceps, brush and blade) were

placed in the cryostat chamber in advance for pre-cooling. Immediately before sectioning, anterior and posterior blocks were placed

into two separate cryostats (Thermo Fisher Cryostar NX50). At each desired coronal coordinate, cryosectionwas performed to obtain

one 10-mm section for Stereo-seq, two 10-mm sections for immunohistochemical staining, and three-five 50-mm sections for

snRNA-seq. Block face images were taken for each coordinate. Between successive days of sectioning, the tissue blocks were

stored at -80�C. The thin Stereo-seq sections were firstly flattened on cold metal plane (-20�C) in cryostat by soft brush and plastic

tweezers. Then the section was carefully placed onto the precooled Stereo-seq chip (-20�C). To attach a tissue section progressively

on the entire chip, a Stereo-seq section was placed manually on operator’s hand to gradually raise section temperature on Stereo-

seq chip. This procedure enables tissue attachment without air bubbles and tissue folding.

Tissue-section processing for stereo-seq
The tissue section on the Stereo-seq chip (5 cm x 3 cmor 2 cm x 3 cm)was then incubated at 37�C for 5-8min and subsequently fixed

in methanol (Sigma, 34860, precooled for 30 mins at -20�C; 40ml methanol was added in 10 cm dish for each section) and incubated

at -20�C for 30 minutes. Methanol was then dried out in a hood. Tissue section on the chip was then stained with mixture of nucleic

acid reagent (Invitrogen, Q10212) and conA Rhodamine (Vector, RL-1002, working concentration 200 mg/ml) for 5 min and subse-

quently washed with 0.1x SSC buffer (Ambion, AM9770; containing 0.05 U/ml RNase inhibitor). Section images were captured using

Zeiss Axio Scan Z1microscope (at EGFPwavelength, 10-ms exposure). Tissue sections were then permeated by incubating in 0.1%

pepsin (Sigma, P7000) at 37�C for 15 minutes (pepsin was prewarmed at 37�C for 3 min) in 0.01M HCl buffer (pH 2) and then washed

with 0.1xSSC buffer (containing 0.05 U/ml RNase inhibitor) to remove pepsin. In this step, RNAs were released from the permeated

tissue and captured by Stereo-seq chip. RNAs were then reverse transcribed for 2 hours at 42�C. After reverse transcription, tissue

sections were washed with 0.1x SSC buffer and digested with tissue removal buffer (10 mM Tris-HCl, 25 mM EDTA, 100 mM NaCl,

0.5% SDS) at 55�C for 30 min, and then the chips were washed twice with 0.1x SSC buffer. The cDNA-containing chips were then

subjected to Exonuclease I (NEB, M0293L) treatment for 1 hour at 37�C and were washed once with 0.1x SSC buffer. The cDNAs

were amplifiedwith Hot Start DNAPolymerase (QIAGEN). The PCR reaction protocol was: first incubation at 95�C for 5min, 15 cycles

at 98�C for 20 s, 58�C for 20 s, 72�C for 3min and a final incubation at 72�C for 5min. The PCR products were then purified using 0.6 x

VAHTSTM DNA Clean Beads and were quantified by Qubit dsDNA HS assay kit (Invitrogen, Q32854).

Library preparation and sequencing
One-hundred ng of cDNA (20 ml) from each sample were tagmented with Tn5 transposases (Vazyme) at 55�C for 10 mins, then the

reaction was stopped by adding 5 mL of 0.02% SDS. PCR reaction mix (75 mL, Library HIFI Master Mix, Library PCR primer mix) was

added to each fragmented cDNA sample. Samples were then transferred to a thermal cycler for amplification using the following pro-

tocol: 1 cycle at 95�C for 5 min, 13 cycles of tri-temperature reaction (98�C 20 s, 58�C 20 s and 72�C 30 s), and 1 cycle at 72�C for

5 min. After amplification, the PCR products were purified with 0.6x and 0.2x VAHTSTM DNA Clean Beads (VAZYME, N411-03) and

were used for DNB (DNANanoBall) generation. Finally, the DNBswere sequenced on the DNBSEQTM T10 sequencing platform (MGI,

Shenzhen, China) with 50 bp read1 and 100 bp read2.

Immunohistochemical staining
Coronal sections adjacent to Stereo-seq chips were collected for IHC staining with NeuN antibody, which recognizes the DNA-bind-

ing, neuron-specific protein NeuN. The 10-mmsections weremounted on gelatinized glass slides, and baked to dry for 5min at 37 �C.
The mounted brain tissues were fixed with 4% paraformaldehyde in 0.1M phosphate buffer (PBS) for 10 min. After three washes in

PBS, the sections were pre-incubated for 15 min in 0.5% Triton X-100 in PBS, and then 1 hour in blocking solution containing 10%

normal goat serum and 0.1% Triton X-100 in PBS (0.1% PBST). Then the sections were incubated overnight at 4�C in 0.1% PBST

containing the monoclonal antibody NeuN (Sigma-Aldrich, 1:1500). After three washes in PBS, the sections were incubated for
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30 min in 0.1% PBST containing 0.6% hydrogen peroxide to block endogenous peroxidase that might contribute to background

staining. After three washes in PBS, the sections were incubated in PBS containing biotinylated secondary antibody (1:200) for 2

hours, washed three times in PBS, and transferred to PBS containing the peroxidase conjugate from the Vectastain CBC kit (Vector

Laboratories, Burlingame, CA). After rinsing three times in PBS, the sections were immersed in a solution of 0.05% 3-3’diaminoben-

zidine-4HCl (DAB, Sigma-Aldrich, St Louis, MO) and 0.05% hydrogen peroxide. After staining, the sections were dehydrated in

increasing concentrations of ethanol, cleared in xylene and coverslipped with DPX medium. Subsequently, the glass-mounted sec-

tions were scanned at 53 (0.88 mm/pixel) in a Zeiss scanner to generate images.

RNA in situ hybridization (RNAscope)
The RNAscope procedures were conducted in accordance with the manufacturer’s instructions using the RNAscope� Multiplex

Fluorescent Reagent Kit v2 (Cat. No. 323100). Fixed frozen tissues from an 18-year-old female cynomolgus monkey (M. fascicularis)

were used to prepare 14-mm thick sections, which were mounted on SuperFrost Plus Slides (Fisher Scientific, Cat. No. 12-550-15).

The sections were air-dried for 2 hours at -20�C and then stored with desiccants at -80�C. Prior to hybridization, the slides were

washed with PBS for 5 minutes and baked for 30 minutes at 60�C. The sections were post-fixed with pre-chilled 4% paraformalde-

hyde in PBS for 15minutes at 4�C, followed by dehydration with gradient alcohol. The RNAscope�Hydrogen Peroxide was added to

cover the entire section, and the slides were incubated for 10 minutes at room temperature. The slides were then washed in distilled

water. To prepare the sections for hybridization, they were boiled for 5 minutes in the RNAscope 1X Target Retrieval Reagent and

incubated for 30 minutes in RNAscope Protease III at 40�C. The sections were then hybridized with each probe (FOXP2, EPHA3,

SST) in a HybEZ oven (Advanced Cell Diagnostics, Newark, CA, USA) for 2 hours at 40�C. The RNAscope Multiplex Fluorescent Re-

agent Kit v2 was used to visualize the signal, and section images were captured using a Zeiss Axio Scan Z1 microscope (103,

0.65 mm/pixel).

Brain tissue collection for snRNA-seq
For monkey #1, the snRNA-seq samples were collected from frozen sections adjacent to those for Stereo-seq. These sections were

cut at 50-mm thickness, and 3 to 5 sections for each coronal coordinate were collected for snRNA-seq analysis. Sections were trans-

ferred into plastic wells on dry ice and stored in a -80 �C refrigerator. Each section was further segmented into distinct areas on dry ice

using tissue punchers (5 - 8 mm in diameter). Tissues at the same brain regions (e.g., around the same sulcus) were combined in a

prechilled pipe as one sample. For monkey #2, the snRNA-seq samples were dissected from block-face cortical regions of the hemi-

sphere contralateral to that used for Stereo-seq. In the cryostat, the cortical areas were segmented at 1 – 2 mm depth using tissue

punchers (2.5 - 4 mm in diameter). After dissection, the samples were immediately frozen in liquid nitrogen and then kept in dry ice or

-80 �C refrigerator. Throughout the sampling manipulation, the tissues were carefully transferred to pre-cold tube without thawing.

Single-nucleus suspension preparation
Single nucleus suspension was prepared as previously described.73 Briefly, frozen monkey brain tissue pieces were placed in

Dounce homogenizer with 2 ml pre-chilled homogenization buffer and kept the Dounce homogenizer on ice during grinding. Tissue

was homogenized with 10-15 strokes of the pestle A and followed by 10-15 strokes of the pestle B, then added 2ml homogenization

buffer to the Dounce homogenizer and filtered the homogenate through 30 mm MACS SmartStrainers (Miltenyi Biotech, #130-110-

915) into 15 ml conical tube and centrifuged at 500 g for 5 mins at 4�C to pellet nuclei, then the pellet was resuspended in 1.5 ml of

blocking buffer and centrifuged at 500 g for 5 mins at 4�C to pellet nuclei. Nuclei were resuspended with cell resuspension buffer for

subsequent snRNA-seq library preparation.

snRNA-seq library construction and sequencing
The DNBelab C Series High-throughput Single-Cell RNA Library Preparation Kit (MGI, #940-000047-00) was utilized to construct the

sequencing libraries according to themanufacturer’s protocol. In brief, single-nucleus suspensions were used for droplet generation,

emulsion breakage, beads collection, reverse transcription, second-strand synthesis, cDNA amplification and droplet index product

amplification to generate barcoded libraries. The sequencing libraries were quantified by Qubit� ssDNA Assay Kit (Thermo Fisher

Scientific, #Q10212) and sequenced on the ultra-high-throughput DIPSEQ T1 or DIPSEQ T10 sequencers sequencer at the China

National GeneBank (Shenzhen, China).

snRNA-seq data processing
The sequencing data were processed as previously described.29 First, bead barcodes and unique molecular identifier (UMI) se-

quences were extracted using parse function in PISA (https://github.com/shiquan/PISA). For cDNA libraries, 1-10bp and 11-20bp

of read1 were bead barcodes, the 21-30bp was UMI sequence, the whole read2 (100bp) was used for downstream alignment anal-

ysis. For the Droplet Index libraries, 1-10bp and 11-20bp of read1 sequences were bead barcodes, the 1-10bp of read2 was UMI

sequence, the 11-20bp and 21-30bp of read2 were droplet index barcodes. Readswith improper barcodes according to the barcode

list were excluded. To map the pre-mRNA fragments which may cover both exonic and intronic regions, we created a modified GTF

annotation file from ensemble release-91 which only contain transcript regions, and the original annotation rows for exons were all

deleted, then we replaced the feature type name from ‘transcript’ to ‘exon’. Then the snRNA-seq data were aligned to Macaca
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fascicularis genome (5.0.91) reference using STAR (v2.5.3)74 with themodified GTF file described above. To estimate the actual num-

ber of beads, we used the ‘‘barcodeRanks’’ function of DropletUtils tool to find the threshold value of sharp transition in total UMI

counts distribution. Beads with UMI counts less than the threshold were removed. We merged the beads considered to be one

cell,29 and counted the gene expression of cells by PISA.

We next filtered out libraries for quality control using the following criteria: 1) Reads with proper barcodes less than 1,000,000, 2)

overall mapping ratio less than 85%, and 3) estimated number of cells less than 1,000 (except for 6 cerebellum libraries). As a result,

444 snRNA-seq libraries covering different brain areas among two macaques were included for further downstream analysis.

Cell clustering and cell-type identification using snRNA-seq data
Basic processing and visualization of the snRNA-seq data were performed with the Scanpy (v.1.9.1) in Python (v.3.8.13). We dis-

carded cells with the number of genes (nFeatureRNA) less than 1000, the molecule to gene ratio (nCount/nFeature) less than 1.2

and the percentage of mitochondrial genes (percent.mt) larger than 5%. After the first quality control, 1,493,240 cells were remained

for the following analyses. The data were log normalized and scaled to 10,000 transcripts per cell. Genes with high variations across

cells were identified with the ‘‘sc.pp.highly_variable_genes’’ function with default parameters (top 3000). Next, principal component

analysis (PCA) was carried out, and the top 40 principal components (PCs) were used by BBKNNmethod to remove the batch effect

among two macaques. Graph-based clustering (Leiden) was performed with resolution of 1.0 on the graph-representation output of

BBKNN. This method resulted in 33 cell clusters. We used uniform manifold approximation and projection (UMAP) method to visu-

alize the distance between cells in 2D space. We then categorized the 33 cell clusters into 3 categories based on classical marker

genes, including glutamatergic neurons, GABAergic neurons and non-neuronal cells. Then the three categories of cells were further

iteratively classified intomore cell clusters with higher resolution. A total of 264 cell clusters were kept after removing clusters with low

quality, with the number of cells less than 100, or doublets (expressingmarker genes of multiple cell types). We applied wilcoxon rank

sum test using the ‘‘sc.tl.rangk_genes_groups’’ function for differential gene expression analysis among clusters. Genes with log2
fold-change > 1 and FDR < 0.05 were retained as significant marker genes for the cluster. We compared the top 50 ranked marker

genes of each pair of cell clusters by calculating Jaccard similarity, and combined clusters with Jaccard similarity larger than 0.8. We

also removed outlier cells for each cluster based on the distance to the center point. A random forest classifier was used to assess the

robustness of the various cell clusters. The top 50 DEG were selected as features, and 100 cells were randomly sampled from each

cluster, of which 80% of the cells were used to train the model, and the rest 20% as a validation dataset. This procedure was done

with ‘‘tuneRF’’, ‘‘randomForest’’, and ‘‘predict’’ functions of randomForest R package (v.4.7.1.1). For each cell type, we used previ-

ously reported marker genes to determine the subclass label of each cell-type.75–77 To build a dendrogram of cell types, we used a

correlation matrix based on median expression values for the top 50 most significant marker genes of each cluster with function

‘‘build_dend’’ from the scrattch.hicat package.

Prediction of the projection properties of glutamatergic cell subclasses
Transcriptome profiles of glutamatergic neurons from our data and published data were integrated by the ‘‘IntegrateData’’ function of

Seurat R package (v 4.3.0) with the marker genes as anchors. Then principal component analysis (PCA) was carried out and the top

86 components were used for downstream analysis. The integrated datasets were re-clustered with k.param = 20 and resolution =

0.5 using ‘‘FindNeighbors’’ and ‘‘FindClusters’’ functions. Finally, the projection property of each glutamatergic cell subclass was

inferred by the previously projection-property-defined cell type with the most frequent co-embedding in the integrated clustering.

The correspondence between glutamatergic cell subclasses and previous defined cell types were shown by the ‘‘sankeyNetwork’’

function of networkD3 R package (v 0.4).

Stereo-seq data processing
The fastq files of Stereo-seqwere processed according to the previously describedworkflow.28 The first reads of the Stereo-seq data

contained CID (coordinate Identity) sequences, whichwere aligned to the designed coordinates of the Stereo-seq chip obtained from

the first round of sequencing. Amaximum of 1 basemismatch was allowed during the alignment process. Reads withMID (molecular

Identifiers) containing N bases or more than 2 bases with quality score lower than 10 were removed from the dataset. The CID and

MID associated with each read were added to the read header. The retained reads were then aligned to the reference genome using

STAR74 and reads with mapping quality score > 10 were counted and annotated to their corresponding genes. UMIs that have the

same CID (coordinate Identity) and gene locus were combined into a single UMI, allowing for 1 mismatch to correct for sequencing

and PCR errors. Finally, this information was used to generate a CID-containing expression profile matrix. The entire pipeline SAW

can be accessed at https://github.com/STOmics/SAW.

Image-based single-cell segmentation of stereo-seq data
For single cell segmentation of the Stereo-seq data, nucleic acid staining images were automatically registered into mRNA coordi-

nate space based on periodical track lines pre-engraved in the chip plane. In this step, the capturedmRNAs of a section were treated

as an image with the UMI counts at each position as its pixel value. On both nucleic acid staining and mRNA images, we applied 1D

Laplacian of Gaussian (LoG) operators (sigma = 5e-4) along the row and column directions respectively to detect track lines, following

two rules: (1) The track lines aremost likely located at where the intensity values change rapidly in the images, which can be identified
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at the peaks through a LoG filter. (2) The registered track lines should roughly lie along the horizontal or vertical directions. We then

obtained the averaged angle between the detected track lines in the nucleic acid staining image and those in the corresponding RNA

image as the rotation angle between the two images. Next, we used the averaged interval of the periodical track lines in both nucleic

acid staining andmRNA images to compute the relative scale. Finally, we calculated the relative translation using RANSAC algorithm

(min_samples = 3, residual_threshold = 5) with the detected track lines in the mRNA images and the rotated and scaled track lines in

the nucleic acid staining images as inputs. With the rotation, scale and translation parameters, nucleic acid staining images can be

registered into the coordinate space of mRNA images. The whole registration was implemented with Scikit-image package (v.0.18.3)

in Python (v.3.9.7).

Cells in nucleic acid staining images were automatically segmented through a deep learning model trained using annotations by

ConA staining image. ConA staining images stain the membranes of cells, forming clear boundaries between cells, where cells are

easier to be distinguished and manually marked than using nucleic acid staining images alone. However, ConA images have the

problem of under-staining where not all cells would be clearly stained, and it is also tedious to manually mark every cell on the image.

Therefore, we designed an active learning procedure. We first manually marked cells which could be clearly identified in ConA stain-

ing images. Starting with this small set (hundreds of cells), we trained a deep learningmodel (i.e. mask R-CNN78) on the ConA staining

images, called ConA model. We utilized a total of 7 ConA images to construct the ConA model. One of these images was manually

labeled and kept aside for validation purposes. The remaining 6 ConA images were employed for model training and underwent

manual correction. The training process was conducted progressively as follows: Initially, we manually labeled the first image to train

the initial ConA model. Subsequently, this trained ConA model was used to predict cell labels on the second unlabeled ConA image.

After manual correction, the newly labeled ConA image was included in the training set to update the ConAmodel. This process was

repeated until all 7 ConA images had their labels corrected. Subsequently, these corrected labels were transferred to their corre-

sponding nucleic acid images for training the nucleic acid model. The ConA model was specifically utilized to aid in the generation

of cell labels. After several iterations, a full set of cell annotations on ConA staining images were generated (14212 in the current

experiment). The detailed information of the active learning procedure can be found in Table S4. After that, the cell annotations

were transferred to the corresponding nucleic acid staining images to train another deep learning model on the nucleic acid staining

images, called nucleic acid model. Noted that the nucleic acid model was trained with incomplete annotations since ConA images

have fewer stained cells than nucleic acid images. Therefore, a low score threshold of 0.1 was applied to retain more cells. The nu-

cleic acid model was deployed on nucleic acid staining images to obtain single cell segmentation. The nucleic acid model was vali-

dated on 10,209 cells from three nucleic acid staining images and achieved 0.912 of precision and 0.913 of recall, demonstrating

reliable performance. All models described in this step were implemented with mmdet package (v.2.25.1) in Python (v.3.8.13).

Cortical region and layer parcellation
According to atlas-based landmarks,79 the macaque cortex were segmented into 143 brain regions, including prefrontal, frontal,

cingulate, somatosensory, insular, auditory, temporal, parietal, occipital and piriform areas. For each coronal section, the cortical

region and layer parcellation were manually delineated on Stereo-seq data background, based on cytoarchitectual pattern (eg.

cell density, cell size) revealed by total mRNA expression, nucleic acid staining, and NeuN staing of adjacent sections.

Stereo-seq data preprocessing
The signal of each gene in all pixels that fell within the segmentation boundaries of the cells was summarized and merged with the

location information matrix. The sequencing data within the manually annotated cortex region were processed with the Seurat pack-

age in R. The cell-by-gene matrix was obtained with the function ‘‘CreateSeuratObject’’ with min.cells = 3 and min.features = 0. The

percentage of mitochondrial genes (percent.mt) was calculated with the function ‘‘PercentageFeatureSet’’ (using genesND6, COX3,

COX1, ND5, ND4, ND2, ND4L, ATP8, CYTB, COX2, ND3, ATP6 and ND1). Cells with less than 100 features or percent.mt larger than

15% were discarded. In order to mitigate potential batch effects resulting from variations in single-cell sequencing depth within and

across sections of the Stereo-seq map, ‘‘SCTransform’’ with the parameter vars.to.regress = ‘‘percent.mt’’ was used for

normalization.

Cell-type annotation of single cells in the stereo-seq map
To annotate single cells on Stereo-seq data with cell types classified by snRNA-seq analysis, we employed a recently developed cell

type annotation algorithm, spatial-ID.31 First, a four-layer deep neural network (DNN) with two hidden layers of 2048 and 1024 nodes

was trained with snRNA-seq data (learning rate = 3e-4, weight decay = 1e-6). The trained DNN was used to compute the initial prob-

abilities of defined cell types for each single cell on the Stereo-seq data. Then the spatial neighborhood information of cells on Stereo-

seq data was encapsulated into an adjacency matrix with normalized Euclidean distances as values for non-zero elements. Next, a

graph convolution network (GCN) took the initial probabilities, the distance-weighted adjacency matrix and the original gene expres-

sion of cells as inputs to generate the final probabilities of cell types for each cell. The GCN contained two autoencoders, that is, a

deep autoencoder for gene expression representations and a variational graph autoencoder for spatial neighborhood information

representations, and a classifier block. The two autoencoders were trained by reconstruction losses via a self-supervised learning

strategy, forcing the model to focus on the features of Stereo-seq data itself. The classifier block was trained by a Cross Entropy

loss to refine the cell type probabilities epoch by epoch. The number of training epoch of the GCN was set to 200. The weights
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for the reconstruction loss and the classification loss were set to 1 and 50, respectively. Finally, the cell type with the maximal prob-

ability produced by the GCN was assigned as the annotation for each single cell. Spatial-ID used in this study was implemented with

PyTorch package (v.1.13.1) and PyTorch Geometric package (v.2.1.0) in Python (v.3.8.10). By utilizing the cell-type registration

method (Spatial-ID) to annotate single cells for each Stereo-seq section, the influence of batch effects (across different sections)

in clustering and cell type annotation was circumvented. The high consistency in cell type distributions between adjacent sections

or sections with similar coordinates from different biological replicates confirmed the reliability of this procedure (Figures S2F–S2H).

Quantification of spatial distribution of various cell types in the stereo-seq map
We quantified the number of cells annotated with specific cell types in each monkey and cell types with more than 1000 cells in the

three monkeys were used for the following analysis. For each cell type, we quantified the density in each layer and cortical region by

dividing the total number of cells in each area by the area size. To quantify the layer distribution of various glutamatergic neuron types,

we performed z-score transformation of cell density in each cortical layer for each cell type, and layers with z-score larger than 0were

used to annotate the subclass name of each glutamatergic cell type together with marker gene expression.

Correspondence of cell types between stereo-seq and snRNA-seq data
The snRNA-seq data was normalized with the R package Seurat. The data slot of SCT assay was reformatted and used as input with

the function SingleCellExperiment. The top variable genes included in the slot scale.data were used for the parameter var_genes in

the function trainModel of the package MetaNeighbor.80 As for Stereo-seq data, normalization was conducted as mentioned above.

The function MetaNeighborUS was utilized with the parameter one_vs_best = TRUE for the data slot of SCT assay of the stereo-

seq data.

Neighborhood complexity
Qualified regions were manually selected for neighborhood complexity analysis. Cell-cell distance matrices were calculated with the

function ‘‘dist’’ in R. The neighborhood complexity of a cell is defined as the number of different cell clusters present within a neigh-

borhood of 200 pixel, or 100 mm, in radius surrounding the given cell. Downstream analysis was conducted with the Seurat package.

Based on the cell-by-neighbor-cluster-cell-number matrix, we used the function ‘‘NormalizeData’’ and ‘‘ScaleData’’ with default pa-

rameters for preprocess and then the function ‘‘RunPCA’’ and ‘‘RunUMAP’’ with the parameter npcs = 20 and dims = 1:20 for dimen-

sion reduction.

Region-specific cell types
Cell density of each cluster across all brain regions was defined as cell number in the region divided by the region area size. We

plotted the cluster-density-by-region heatmap and found specific patterns for F1, V1 and temporal pole. Brain slides were then

filtered for regions involved in the specific patterns to guarantee that these regions take an appropriate ratio in a slide. After that,

we permutated the cluster labels 1000 times so that a background distribution of cluster-region pair could be obtained. The observed

frequency of a specific cluster-region pair was compared with the background and the ratio of the observed value smaller than the

background was calculated as the empirical p value. Finally, clusters were filtered with p = 0 and other quality criteria such as 1) no

more than 20% regions showed significant co-occurrence with this cluster, 2) cluster cell number (at least 30 cells per slide) and 3) the

observed ratio of the cluster in the specific region (larger than 0.3 for F1 and V1; larger than 0.5 for temporal pole).

Correlation of cell-type distribution with cortical hierarchy levels
The cortical regions in the visual system and somatosensory system were included to perform cell type proportion analysis. The

hierarchy levels of visual or somatosensory cortices were derived from Felleman and Van Essen.34 The cell proportion of individual

cell type was calculated for each cortical region (cell counts of specific cell type / total cell counts of all cell types), and then the

Spearman analysis was applied to calculate the correlation of cell type proportion with the hierarchy levels. The identified cell

types whose proportion were positively or negatively correlated with the hierarchy levels in the visual and somatosensory systems

(Spearman correlation, R > 0.6 or R < -0.6) were shown in heatmap (cell types were grouped into glutamatergic, GABAergic, or

non-neuronal major class, and cortical areas were ordered by their hierarchy levels). To globally display the cell type distribution

along the hierarchy, all the positively/negatively correlated cell types in each of the major class of cell types were accumulated and

3D surface rendered in the visual and somatosensory system and shown in Figure 3G. GO enrichment analysis was performed

using marker genes of positively or negatively correlated cell types by metascape (https://metascape.org/) with the human dataset

as reference.

Spatial distribution of neurotransmitter and neuromodulator receptor genes
We calculated the average expression values of these neurotransmitter receptors genes at six layers corresponding to 143 brain re-

gions for all glutamatergic or GABAergic neurons based on the ‘‘sctransform’’ normalized spatial transcriptome matrix. We focused

on the expression of these receptor genes in brain regions of the visual and somatosensory systems. For visualization of these gene

expression in the GABAergic neurons, z-score normalization was performed for each gene among different cortical regions.
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Calculation of glutamatergic neuron neighbor of CHC subpopulations in different cortical regions
All cell types in the 400 x 400 mm2 square around each of the CHC cells in each cortical region were considered as their observation

neighbors, and all cells in that cortical region were used as the background dataset and randomization test were performed for 500

times samplings. Each time, equivalent cell number to the total number of their observation neighbors were selected as their random

neighbors; then, the rank sum test was performed to compare the observation neighbors with the random neighbors. When the ap-

pearing frequency of the observation neighbors around the CHC type was statistically higher than that of the random neighbors

(P < 0.05), it was considered that the currently detected observation neighbors were the accompany neighbors for the CHC type

in the observed brain region. The accompany glutamatergic neuron neighbor of CHC subpopulations was calculated in each cortical

region.

Comparison of layer-specific astrocytes
From the spatial transcriptome data, we calculated the cell density in 6 layers of cell types from the whole brain areas. The cell density

was the cell number to layer area size of each cell type. Then we obtained two layer1-specific ASC and one layer6-specific ASC, and

identified the differential expressed genes with ‘‘sc.tl.rangk_genes_groups’’ function of scanpy from snRNA data. Genes were kept

with the cutoff of log2 fold-change > 1 and FDR < 0.01. In the two differential gene comparisons, the consensus up-regulated or

down-regulated genes were further used to do functional enrichment analysis by metascape (https://metascape.org/) with the hu-

man dataset as reference.

Pseudotime trajectory analysis of oligodendrocyte lineage
We constructed the development trajectory using 2 types of Oligodendrocyte precursor cells (OPC) and 9 types of oligodendrocytes

(OLG) from snRNA data with the R packagemonocle 2 (v.2.20.0). First, ‘‘negbinomial.size’’ function was performed for the rawmRNA

counts matrix of OPC and OLG cells. Genes used for ordering the cells along the trajectory were kept with average expression > 0.1.

The significant geneswere calculated by the function ‘‘differentialGeneTest’’ function and selectedwith a qval cutoff of less than 0.01.

We divided these genes into 4 groups, and performed functional enrichment analysis using R package clusterProfiler (v.4.0.5).

Reconstruction of the 3D cell atlas
A total of 119 coronal sections at different coronal coordinates frommonkey #1 were used to recover the original shape and topology

of a macaque brain. Firstly, we rotated all sections at bin 400 (0.2mm) manually. For the series of sections, a 2D rigid body transfor-

mation was computed between adjacent sections. The operation was iterated several times until all sections were aligned to the in-

termediate sections. Then the sections were assembled to create an initial 3D reconstructed data set, and then the stackedmacaque

brain volume was aligned to the existing D99 macaque atlas (https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/nonhuman/

macaque_tempatl/atlas_d99v2.html) by an affine transformation. Based on the initial 3D reconstruction, the corresponding sections

and MRI images were aligned separately. Finally, all the transformation were applied to the coordinates of single cells at the spatial

transcriptome map. A 3D spatial transcriptome atlas at the single-cell resolution of the entire macaque brain were thus created and

used to visualize the spatial distribution of various cell types.

To illustrate cell profiling in different cortical regions, we used Workbench Command,81 which is a set of command line tools used

to perform various operations. First, the cell profiles were first normalized across cortical regions. Then the volumes of cell profiles

which included 143 cortical regions based on D99 atlas macaque atlas (https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/nonhuman/

macaque_tempatl/atlas_d99v2.html) were converted to GIFTI file format in order to convert volumetric coordinates to surface coor-

dinate system.the wb_command -volume-to-surface-mapping function and ribbon constrained mapping algorithm were used to

execute this operation. Finally, the processed data was rendered to the surface of macaque brain carried by Matlab.

Cross-species analysis of different cell types
Public human PFC single nucleus data from human were download from GEO dataset.48 Public human V1 single nucleus data

were download from a previously published GEO dataset.49 Public mouse PL-ILA-ORB (compared with PFC regions in human

and macaque) and V1 10xv2 single cell data were download from https://portal.brain-map.org/atlases-and-data/rnaseq/

mouse-whole-cortex-and-hippocampus-10x.16 Human and mouse snRNA-seq data for F1 region was retrieved from a previously

published cross-species comparison dataset.12 Cells from PFC regions in human and macaque, and cells from PFC/F1/V1 regions

in human, macaque andmousewere selected, then classified into glutamatergic neuron, GABAergic neuron, and non-neuronal cells.

Only the glutamatergic neurons were used in further analysis. As the mouse only has a small amount of medial and orbital prefrontal

cortex, and none of the vast lateral, dorsal or rostral prefrontal areas that exist in primates, so we also selected 32, 25 and 13 regions

in the human and macaque cortex, which corresponded to PL, ILA and ORB regions in the mouse cortex, respectively, for a more

stringent cross-species comparison. Public single nuclei transcriptome data of human 32, 25 and 13 regions were downloaded

from https://www.biorxiv.org/content/10.1101/2022.10.12.511898v1.

Because of the coarse cell type annotation of human data, we further split the human cell type clusters in a iteration way, using a

home-mademodified IterCluster function from scrattch.hicat package, with parameters de_param (q1.th = 0.4, q.diff.th = 0.7, lfc.th =

0.5, de.score.th = 150, min.cells = 20, min.genes = 4). Integration of three species excitatory neurons were done by Seurat

IntegrateData with marker genes as anchorset. which were found by select_markers function of scrattch.hicat package. The
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integrated cells were further clustered using Seurat FindClusters with resolution = 3. Cell subclasses weremanually annotated based

on the marker genes. Marker genes for subclasses of each species were calculated using Seurat FindAllMarkers with default param-

eters. Cell types overlapping ratio of different species were calculated following the scripts of the publish pipeline.12 Differential gene

expression calculation of 6 primate-specific cell types between other macaque cells were done by Seurat FindAllMarkers function. A

total of 226 genes with adjust (wilcox-test, bonferroni correction) P value < 0.05 and log2 fold change > 0.5 in any one of six primate-

specific cell types were selected as highly expressed genes for subsequent functional enrichment analysis using clusterProfiler en-

richGO function based on human database org.Hs.eg.db.

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were used to predetermine sample sizes, but the sample sizes here are similar to those reported in previous

publications. No randomization was used during data collection as there was a single experimental condition for all acquired data.

Data collection and analyses were not performed blind to the conditions of the experiments as all experiments followed the same

experimental condition. Statistical details of experiments and analyses can be found in the figure legends and main text above.

All statistical tests were two-sided, and statistical significance was considered when P value < 0.05. To account for multiple-testing,

the P values were adjusted using the bonferroni correction.
e10 Cell 186, 1–18.e1–e10, August 17, 2023
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Figure S1. Regional parcellation and cell-type identification, related to Figure 1

(A and B) (A) Total mRNA captured and (B) staining for nucleic acid from an example section.

(C) NeuN staining of an adjacent section to (A).

(D) Region- and layer-parcellation contours.

(E and F) Parcellation of cortical layers and V1 and V2 (E) and PEc and PGm (F) regions based on cytoarchitectual pattern, enlarged from the red and blue boxed

areas in (C), respectively.

(G) UMAP layout showing single cells from different monkeys (left) and cortical lobes (right).

(H) Heatmap showing Jaccard similarity of marker genes among various cell types.

(I) Heatmap showing the prediction scores of various cell types using random forest.

(J) Violin plot showing the single-cell quality of subclasses.

(K) Dot plot showing marker gene expression for all the subclasses in Figure 1B.

(L) Sankey plot depicting correspondence between our glutamatergic subclasses and published projection-property-inferred glutamatergic subclasses.12,16
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Figure S2. Stereo-seq single-cell registration and cell-type annotation, related to Figure 2

(A) Illustration of single-cell segmentation in stereo-seq data. (Aa) Total RNA captured from sections with EBZ coordinate at 0 (left) and +33.08 (right). Images

show total mRNA (Ab), staining for nucleic acid (Ac) and ConA (Ad), and cells identified (Ae). Enlarged orange and purple boxes show finer resolution images.

(B) Recall and precision curve of cell segmentation for the regions in (Ab).

(legend continued on next page)
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(C) Illustration of deep-learning-based cell-type-registration process.

(D) Correspondence between subclasses determined by snRNA-seq and stereo-seq.

(E) Spatial map of 264 cell types in all sections from macaque #2 (left) and #3 (right).

(F) Correlation of cell-type distributions between two adjacent sections at EBZ +10 (left) or any two adjacent sections (right) from monkey #1.

(G) Correlation of cell-type distributions in sections at similar coordinates from different monkeys.

(H) Relationship between correlation coefficients of cell-type distributions and distances between sections.

(I) Spatial map of five cell types and marker genes in a representative section of macaque #2 and #3.

(J) Spatial map of 23 cell subclasses in a representative section.

(K) UMAP of regional cell-type compositions using snRNA-seq data.

(L) Comparison of composition complexity among cortical layers in 9 brain regions.

ll
OPEN ACCESS Resource



(legend on next page)
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Figure S3. Cell-type distribution across hierarchies, related to Figure 3

(A) Cell density in 143 brain regions.

(B and C) Cell density in brain regions ordered by hierarchical levels in visual (B) and somatosensory (C) systems.

(D) Boxplot showing relative distances between regions in the UMAP of Figure 3C and 3D.

(E and F) (E) Bar plot showing cell types with positive or negative correlations with hierarchical levels and (F) dot plot showing marker gene expression of the cell

types in (E).

(G) GO terms for the genes in (F).
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(legend on next page)
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Figure S4. Distribution of glutamatergic cell types, related to Figure 4

(A) Six example glutamatergic cell types in V1, F1, and temporal pole.

(B) Marker gene patterns for the region-specific cell types in (A).

(C) Dot plot showing glutamatergic receptor gene expression in glutamatergic cell types.

(D) Gene expression levels of AMPA, NMDA, Kainate, Delta, and metabotropic glutamate receptor subunits in different layers along hierarchies. Expression level

was normalized for each gene and color coded in log scale.
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(legend on next page)
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Figure S5. GABAergic cell types, related to Figure 5

(A) Relative regional distribution of GABAergic subclasses.

(B) Stack-bar plots showing the percentage of each GABAergic cell type among 9 cortical lobes.

(C) 3D (upper) and 2D (bottom) distributions of GABAergic cell subclasses.

(D) SST cell distribution. Left, RNAscope and DAPI staining for SST. Right, Sankey plot of SST cell laminar distribution.

(E) Dot plot showing the laminar expression patterns of marker genes for SST cell types.

(F) GO terms for the genes in (E).

(G) Laminal distribution of SST cell types (left) and marker gene expression (right).

(H) Relative abundances of two SST cell groups in each cortical layer.

(I) GO terms among DEGs in G1- and G2-SST cells.

(J) Venn diagrams showing the number of neighborhood glutamatergic cell types shared across CHC cell types.

(K) Top neighborhood glutamatergic cell types of three CHC cell types.

(L) Correlation between the relative densities of PV and SST cell types.

(M) Weight of various PV and SST cell types to PC1 shown in Figure 5J.
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(legend on next page)
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Figure S6. Non-neuronal cell types, related to Figure 6

(A) Violin plot showing marker gene expression for non-neuronal cell types.

(B) Spatial distribution of ASCs in 5 sections of macaque #2 and #3.

(C) Volcano plot showing DEGs in ASC.2 and ASC.11.

(D) Venn diagrams showing DEGs overlap between ASC.11 and ASC.1 or ASC.2.

(E) GO terms enriched among DEGs between L1- and L6-enriched ASCs.

(F) UMAP showing oligodendrocyte differentiation and maturation trajectory.

(G) Heatmap showing marker gene expression along oligodendrocyte trajectory.

(H) Dot plot showing GO terms associated with the 4 groups of genes in (G).

(I) Spatial map showing a F1-enriched OLG cell type and two marker genes.
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(legend on next page)
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Figure S7. Cross-species comparison of glutamatergic neurons, related to Figure 7

(A and B) Venn diagrams (A) and heatmaps (B) showing convergent/divergent marker genes and their expression levels for 8major cell subclasses in PFC, F1, and

V1 of three species.

(C) Pairwise comparison of glutamatergic cell types. Red-marked parts were enlarged in Figures 7A–7C.

(D) UMAP of integrated snRNA-seq/scRNA-seq data for glutamatergic neurons from regions 32, 25, and 13 of macaque and humans and PL-ILA-ORB regions of

mice. Red-labeled types are absent in mice.

(E and F) Pairwise comparison of glutamatergic cell types (Table S7) (E), and zoom-in view of the red box in (F), with primate-specific types labeled in red.

(G) Regional distribution of primate-specific cell types in macaque PFC.

(H) UMAP of integrated snRNA-seq/scRNA-seq data of GABAergic and non-neuronal cells for PFC, F1, and V1 across species.
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