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Single-cell transcriptome analysis indicates
fatty acid metabolism-mediated metastasis
and immunosuppression in male breast
cancer
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Liangyu Li2,3,4, Yuan Liang 2,3,4, Lin Luo2,3,4, Quanzhong Liu2,3,4, Yanhui Zhu1,
Jie Sun7, Liang Shi1, Tiansong Xia1, Chuang Yang1, Qitong Xu1, Xue Han8,
Weiming Zhang8, Jianxia Liu7, Dong Meng9, Hua Shao5, Xiangxin Zheng10,
Shuqin Li11, Hua Pan12, Jing Ke13, Wenying Jiang14, Xiaolan Zhang15,
Xuedong Han16, Jian Chu17, Hongyin An17, Juyan Ge18, Chi Pan19,
Xiuxing Wang 6,20,21, Kening Li 2,3,4 , Qianghu Wang 2,3,4,22 &
Qiang Ding 1

Male breast cancer (MBC) is a rare but aggressivemalignancy with cellular and
immunological characteristics that remain unclear. Here, we perform tran-
scriptomic analysis for 111,038 single cells from tumor tissues of six MBC and
thirteen female breast cancer (FBC) patients. We find that that MBC has sig-
nificantly lower infiltration of T cells relative to FBC. Metastasis-related pro-
grams are more active in cancer cells from MBC. The activated fatty acid
metabolism involved with FASN is related to cancer cell metastasis and low
immune infiltration of MBC. T cells in MBC show activation of p38 MAPK and
lipid oxidation pathways, indicating a dysfunctional state. In contrast, T cells in
FBC exhibit higher expression of cytotoxic markers and immune activation
pathways mediated by immune-modulatory cytokines. Moreover, we identify
the inhibitory interactions between cancer cells and T cells in MBC. Our study
provides important information for understanding the tumor immunology
and metabolism of MBC.

Male breast cancer (MBC), a malignant tumor accounting for 1% of all
breast cancers1, is generally diagnosed at a late stage, with a higher
degree of malignancy, poorer prognosis, and higher mortality than
female breast cancer (FBC)2. The overallmortality rate ofMBCpatients
is 19% higher than that of FBC patients because of the clinical char-
acteristics and lack of treatment3. Most MBC patients are hormone
receptor-positive, similar to late-onset, postmenopausal estrogen

receptor (ER) and progesterone receptor (PR) positive (ER+PR+) FBC4.
Thus, the clinical management of male patients refers to FBC due to
the currently limited understanding of MBC.

The clinical and pathological characteristics of MBC do not
entirely overlap FBC5. Studies have shown that the ER loci associated
with patient prognosis are sex-selective6. Hormonal status has raised
concerns regarding the use of aromatase inhibitors in male patients,
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and thebest choice of endocrine therapy forMBC is still controversial6.
Furthermore, the energy metabolism and immune response to
malignancyaredifferent betweenmales and females7,8, such as bladder
and lung cancers9,10. However, cellular and molecular differences
betweenMBC and FBC remain unclear. The undiscovered pathological
characteristics of MBC may contribute to the poor outcome in male
patients. Therefore, it is urgent to clarify the tumormicroenvironment
and metabolism features of MBC to better understand the underlying
mechanisms of MBC development.

The complex composition of the tumor microenvironment pre-
sents a considerable challenge to study the molecular mechanism of
MBC. The tumor microenvironment comprises various cell types,
including immune cells, fibroblasts, endothelial cells, and extracellular
components surrounding cancerous cells11. The immune cells such as
T cells and macrophages are reported to play important roles in the
tumor immunology and progression of FBC12,13. A comprehensive
understanding of the tumor microenvironment could provide essen-
tial information for developing novel therapeutic strategies for breast
cancer.With the emergenceof single-cell RNA sequencing (scRNA-seq)
technologies, we can now dissect the tumors containing multiple cell
types and describe the complex interplays among cancer cells and the
microenvironment14. ScRNA-seq has been utilized to explore the
intratumoral heterogeneity and microenvironment of FBC, providing
potential therapeutic targets for female patients15,16. However, the
cellular states and immunological characteristics of MBC still need
further analysis at the single-cell level.

In this work, we utilize scRNA-seq and scTCR-seq technology to
explore the tumor microenvironment of breast cancer and compare
the immunological and metabolic features between MBC and FBC
samples. Our study indicates that the elevated level of FASN-mediated
fatty acid metabolism is related to the cancer cell metastasis and low
immune infiltration of MBC. Moreover, our data reveal the dysfunc-
tional and specific metabolism patterns of T cells in the MBC micro-
environment. Our study provides further information for
understanding the tumor immunology and metabolism of MBC and
sheds light on the development of therapeutic strategies to improve
the prognosis of MBC patients.

Results
MBC exhibited a lower immune infiltration than FBC
To explore the cellular diversity in breast cancer (BRCA),we integrated
the scRNA-seq data of 6 MBC and 13 FBC samples (Fig. 1a). ScTCR-seq
was also performed on three MBC and two FBC samples to char-
acterize the T cell receptor clonality. All the collected sampleswere ER-
positive. The clinical characteristics of these samples were shown in
Supplementary Data 1. Considering some clinicopathological char-
acteristics such as tumor stage may be associated with the immune
microenvironment and metabolism of patients, we compared the
clinical characteristics of the collected MBC and FBC samples. Results
showed that there were no significant differences in age, HER2 status,
KI67 level, and extent of the tumor (T1–T4) between the FBC andMBC
groups (Supplementary Data 2), avoiding the influenceof these factors
on the comparison. An overview of our single-cell analysis was shown
in Fig. 1a. By analyzing the expression of marker genes, we annotated
the various cell types in the BRCA ecosystem, including epithelial cells,
T cells, B cells, plasma cells, macrophages, mast cells, myofibroblasts,
cancer-associated fibroblasts (CAFs), arterial endothelial cells, venous
endothelial cells, and capillary endothelial cells (Fig. 1b, c and Sup-
plementary Data 3). Based on the chromosomal landscape inferred by
scRNA-seq data, we distinguished malignant epithelial cells from non-
malignant microenvironment cells (Supplementary Figs. 1 and 2). The
genes specifically expressed in each cell typewere identified (Fig. 1d). A
significant differential enrichment was observed between different
sexes, demonstrating the different microenvironment components
between MBC and FBC patients (Fig. 1c).

Results showed that compared with FBC, MBC showed a sig-
nificantly higher proportion of cancer cells and a lower proportion of
immune cells, such as T cells and B cells, indicating a lower level of
immune infiltration (Fig. 2a–d). These immune cell proportions had no
obvious differences between premenopausal and postmenopausal
FBC patients (Fig. 2e). To further validate this result, we calculated the
scores of various cell types for 722 ER+ TCGA-BRCA samples based on
the gene signatures derived from our single-cell data (see “Methods”;
Fig. 2f). These scores between premenopausal and postmenopausal
FBC patients were also compared (Fig. 2g). Results verified that MBC
had a relatively higher tumor purity and lower proportions of T cells
and B cells, consistent with the observation at the single-cell level. The
immunological components of TCGA samples were also verified using
three immune-deconvolution tools, including MCP-counter17, EPIC18,
and xCell19. We evaluated the correlation of putative cell type levels
derived from single-cell signatures and immune-deconvolution tools
and found a significantly positive correlation between these methods
(Supplementary Fig. 3a). Consistently, results from immune-
deconvolution tools indicated that the levels of T cells and B cells
were significantly lower in MBC samples than in FBC samples of the
TCGA dataset (Supplementary Fig. 3b). To further verify this result
with larger MBC sample size, we also collected two gene expression
profiles of MBC samples from previous studies, including RNA-seq
data of 46MBC samples (GSE104730)6 andmicroarray data of 74MBC
samples (GSE31259)20. We calculated and compared the scores of
immune or stromal cells forMBC samples from three datasets, and for
FBC samples from the TCGA dataset. Results showed that the scores of
T cells and B cells were significantly lower in MBC samples from three
independent datasets than in FBC samples (Supplementary Fig. 4a),
further confirming the results of low immune infiltration in MBC
samples. In order to figure out whether the HER2 status has an influ-
ence on the comparison of cellular components between MBC and
FBC, we further compared the immune infiltration among groups of
ER+HER2+ MBC, ER+HER2- MBC, ER+HER2+ FBC, and ER+HER2- FBC
samples. Both the scRNA-seq data and TCGA-BRCA data consistently
showed that the ER+HER2- MBC samples had the highest level of cancer
cell enrichment and significantly lower level of T cell and B cell per-
centages (Supplementary Fig. 4b, c). Besides, it seemed that the T and
B cell percentageswere higher in ER+HER2+MBC than in ER+HER2-MBC
samples, although further evaluation was needed in a larger cohort.
Furthermore, we performed immunohistochemistry (IHC) analysis for
T cell markers CD4 and CD8 in 30 ER+ MBC and 30 ER+ FBC samples.
Results suggested that these T cell markers had a lower expression
proportion in MBC than in FBC samples (Fig. 2h, i). Therefore, the
analysis of scRNA-seq, bulk transcriptome and IHC consistently
demonstrated that MBC had a significantly lower degree of immune
infiltration than FBC, especially the lower infiltration of T cells and
B cells.

The metastasis-related programs, and regulons controlled by
AR and SREBF1 were significantly activated in MBC cancer cells
In order to further compare the transcriptional pattern of cancer
cells between MBC and FBC, we re-clustered the 53,343 cancer cells
from 19 BRCA patients (Fig. 3a, b). The cancer cell clusters showed
sex-based differences (Fig. 3c). According to the proportion of
cancer cells from MBC patients in each cluster, we classified these
clusters into three subgroups, including MBC, FBC, and mixed
clusters (see “Methods”; Fig. 3d). The differentially expressed genes
between MBC and FBC cancer cell clusters were identified and
shown in Supplementary Fig. 5. Genes involved in fatty acid meta-
bolism such as FASN and AZGP1 had a higher expression in MBC
clusters than in FBC clusters. Previous studies have shown that FASN
can enhance invasion in breast cancer21. We further explored the
metastasis-related signature scores in MBC and FBC cancer cells
(Supplementary Data 4). Results showed that MBC had higher
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signature scores of cell migration, epithelial–mesenchymal transi-
tion (EMT), and angiogenesis than cancer cells in FBC (Fig. 3e).
Besides, cancer cells fromboth ER+HER2+ and ER+HER2-MBC showed
higher scores of metastasis-related signatures than FBC, especially
angiogenesis and cell migration (Supplementary Fig. 6). These

results suggested the higher metastasis potential of MBC, which is
consistent with the clinical observations.

To reveal the specifically activated transcriptional regulons of
MBC clusters, we identified the transcriptional factors (TFs) with
differential activity between MBC clusters and other clusters
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(Fig. 3f). Both the TF activity and expression of androgen receptor
(AR) and sterol regulatory element binding transcription factor 1
(SREBF1) showed significant upregulation in cancer cells from MBC,
compared with FBC (Fig. 3g, h). Previous studies have shown that as
an important regulator of lipid metabolism, SREBF1 could promote
tumor growth and metastasis of breast cancer, and was highly
associatedwith EMTprocess22,23. To further evaluate the observation

of AR, we retrospectively investigated the AR levels evaluated by IHC
in a large sample cohort, including 113 ER+ MBC and 86 ER+ FBC
samples (Fig. 3i, j). Results showed that the percentage of AR-
negative patients was significantly lower inMBC than in FBC samples
(5.3% vs. 17.4% in MBC and FBC samples, respectively), whereas the
percentage of AR+++ patients was higher in MBC than in FBC sam-
ples (69.9% vs. 50.0% in MBC and FBC samples, respectively). This
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result further validated the activated AR regulon in MBC patients
observed at the single-cell level.

The activated fatty acid metabolism was related to the metas-
tasis and low immune infiltration of MBC
To identify the potential differences in cancer cell metabolism
betweenMBC and FBC samples, we evaluated the activity ofmetabolic
pathways in each cancer cell cluster (Supplementary Data 5) and
identified the specifically activated pathways in male clusters (Sup-
plementary Fig. 7). Results showed that the fatty acid metabolism-
related pathways were significantly more active in theMBC cancer cell
clusters, including fatty acid biosynthesis, fatty acid elongation, fatty
acid degradation, and biosynthesis of unsaturated fatty acids (Fig. 4a).
As an essential enzyme for de novo lipogenesis21, FASNwas remarkably
up-regulated in cancer cells from MBC than in FBC samples (Fig. 4b, c
and Supplementary Fig. 8a). Cancer cells from both ER+HER2+ and
ER+HER2- MBC samples showed higher expression of FASN than FBC
samples, independent of HER2 status (Supplementary Fig. 8b). To
further validate this result, we compared the gene expression of ER+

MBC and FBC in the TCGA cohort. Consistently, it showed that the
expression of FASN was significantly higher in MBC patients (Fig. 4d
and Supplementary Fig. 8c, d). Moreover, the IHC staining for FASN in
30 ER+ MBC samples and 30 ER+ FBC samples were compared. Results
showed that the protein levels of FASNwere remarkably higher inMBC
than in FBC samples (Wilcoxon rank-sum test, p-value: 0.0052; Fig. 4e,
f). This observation indicated that fatty acids played an important role
in tumor cell energy metabolism in MBC patients. To figure out whe-
ther this sex-based difference was breast-cancer-specific, we further
compared the activity of fatty acid metabolism between male and
female patients of other cancer types. Results showed that the fatty
acid metabolic pathway was significantly enriched in the up-regulated
genes ofmale patientswith lung adenocarcinoma (LUAD), kidney renal
papillary cell carcinoma (KIRP), esophageal carcinoma (ESCA), and
diffuse large B cell lymphoma (DLBCL; Supplementary Fig. 8e).

Notably, basedon the analysis of ChIP-sequencingdata for SREBF1
in ER+ breast cancer cell line (MCF-7), LUAD cell line (A549), and ESCA
cell line (KYSE150 and TE-5), we found that the promoter of FASN was
targeted by SREBF1 in these cells (Fig. 4g), further demonstrating that
the FASN-mediated lipid metabolism was regulated by SREBF1.
Besides, the expression levels of FASN and SREBF1 had a significantly
positive correlation in both MBC and FBC samples of three indepen-
dent datasets (Fig. 4h). In addition, inspired by the previous studies
that demonstrated the fatty acidmetabolism driven by AR in PRAD24,25,
we investigated the association between AR and FASN expression in
MBC and FBC samples (Fig. 4i). Results showed that the expressions of
AR and FASN were positively correlated in MBC samples from
GSE1047306 and GSE3125920, but had no obvious correlations in the
FBC samples of the TCGA dataset.

As our above results showed that cancer cells fromMBC patients
had higher metastasis-related signature scores, we further explored
the correlations between fatty acid metabolism and metastasis in ER+

breast cancers of the TCGA dataset by calculating the Pearson corre-
lation coefficient (PCC). Results showed that the signature score of
fatty acid metabolism was positively associated with the metastasis-
related programs, including cell migration, EMT, and angiogenesis
(Fig. 4j), suggesting the possible involvement of fatty acid metabolism
in promoting the metastasis of breast cancer. Previous studies repor-
ted that FASN played a vital role in breast cancer metastasis and
progression26,27. The brainmetastasis of breast cancer was significantly
reliant on the FASN-mediated lipid biosynthesis27, demonstrating that
FASN could serve as a target for genetic or pharmacological inhibition
of breast cancer metastasis. We also analyzed the data of other cancer
types of TCGA datasets to evaluate the correlation between fatty acid
metabolism and metastasis. Results showed that the positive correla-
tion between fatty acid metabolism and metastasis-related programs
was not generally observed in the majority of cancer types but only
observed in testicular germ cell tumors (TGCT), BRCA, and uveal
melanoma (UVM; Supplementary Fig. 8f).

Moreover, we found that FASN expression was negatively corre-
lated with T cell and B cell signature scores in MBC patients of the
TCGA dataset (Fig. 4k and Supplementary Fig. 8g), suggesting the
potential mediation of low immune infiltration by activated fatty acid
metabolism. Thus, we performed a pan-cancer analysis to evaluate the
association between FASN expression and immune infiltration in TCGA
datasets. Results showed that FASN expression and tumor purity were
positively correlated in most cancers, while the infiltration scores of
T cells and B cells were negatively associated with FASN expression
(Supplementary Fig. 8h). These results implied that the elevated
expression of FASN may be associated with the immune exclusion.

We performed analyses for overall survival (OS), progression-free
interval (PFI), and disease-specific survival (DSS) of TCGA pan-cancer
datasets28 by categorizing the patients into FASN-high and FASN-low
groups for each dataset according to the median of FASN expression.
Results showed that FASN expression was prognostic for the OS, DSS,
and PFI of many types of cancers, especially for male cancer patients
(Supplementary Figs. 9–11). Male BRCA patients with higher expres-
sion of FASN had a relatively poor prognosis but were not statistically
significant possibly due to that only 12 MBC samples were present in
the TCGA. Besides, high expression of FASN could predict poor OS and
PFI in male patients with bladder urothelial carcinoma (BLCA) and
kidney renal clear cell carcinoma (KIRC). The PFI of FASN-high male
patients with kidney renal papillary cell carcinoma (KIRP) and uveal
melanoma (UVM) was also significantly poor. The DSS of lung squa-
mous cell carcinoma (LUSC) male patients with high FASN expression
was significantly poorer than those with low FASN expression. How-
ever, the prognosis of female patients with these cancers was not
associated with the FASN expression. Notably, higher FASN expression
was prognostic for the poor DSS of PRAD patients, consistent with a
previous study that demonstrated that targeting FASN could inhibit
the aggressive and resistant PRAD24. This result suggested that FASN
may be a potential therapeutic target for male patients with these
cancers.

Fig. 2 | Comparison of cellular components between MBC and FBC samples.
a The t-SNE plot ofMBC, postmenopausal and premenopausal FBC samples. Colors
represent cell types. b Sankey diagram showing the fraction of each cell type
between male and female samples. c Sankey diagram showing the fraction of each
cell type between MBC, postmenopausal and premenopausal FBC samples.
d Boxplot showing the percentage of cancer cells, T cells, B/Plasma cells, endo-
thelial cells, macrophages, mast cells and myofibroblasts/CAFs in MBC (n = 6) and
FBC (n = 13) samples. P value was calculated by two-sided Wilcoxon rank-sum test.
e Boxplot showing the percentage of cancer cells, T cells, B/Plasma cells, endo-
thelial cells, macrophages, mast cells and myofibroblasts/CAFs in MBC (n = 6),
postmenopausal (n = 4) and premenopausal (n = 9) FBC samples. P value was cal-
culated by two-sided Wilcoxon rank-sum test. f Boxplot showing the tumor purity

and signature scores of various cell types betweenMBC (n = 12) and FBC (n = 710) in
TCGA ER+ BRCA cohort. P value was calculated by two-sided Wilcoxon rank-sum
test. g Boxplot showing the tumor purity and signature scores of various cell types
betweenMBC (n = 12), postmenopausal (n = 337) and premenopausal (n = 372) FBC
samples in TCGA ER+ BRCA cohort. P value was calculated by two-sided Wilcoxon
rank-sum test. h Representative images of IHC staining detecting T cell markers
CD4 and CD8 expression in MBC (n = 30) and FBC (n = 30) samples, Scale bar,
20μm. i Boxplot indicating the IHC scores of CD4 and CD8 in 30 ER+ male (light-
coral) and 30 ER+ female (turquoise) patients (identified by the percentage of
positive cells). P value was calculated by two-sided Wilcoxon rank-sum test. In
d–g and i, boxplots showmedian (center line), the upper and lowerquantiles (box),
and the range of the data (whiskers). Source data are provided as a Source data file.
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Different functional characteristics of T cell subpopulations
between MBC and FBC
To reveal functional subtypes of the T cell populations in breast can-
cer, we performed an unsupervised clustering analysis of T cells from
MBC and FBC samples. A total of 13 clusters were identified, including
sevenCD8+, fourCD4+, and twoNKT cell clusters (Fig. 5a). Each cluster
was defined by the specifically expressed marker genes (Supplemen-
tary Fig. 12a and Supplementary Data 6). Accordingly, CD8+ T cells
were categorized into GZMK + T-1, GZMK + T-2, CAPG + T, IFIT+ T,
KLRC2 + T, KRT8 + T, and TRDV2 + T cells. The CD4 + T cells were clas-
sified as FOXP3 + T regulatory (Treg) cells, CXCL13+ T helper (Th) cells,

CCR7+naïve, and FOS+ naïve T cells. Notably, we found that the
CD8 +KRT8+ cluster was significantly enriched in MBC samples,
whereas the CD4 +CXCL13+ Th cells were significantly depleted in
MBC samples (Fig. 5b and Supplementary Fig. 12b). Furthermore, the
FGFBP2+NKTwas enriched inMBC, andNCAM1 +NKTwas enriched in
FBC (Fig. 5b and Supplementary Fig. 12b). These observations sug-
gested the potential differences in T cell functions between MBC and
FBC patients.

We further integrated scRNA-seq and scTCR-seq data and com-
pared the enrichment and clone size between MBC and FBC samples
(Fig. 5c). We found that the clone sizes of some CD8 + T cells, such as
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the CD8 +CAPG+ and CD8 + IFIT1+ clusters were remarkably larger in
MBC samples than in FBC samples (Fig. 5d). Moreover, the p38 MAPK
signature scorewas significantly higher inCD8 + T cells fromMBC than
in FBC (Fig. 5e), indicating the senescence of CD8 + T cells in MBC.

TheCXCL13 + Th cells that highly expressed PDCD1 andCTLA4 had
a significant depletion and smaller clone size in MBC samples
(Fig. 5b–d and Supplementary Fig. 12a, b). The enrichment of
CXCL13+ Th cells was previously reported to be associated with the
high sensitivity of immunotherapy targeting PD1 or CTLA4 in patients
with colorectal cancer29. Therefore, our data implied thatmalepatients
with breast cancer might be insensitive to the PD1/PDL1 or CTLA4
inhibitors.

Furthermore, we compared the transcriptional patterns and
function of CD4 + , CD8 + , and NKT cells between MBC and FBC sam-
ples (Supplementary Data 7–9). Specifically expressed genes and
remarkably distinct functions were observed between different sexes
(Fig. 5f, g). The mitochondrial pathway of apoptosis was significantly
enriched by the up-regulated genes inMBCT cells. Consistent with the
above result (Fig. 5e), the p38 alpha/beta MAPK downstream pathway,
which was reported to be related to T cell dysfunction and
senescence30, was enriched in MBC T cells. Notably, all three subtypes
of T cells in the MBC microenvironment had an activated BDNF sig-
naling pathway, which could enhance lipid oxidation31. Lines of evi-
dence have shown that lipid oxidation was one of the most important
characteristics of dysfunctional or exhausted T cells32,33. We also
observed higher expression of AZGP1 in T cells from MBC. AZGP1 has
been reported to be a key promoter of cancer metastasis and lipid
metabolism34,35. In contrast, FBC samples exhibited a high expression
level of cytotoxic T-cell markers such as GZMK, KLRB1, KLRD1, XCL1,
andKLRC1 (Fig. 5f). Also, the specifically expressed genes in FBCT cells
were enriched inmultiple pathways mediated by immune-modulatory
cytokines, such as IL-2, IL-5, IL-4, and TNF-alpha signaling (Fig. 5g).
Furthermore,we identified that the fatty acidmetabolicpathwayswere
highly activated in MBC T cells, compared with T cells in FBC samples
(Supplementary Fig. 12c). Collectively, our data suggested that T cells
in the MBC microenvironment were dysfunctional, possibly mediated
by the lipidmetabolism,whereasT cells in FBCwere actively cytotoxic.

KRT8+T cells with high level of fatty acid metabolism were
enriched in the MBC microenvironment
According to our comparison analysis, KRT8 + T cells were specifically
enriched in the MBC samples (Fig. 5b). Moreover, epithelial cell mar-
kers, such as KRT8, KRT18, and KRT19, had significantly higher
expressions in MBC T cells (Fig. 5f). We further illustrated the co-
expression of CD3E and KRT8 at the single-cell resolution (Fig. 6a) and
found that the CD3E +KRT8 + T cells tended to enrich in MBC samples
(Fig. 6b). To further validate the existence of these cells, we calculated
the percentage ofCD3E +KRT8+ T cells of in-houseMBC, in-house FBC,
and Wu et al.’s FBC samples, respectively (Supplementary Fig. 13a, b).
Results showed that the percentages of CD3E +KRT8 + T cells were
similar in in-house and Wu et al.’s FBC samples (Supplementary

Fig. 13c). MBC samples had a significantly higher percentage of
CD3E +KRT8 + T cells than the FBC samples from the two datasets
(Supplementary Fig. 13c). About 50% of T cells fromMBC were KRT8+,
while only 2.1% of T cells from FBC were KRT8+ (Supplementary
Fig. 13d, e).We showed theKRT8 expression intensity on the t-SNE plot
basedon sex andwhether T cells wereKRT8+, and found thatKRT8was
expressed on some T cells, especially the T cells from MBC samples
(Supplementary Fig. 13f, g).

In order to figure out whether the observed CD3E +KRT8 + T cells
were patient-specific or generally existed,weevaluated the percentage
of CD3E +KRT8 + T cells across 19 samples, including 6 in-house MBC
samples, 2 in-house FBC samples, and 11 FBC samples fromWu et al. It
turned out that 17/19 breast cancer samples had CD3E +KRT8 + T cells
with different degrees, ranging from 0.2% to 83.1% (Supplementary
Fig. 14a). Especially, MBC samples showed higher percentage of
CD3E +KRT8 + T cell component (6.7–83.1%), and FBC samples had
relatively lower percentage (0.2–17.9%). We re-clustered the cells from
each sample and then visualized all cell types and marker expression
levels at the single-cell level. MBC and FBC samples with the highest
percentage of CD3E +KRT8+ cells were shown in Supplementary
Fig. 14b, c. Because only a part of T cells were KRT8+ (Supplementary
Fig. 14d, e),we split the feature-plot into two separate parts to illustrate
the expression of KRT8 more clearly. We found that some T cells did
expressKRT8butothershadno expression (Supplementary Fig. 14f, g).
Violin plots were used to further statistically compare the KRT8
expression among epithelial cells, KRT8 + T cells, and KRT8- T cells,
suggesting that KRT8 + T cells had a similar or lower level of KRT8
expression compared with epithelial cells (Supplementary Fig. 14h, i).
We also showed the aggregated expression of these markers of epi-
thelial and T cells in each sample using the dot-plot (Supplementary
Fig. 14j). The T cells from MBC2, MBC3, MBC4, MBC5, MBC6, and
FBC13 had KRT8/18/19 expression, but were lower than these levels in
epithelial cells. Finally, the Wilcoxon rank-sum test showed a sig-
nificant difference of CD3E +KRT8 + T cell enrichment between MBC
and FBC groups (Supplementary Fig. 14k; P value: 0.0014).

By evaluating the CD3E +KRT8 + T cell percentage under different
cell-filtering criteria, we excluded the influence of low-quality cells that
would be possibly included during the tissue dissociation, including
the doublets or multiplets and broken/dying cells. Considering there
may be more expressed genes that could be detected in doublets or
multiplets, we limited the number of expressed genes within each
single cell using different cutoffs, ranging from 1500 to 5000. Also,
dying or broken cells often exhibit extensive mitochondrial con-
tamination. Thus, we calculated the percentage of reads that mapped
to the mitochondrial genome in each single cell. Gradient cell-filtering
criteria were performed to limit the number of expressed genes and
mitochondrial reads percentage. Results showed that the percentage
of CD3E +KRT8 + T cells did not decline with the screening criteria
becoming strict and remained at a robust level in all tests (Supple-
mentary Fig. 15a, b), partially avoiding the technical artifacts caused by
low-quality cells. Moreover, we used CellBender36 to decontaminate

Fig. 3 | The transcriptional differences of cancer cells between MBC and FBC
samples. a Unsupervised clustering of 53, 343 cancer cells. b T-SNE plot of cancer
cells colored by samples. cThe density ratio of the t-SNE projections of cancer cells
frommale and female samples. The t-SNE visualization is split into 200 × 200 bins.
Red represents higher percentage of male cancer cell; Blue represents higher
percentage of female cancer cells. d Upper: barplot showing the fraction of cancer
cells from male and female samples in each cluster. Bottom: barplot showing the
number of cells in each cluster. The clusters were ordered by the proportion of
cancer cells from male samples. Lightcoral represents male clusters, turquoise
represents female clusters and lightblue representsmixed clusters (see “Methods”).
e Violin plots showing the ssGSEA scores of cell migration, EMT, and angiogenesis
of cancer cells from male (n = 37270 cells) and female (n = 16073 cells) samples. P
value was calculated by two-sidedWilcoxon rank-sum test. fHeatmap showing the

activity scores of transcription factors (TFs) in cancer cells from male (lightcoral),
female (turquoise), and mixed (lightblue) clusters. g Ridgeline plot showing the
activity levels of MBC-specific TFs in cancer cells from male, female, and mixed
clusters. h Violin plots showing the expression levels of MBC-specific TFs in cancer
cells frommale (n = 21794 cells), female (n = 4827 cells), andmixed (n = 26722 cells)
clusters. P value was calculated by two-sided Wilcoxon rank-sum test.
i Representative images of IHC staining detecting AR expression in MBC (n = 113)
and FBC (n = 86) samples Scale bar, 20μm. j Barplot showing the percentage of AR-
negative, AR+, AR++, and AR+++ samples from MBC (n = 113) and FBC (n = 86) ER+
patients. P value was calculated by Fisher’s exact test. In e and h, box plots show
median (center line), the upper and lower quantiles (box), and the range of the data
(whiskers). Source data are provided as a Source data file.
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and remove the empty droplets of the in-house scRNA-seq data, of
which the raw UMI matrices were available. Also, Scrublet37 and
DoubletFinder38 were used to identify and remove the doublets in
scRNA-seq data. Results showed that CD3E +KRT8+ cells still existed in
all samples after removing the empty droplets and doublets (Supple-
mentary Fig. 15c, d), keeping consistent with the results based on Cell
Ranger (Supplementary Fig. 14a). This result double-confirmed the

existence of CD3E+KRT8+ cells and avoided the potential influence of
technical contamination. To further address the concern of cellular
stress and dying cell contamination, we performed GSEA analyses
using the signatureofmitochondria, ribosome, andheat-shockprotein
for the gene expression profile of T cells. Results showed that the up-
regulated genes of CD3E+KRT8 + T cells were not enriched in these
signatures (Supplementary Fig. 15e).
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Further validation using immunofluorescence experiments for
the MBC samples confirmed the above observation and showed the
existence of CD3 + KRT8+ cells (Fig. 6c and Supplementary Fig. 16a). In
order to avoid the artifacts from multiple layers of cells, we further
obtained a series ofZ-stack confocal images of one singleCD3 + KRT8+
cell with a confocal microscope (Supplementary Fig. 16b). Besides, we
performed flow cytometry experiments for fresh tumor tissues from
an MBC patient to validate and quantify CD3 + KRT8+ double-positive
T cells (Fig. 6d). Single antibody-labeled compensation samples and
fluorescenceminus one (FMO) controls were used to determine where
the gates should be set (Supplementary Figs. 17 and 18). Firstly, debris
was excluded by forward and side scatters gating, and single cells were
gated using the FSC-A/FSC-H profile. Dead cells were further excluded
using live/dead staining by Zombie. Secondly, KRT8 and CD45 were
used to distinguish the epithelial cells (KRT8 +CD45−, 24.0%), immune
cells (KRT8-CD45 + , 5.1%), and KRT8 +CD45+ double-positive cells
(5.3%). Among the KRT8 +CD45+ double-positive cells, 86.2% were
KRT8 +CD45 +CD3 +T cells. Similarly, 87.8% of KRT8-CD45+ immune
cellswereCD3 +T cells. To better determine the T cell subpopulations,
the KRT8 +CD45 +CD3+ and KRT8-CD45 + CD3 +T cells were back-
gated and overlaid onto the FSC-A/SSC-A plots. Results showed that
both KRT8 +CD45 +CD3+ and KRT8-CD45 +CD3 +T cells were loca-
ted in the lymphocyte gate. Among all T cells (CD45 +CD3 + ), KRT8+
and KRT8− cells accounted for 50.5% and 49.5% in this MBC sample,
respectively. Therefore, these results indicated the biological exis-
tence of KRT8+CD45 +CD3+ T cells.

Furthermore, we attempted to explore the functional implication
of theseCD3E +KRT8 + T cells. Firstly, we askedwhether these cells had
an enrichment preference in different T cell types. Results showed that
these T cells tended to be CD8+ (Supplementary Fig. 19a). By com-
paring the gene expression between CD3E +KRT8+ and CD3E+
KRT8− T cells, we found that CD3E +KRT8+ cells down-regulated the
cytotoxicity-related genes, such as GZMA, GZMK, IFNG, and KLRD1
(Fig. 6e and Supplementary Data 10). The important gene for TCR
signaling pathways initiation FYN was also down-regulated in
CD3E +KRT8 + T cells39. In contrast, genes related to T cell senescence
such as GATA3, and genes related to histone such as HIST1H1E had
higher expression levels in CD3E +KRT8+ cells. Notably, some genes
involved in fatty acid metabolism were significantly up-regulated in
CD3E +KRT8+ cells, including FASN, HADHA, ELOVL5, and HACD3
(Fig. 6f). The previous study has shown that the HADHA encoded a
subunit of the multienzyme complex that catalyzed mitochondrial
beta-oxidation of long-chain fatty acids40. Furthermore, we also
explored the cytotoxic activity of CD3E +KRT8+ and CD3E +KRT8−
T cells and observed less cytotoxic activity in CD3E +KRT8+ cells
(Supplementary Fig. 19b and Supplementary Data 11).

We found that the CD3E +KRT8 + T cells had significantly higher
expression levels of genes related to apoptosis inducedby the immune
response, such as granzyme-A and T cell receptor mediated apoptosis

pathway, but not enriched in the apoptosis related to cellular stress
(Supplementary Fig. 17c). Besides, oxidative phosphorylation and the
BDNF signaling pathway were significantly activated in the
CD3E +KRT8 + T cells (Fig. 6g), further confirming the association
between lipid metabolism and T cell dysfunction in MBC patients. It is
worth noting that AR signaling, proteolysis, and transcription regula-
tion showed the highest enrichment score in the up-regulated genes of
CD3E +KRT8 + T cells (Fig. 6g). A previous study demonstrated that the
transcriptional programs regulated by AR could drive the tumor-
infiltrating CD8 + T cell exhaustion in male cancer patients, contribut-
ing to the sex differences in antitumor immunity41. Collectively, our
analysis indicated that characterized by the elevated levels of lipid
metabolism and AR regulation, the CD3E +KRT8 + T cells may be
involved in the immunological dysfunction in MBC patients.

The communications between cancer cells and T cells were
involved in the immunosuppressive in MBC
We performed the analysis for cell–cell communications among var-
ious cell types in MBC and FBC samples to identify the differences in
the immunological microenvironment. Results showed that the num-
ber of interactions between cancer cells and T cells in MBC samples
was approximately twice as many as in FBC samples (Fig. 7a). A
majority of T cell subtypes had more interactions with cancer cells in
MBC than in FBC samples (Fig. 7b). We further identified the common,
male-specific, female-specific ligand–receptor interactions between
cancer cells and T cell subpopulations (Fig. 7c, d), indicating both
shared and distinct characteristics in MBC and FBC immunology.
Notably, interactions of TGF-β and TGF-β receptors were significantly
activated in cancer cells and T cells of MBC samples (Fig. 7e, f). Pre-
vious studies reported thatTGF-β signaling played an important role in
T-cell exclusion, immunosuppression, and tumor progression42–44.
Inhibiting the TGF-β signaling could enhance the immune checkpoint
blockade therapy for mammary carcinoma44. Besides, the TIGIT-
NECTIN2 interaction between T cells and cancer cells was found in
MBCsamples (Fig. 7e).TIGIT (also calledT cell immunoreceptorwith Ig
and ITIM domains) was a key inhibitor of the cancer immunity45, and
TIGIT-NECTIN2 interaction was associated with T cell exhaustion46.
Also, the immune checkpoint VSIR was expressed on some T cell
subpopulations of MBC samples and interacted with the cancer cells
via TNF (Fig. 7e). In summary, our results showed that the commu-
nications between cancer cells and T cells were involved in the
immunosuppressive in MBC samples.

Discussion
Compared with FBC, MBC is more aggressive and has a worse
prognosis47,48. Due to the lack of studies onMBC, the current treatment
of MBC patients is mainly based on the management of FBC patients.
However, sex differences influence a range of biological functions,
such as hormonal response, energy metabolism, and immune

Fig. 4 | Identification of the specifically activatedmetabolic pathways in cancer
cells of MBC sample. a Violin boxplots showing the signature scores of fatty acid
metabolic pathways in cancer cells of male (lightcoral) and mixed/female (tur-
quoise) clusters. P value was calculated by two-sided Wilcoxon rank-sum test and
adjusted for multiple testing using the Benjamini–Hochberg method. b Left: t-SNE
plot showing the FASN expression in cancer cells, color coding for the expression
level of FASN (blue to red). Right: t-SNE plot of cancer cells colored byMale, Mixed,
and Female clusters. c Violin plot of FASN expression in cancer cells from male
(n = 37270 cells) and female (n = 16073 cells) samples. P value was calculated by
two-sided Wilcoxon rank-sum test. d Violin-boxplots showing the FASN expression
amongmale (n = 12) and female (n = 710) samples in TCGAER+ BRCAcohort. P value
was calculated by two-sided Wilcoxon rank-sum test. e Representative images of
IHC staining detecting FASN expression in MBC (n = 30) and FBC (n = 30) samples.
Scale bar, 20μm. f Boxplot indicating the IHC score of FASN in MBC (n = 30) and
FBC (n = 30) samples. P value was calculated by two-sided Wilcoxon rank-sum test.

g IGV plots showing the genomic binding site of SREBF1 on gene FASN in various
cancer cell lines. The region covered by yellow box represents promoter. h The
Pearson correlation analysis between the expression of FASN and SREBF1 in inde-
pendent breast cancer datasets. The color of point representsmale (lightcoral) and
female (turquoise). i The Pearson correlation analysis between the expression of
FASN and AR in independent breast cancer datasets. The color of point represents
male (lightcoral) and female (turquoise). j The Pearson correlation analysis
between the scores of metastasis-related signatures and fatty acid metabolic
pathway in TCGA ER+ BRCA cohort. The color of point represents male (lightcoral)
and female (turquoise). k The Pearson correlation analysis between FASN expres-
sion and the signature score of T cells for MBC samples in TCGA ER+ BRCA cohort.
In a, c, d, f, box plots show median (center line), the upper and lower quantiles
(box), and the range of the data (whiskers). In h–k, 95% confidence interval (CI) is
indicated with gray color. Source data are provided as a Source data file.
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response8. Therefore, there is an urgent need for the characterization
of cellular andmolecularmechanisms ofMBC and the identification of
novel therapeutic targets to improve the prognosis for MBC patients.

Our study investigated the features of tumor cells and the
immune microenvironment in MBC. We performed an integrated
single-cell transcriptomic analysis of ER +MBC and FBC patients.
Based on the analysis at the single-cell level, we found that MBC
patients had a higher tumor purity and a lower degree of immune
infiltration than FBC, which were further validated by public RNA-seq
data and IHCexperiments. Immunosuppression is a primary reason for
poor survival and aggressive disease. It has been proven to be an
important cause of distal metastasis49,50, which is associated with
cancer growth and progression51,52. Furthermore, the transcriptional
programs associated with metastasis were markedly activated in MBC
patients. Genes associated with cell migration and EMT were sig-
nificantly activated in MBC, suggesting the high potential of metas-
tasis of MBC.

Differences between males and females can lead to variations in
neoplasia characteristics and progression, especially regarding
immunological responses and metabolic pathways7,8. We found that
the fatty acid metabolic pathways were significantly more activated in
MBC than in FBC. Tumor cells typically accelerate de novo fatty acid
synthesis to provide energy to produce phospholipids and signaling
molecules on their cell membranes53. Lipid accumulation in tumor-
infiltrating myeloid cells can tilt these cells toward immunosuppres-
sive and anti-inflammatory phenotypes through metabolic repro-
gramming. Li et al. suggested that drugs that target active metabolic
pathways in the TME may synergize with immune checkpoint inhibi-
tors by reducing the metabolic stress of tumor-infiltrating lympho-
cytes (TILs)54. Furthermore, the enzyme for fatty acid synthesis FASN
also showed a higher level in MBC than in FBC patients. Studies have
shown that inhibition of FASN can effectively and extensively inhibit
the DNA replication of cancer cells and delay the S phase transition in
the cell cycle, suggesting that the pathway of fatty acid synthesis is
associated with the growth of cancer cells55. A study by Bahlani et al.
also reported that FASN was important in regulating the chemosensi-
tivity of different breast cancer types and therefore could serve as a
survival factor56. FASN inhibitors have been developed to improve the
anti-tumor activity against various breast cancers57. Moreover, ele-
vated FASN expression was observed in several other cancer types and
associated with a poor prognosis of patients57. Notably, a previous
study demonstrated that lipid metabolism dysregulation driven by
FASN upregulation was important in the PRAD progression and cas-
tration resistance mediated by AR signaling24. Our analysis also indi-
cated the association between FASN expression and poor prognosis in
PRAD. These results consistently suggested that FASN-mediated lipid
metabolism dysregulation was a potential therapeutic target for
hormone-receptor-positive cancers. Notably, the fatty acid metabo-
lism showed a positive correlation with metastasis, and a negative
correlation with immune infiltration, implying the activated fatty acid
metabolism might involve in the immunological suppression and
metastasis of MBC. A previous study demonstrated that FASN could
prevent anti-tumor immunity by disrupting tumor-infiltrating den-
dritic cells58. Consistently, our data showed that the increased fatty
acid metabolism was associated with the lower infiltration of T cells
and B cells in MBC and other cancer types. The up-regulation of
pathways associated with lipid oxidation was also observed in MBC
T cells. The previous study indicated that lipid peroxidation could
promote the dysfunction in CD8 +T cells in tumors33. Therefore, we
reasonably speculated that targeting the fatty acid metabolism path-
way may alleviate the immunosuppressive microenvironment in mul-
tiple cancers.

Furthermore, we found that a particular T cells subpopulation
that co-expressed KRT8 and CD3 was specifically enriched in MBC
samples.Notably, these cells showed significant up-regulationof genes

related to fatty acid synthesis and oxidation, such as FASN andHADHA.
These T cells had lower cytotoxicity than the CD3E +KRT8- T cells.
Compared to CD3E +KRT8- T cells, the up-regulated genes of
CD3E +KRT8 + T cells were enriched in AR-regulated programs, con-
sistent with the previous study that demonstrated the sex differences
in antitumor immunity driven by AR41. With the development of single-
cell techniques,we could investigate the cellular characteristics at high
resolution and identify the previously unappreciated cells. Intrigu-
ingly, a study fromHu et al. identified a non-traditionalCD45 + EpCAM+
cell population in the fallopian tube epithelial layer of ovarian cancer
patients by scRNA-seq (Smart-Seq2) and validated using immuno-
fluorescence experiments59. However, the biological and clinical
implications of this population are unclear yet. Our preliminary study
validated and characterized CD3E +KRT8 + T cells and implied that
these cells may be involved in the immunological dysfunction in MBC
patients.

Due to the rarity of MBC occurrence and the stringent sample
requirements of single-cell experiments, only limited MBC samples
were included in this study, which may have a potential influence on
the conclusion of this work. However, this explorative study identified
notable differences between MBC and FBC, especially the distinct
metabolic and immunological characteristics of MBC patients. These
observations need to be further validated with larger sample sizes in
the future.

In summary, our study characterizes the immunological and
metabolic differences between MBC and FBC at the single-cell level.
We indicated that MBC had lower immune infiltration and higher
metastasis potential than FBC. The activation of fatty acid metabolism
was observed in both tumor cells and T cells in the MBC micro-
environment. Moreover, the fatty acidmetabolism strongly correlated
withmetastasis-related programs and the depletion of immune cells in
MBC, suggesting that targeting fatty acid metabolism pathways may
alleviate the immunosuppressive microenvironment and inhibit cell
migration for MBC patients.

Methods
Patient samples
Single-cell transcriptomic data from 6 MBC and 13 FBC samples were
analyzed, in which eleven FBC samples were collected from a previous
study by Wu et al.60, and other samples were in-house. All of the col-
lected samples were ER+. We defined the ER, PR, HER2, and KI67 status
using IHC, and further evaluated the amplification of HER2 based on
FISH. The clinicopathological characteristics were shown in Supple-
mentary Data 1. All the collected samples (including MBC and FBC)
were negative for HER2 amplification evaluated by FISH. Besides, 18/
19 samples were from primary untreated ER+ breast cancers, and FBC8
was from an ER+ female patient treated with neoadjuvant therapy. This
study was approved by the Ethics Committee of The First Affiliated
Hospital of Nanjing Medical University. Informed consent was
obtained from each patient before surgery.

Cell preparation
Fresh tissue samples were cut into approximately 1mm3 piece on ice
and were transferred into a 1.5mL tube containing Dulbecco’s mod-
ified eagle medium (Thermo Fisher Scientific). After mincing with
ophthalmic scissors, the tiny tumor pieces were spun down and
washed with 1× PBS. The minced tumor tissue from each sample was
immediately transferred into a 15mL tube, and subjected to dissocia-
tion using tissue dissociation Kit (Miltenyi Biotec, cat. no. 130-110-203).
The suspended cells were subsequently passed through cell strainers
with a 70-µm filter and centrifuged at 400× g for 5min. After the
supernatant was removed, the pelleted cells were suspended in red
blood cell lysis buffer (Solarbio) and incubated for 5min to lyse red
blood cells at room temperature (20–22 °C), and then the sample was
passed through a 40-µm filter. After washing twicewith 1× PBS, the cell
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pellets were re-suspended in PBS buffer. Finally, the samples were
stained with trypan blue (Sigma) and the cellular viability was eval-
uated microscopically.

Library preparation and scRNA-seq
For samples MBC1, MBC2, MBC3, FBC1, and FBC2, 10,000 cells per
sample were loaded into a Chromium Single-Cell 3 Chip Kit v2 (10×
Genomics, PN-120236) following the established protocols using the
Chromium Single Cell 30 Library V2 Kit (10× Genomics, PN-120234).
Briefly, reverse transcription, cDNA recovery, cDNA amplification, and
library construction were performed using the Single Cell 3’ Library
and Gel Bead Kit v2 (10× Genomics, PN-120237) and Chromium i7
Multiplex Kit v2 (10× Genomics, PN-120262) according to the manu-
facturer’s instructions. For samples MBC4, MBC5, and MBC6, single-
cell suspensions (1 × 105 cells/mL) with PBS (HyClone) were loaded into
microfluidic devices using the Singleron Matrix Single Cell Processing
System (Singleron). Subsequently, the scRNA-seq libraries were con-
structed according to the protocol of the GEXSCOPE Single Cell RNA
Library Kits (Singleron, 5180011)61. Individual libraries were diluted to
4 nM and pooled for sequencing. Single-cell library sequencing was
performed using the Illumina HiSeq X Ten or NovaSeq 6000, with
150 bp paired-end sequencing.

ScRNA-seq data pre-processing
The Cell Ranger v3.0.2 pipeline was performed to analyze the raw data
and generate gene count data using the default and recommended
parameters. The STAR algorithm was used to align the FASTQ output
obtained from the sequencing data to the GRCh38 reference genome.
Next, gene-barcode matrices were generated for each sample by
counting the unique molecular identifiers (UMIs), barcode count, and
genes without expression across all cells were removed. Finally, we
generated a gene-barcode matrix that contained barcoded cells and
gene expression counts. All additional analyses were performed using
the Seurat (4.0.4, http://satijalab.org/seurat/) R toolkit62, including
quality control and all subsequent analyses. To eliminate the influence
of low-quality cells such as empty droplets and multiplets, cells with
expressed genes <200 or >6000 were excluded. The percentage of
UMIsmapped to mitochondria was set to less than 25%. Finally, a total
of 103,834 cells after quality control were used for further downstream
analysis, including 53,028 cells from male samples and 50,806 cells
from female samples (Supplementary Data 3).

Principal component analysis, clustering, and cell-type
recognition
We identified the top 2000variable features using the “vst”method for
each dataset. Datasets were then anchored and integrated using the
integration procedure from the Seurat package to eliminate the batch
effects among the samples. ScaleData function was used to perform a
linear scaling transformation on the identified variable features using
default parameters. Principal component analysis (PCA) was per-
formed on the scaled data to reduce the dimensionality. The statistical
significance of the PCA scores was determined using the JackStraw
function. The first 25 principal components were used for identifying
the neighbors and clustering the cells with a resolution of 1.5. The cell
clusters were visualized using 2D uniform manifold approximation
projection (UMAP) or t-distributed stochastic neighbor embedding
(tSNE) plots. The FindAllMarkers function was used to identify the
genes specifically expressed in each cell cluster. We identified the cell
types based on the expression of well-established gene markers. Cells
were divided into seven main cell lineages, of which 53,343 were
cancer cells.

Identification of cancer cells
To identify malignant and non-malignant cells, we confidently dis-
tinguished malignant from non-malignant cells for each sample

using two complementary approaches. First, we identified malig-
nant epithelial cells using the marker genes EPCAM, KRT18, KRT14,
and KRT19. To verify the identified cancer cells more accurately, we
also used the inferCNV R package63 to evaluate copy number var-
iants (CNVs) levels, using immune cells (T cells, B cells, macro-
phages, and mast cells) and stromal cells (fibroblasts and
endothelial cells) as the control group and epithelial cells as the
test group.

Identification of up-regulated genes of MBC cancer cells
To compare the characteristics of cancer cells from MBC and FBC
samples, we integrated cancer cells from 19 samples and identified
36 clusters by unsupervised clustering. Using the FindAllmarkers
function of the Seurat package, we identified genes with log2 fold
change >0.25 and adjusted P value >0.01 for each cluster. Based on
the order of log2 fold change, the top 100 genes were further
identified as markers of each cluster. By calculating the proportion
of cancer cells from MBC samples in each cluster, we defined male,
female, and mixed clusters. Specifically, clusters with a proportion
of male cancer cells >70% were defined asmale clusters, those with a
proportion <50% were defined as female clusters, and the others
were defined as mixed clusters. To identify the genes specifically
expressed in male clusters, gene markers that presented in at least
three male clusters were selected, and markers of female or mixed
clusters were further removed from this list.

Transcription factor regulatory activity analysis
We analyzed the regulon activity by using the R package Dorothea
(version 1.72)64, which combined the database of regulons and TF
activity inference methods together. Only regulons with confidence
levels A, B, and C were selected to better estimate TF activities. Reg-
ulon scorewas calculated for each single cell using VIPER65, a statistical
test based on the average ranks of the targets. We compared the TF
activity between male and female clusters and calculate the fold
change and P values using the two-sidedWilcoxon rank-sum test.MBC-
specific TFs were identified with the threshold as follows: fold change
>1, expression percentage >30% in MBC cancer cells, and <30% in FBC
cancer cells.

Metabolic pathway analysis
The analysis of the metabolic pathways was performed using the
method from Xiao et al.66. Single-sample GSEA (ssGSEA) scores were
calculated for 85 Kyoto Encyclopedia of Genes and Genomes (KEGG)
metabolic pathways based on gene expression levels67. The activity
difference of KEGG metabolic pathways between male and female
cancer cell clusters was measured by two-sided Wilcoxon rank-sum
test. P values were adjusted for multiple testing using the
Benjamini–Hochberg method. Pathways with adjusted P value <0.05
were identified as differentially activated pathways between male and
female cancer cell clusters.

Cell–cell communication analysis
To investigate the cell–cell communications mediated by
ligand–receptor interaction between different cell types, we used
CellPhoneDB68 to analyze and compare the cell-cell communications
between MBC and FBC samples. The ligand-receptor pairs with P
value < 0.05 were retained.

Processing of single-cell T cell receptor sequencing data
The TCR was enriched from amplified cDNA from 5’ libraries via PCR
amplification using the Chromium Single-Cell V(D)J Enrichment kit
according to the manufacturer’s protocol (10× Genomics). TCR
sequences were obtained using the Illumina sequencing platform, and
fastq files were generated using the 10× Cell Ranger mkfastq and vdj
pipeline.
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Immunohistochemistry and immunofluorescence staining
Immunohistochemistry (IHC) analysis was conducted in tumor tissues
from breast cancer patients (Supplementary Data 12). Briefly, paraffin-
embedded tissue was sectioned into 4-µm slides and incubated with
anti-CD4 (#ab133616, Abcam, 1:500), anti-CD8 (#ab237709, Abcam,
0.25 µg/mL), anti-AR (#5153, CST, 1:500), and anti-FASN (#ab128870,
Abcam, 1:450) overnight at 4 °C. Subsequently, slides were incubated
with appropriate horseradish peroxidase (HRP)-coupled secondary
antibody (1:1000) for one hour at 20–22 °C, followed by incubation
with DAB (#SK-4100, Vector Laboratories, Burlingame, CA). The
number of positive cells and the total number of cells in the target
region of each section were quantified by the ICA Labs-Multiplex IHC
V2.2.0 module of Halo V3.0.311.314 analysis software. CD4-positive
rates and CD8-positive rates of 30 ER+ MBC and 30 ER+ FBC samples
were then quantified. We also quantified the FASN expression level in
the same cohort according to the immunoreactive score (IRS) stan-
dard (P × I), where P is the percentage of positive cells, I indicated the
staining intensity.Pwas assessedon scale of 0 to 4 (0: 0–5%, 1:6–25%, 2:
26–50%, 3: 51–75%, 4: 75–100%); and I was measured on scale of 0 to 3
(0: no staining, 1: light staining intensity, 2:moderate staining intensity,
3: dark staining).

For immunofluorescence staining, slides were washed in PBS
containing 1% (v/v) Triton X-100 (PBST) and incubated in blocking
buffer consisting of 5% bovine serum albumin for 60min at room
temperature. The samples were incubated with a primary antibody
(CD3, #17617-1-AP, Proteintech, 1:500; KRT8, #ab9023, Abcam, 1:200)
overnight at 4 °C (Supplementary Data 12). The following day, after
washing with PBS, the samples were incubated with a solution con-
taining secondary antibody diluted 1:2000 in PBS for 2 h at room
temperature. Z-stack confocal images were obtained using a confocal
microscope (CarlZeiss LSM880 with NLO & Airyscan), and an interval
of depth between individual pictures was set at 0.71μm.

Flow cytometry experiments
Multi-parameter flow cytometry (FCM) was used to determine the
expression of KRT8, CD45, and CD3. Fresh tissues (>100mg) were
washed with 1× HBSS (Gibco, 14025092) and cut into small pieces on
ice. Digestion was performed for 15–30min using GEXSCOPE Tissue
Dissociation Mix (Singleron, 1200050003) at 37 °C in a shaker. The
solution was passed through a 40μm cell strainer and washed with 1×
PBS (Gibco) to obtain single-cell suspensions. At least 2 × 106 cells were
stained with antibodies against human CD3-APC (BD, Clone SK7,
340440), CD45-Percp-Cy5.5 (BD, Clone 2D1, 340953) and KRT8-FITC
(Abcam, Clone43, ab176533) as per themanufacturers’ instructions for
15min at 20 °C in the dark (Supplementary Data 12). For intracellular
staining, surface-marked cells were fixed for 15min and then permea-
bilized using an IntraStain Kit (Dako, DK, K2311) according to the
manufacturer’s instructions after washing with 1× PBS (Gibco) and
centrifuged at400× g for 5min. The sampleswerekept on icebetween
sample processing and evaluation using FCM. Flow cytometry was
performed using a FACSLyric flow cytometer (BD Biosciences). The
intrinsic spectral overlap of the different fluorochromes was corrected
using compensationmatrices. Due to the scarcity ofMBC samples, the
experiments of single antibody-labeled compensation controls and
FMO controls were performed using ER+ FBC samples. The full staining
experiments were performed using freshMBC tumor tissues. Doublets
were excluded according to the FSC-A/FSC-H profile. Zombie Yellow
Fixable Viability Kit (Biolegend, 423103) was used to exclude the dead
cells. All the flow cytometry data were analyzed using FlowJo software
(Version 10.8.1, FlowJo LLC). The raw FCS files are deposited in Men-
deley Data (https://data.mendeley.com/datasets/wwm9xv56ry/1).

Bulk transcriptomic data analysis
Bulk transcriptomic data and clinical information from The Can-
cer Genome Atlas (TCGA) database were downloaded and

extracted from the XenaBrowser website https://xenabrowser.
net/datapages/. We selected the ER+ TCGA-BRCA samples based
on the clinical information. Specifically, 835 primary tumor sam-
ples with positive breast_carcinoma_estrogen_receptor_status
were selected, including both HER2+ and HER2− samples. Samples
without RNA-seq data were further removed. Finally, we obtained
the transcriptomic and clinical data of 722 ER+ TCGA-BRCA sam-
ples, including 598 ER+HER2− FBC, 112 ER+HER2+ FBC, 9 ER+HER2−

MBC, and 3 ER+HER2+ MBC samples. HER2 status is based on the
IHC results in the clinical information of the TCGA-BRCA dataset.
We also downloaded the bulk transcriptome data of two MBC
datasets from the GEO database, GSE104730 (ref. 6) and
GSE31259 (ref. 20), for validation. The ESTIMATE R package was
utilized to calculate the scores for tumor purity of TCGA samples
based on bulk RNA-seq data. We identified the top ten genes with
the highest fold-changes of each cell type in our single-cell data
and then calculated the ssGSEA scores of these gene signatures
for bulk samples. The scores of immune or stromal cells were
compared between MBC and FBC samples using two-sided Wil-
coxon rank-sum test, which was a non-parametric test that did
not assume known distributions69. To further validate the relia-
bility of gene signatures derived from the single-cell dataset, we
measured the enrichment of TME cells by using immune-
deconvolution tools MCP-counter17, EPIC18, and xCell19.

Evaluating the metastasis-related signature scores for single
cells and TCGA samples
Gene markers related to cell migration were obtained from a previous
study70. EMT and angiogenesis signatures were downloaded from
Molecular Signatures Databases (MSigDB). Based on these signatures
(Supplementary Data 4), we used ssGSEA to assess the scores of tumor
metastasis. The Pearson correlation coefficient between fatty acid
metabolism score and metastasis-related signature scores was calcu-
lated by the “cor.test” function for TCGA pan-cancer samples.

Functional enrichment analysis
The gene lists were submitted to Enrichr (https://maayanlab.cloud/
Enrichr/) online tool and the top ten terms were retained according to
the adjusted p-value.

Survival analysis
We performed Kaplan–Meier survival analysis of OS, PFI, and DSS for
the male and female cancer patients using “Survival” and “Survminer”
R packages. The patients were classified as FASN_high and FASN_low
groups for each dataset according to the median of FASN expression.
The significance was evaluated by the log-rank test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw single-cell sequencing data generated in this study have been
deposited in theGenomeSequence Archive at National Genomics Data
Center, China National Center for Bioinformation/Beijing Institute of
Genomics, ChineseAcademyof Sciences (https://ngdc.cncb.ac.cn/gsa-
human, accession no. HRA001341). The processed countmatrices data
are available at the OMIX (https://ngdc.cncb.ac.cn/omix), accession
no. OMIX004533. The flow cytometry data in this study are available in
Mendeley Data [https://data.mendeley.com/datasets/wwm9xv56ry/1].
Thepublicly available scRNA-seqdata of 11 FBC samples are available in
the Gene Expression Omnibus (GEO) under accession number
GSE176078. The publicly available bulk transcriptome data of MBC
samples are available in the GEO under accession numbers GSE104730
and GSE31259. All R packages are available online, as described in the
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“Methods.” All other data are available in the article and its Supple-
mentary Files or from the corresponding author upon request. Source
data are provided with this paper.
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