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SUMMARY
Systemic lupus erythematosus (SLE) is a chronic autoimmunedisease, andCD4+ T cells are known to promote
SLEdevelopment.Here,weexploreheterogeneities in theCD4+Tcell regulomeand their associationswithSLE
pathogenesis by performing assay for transposase-accessible chromatin with high-throughput sequencing
(ATAC-seq) and single-cell transcriptome sequencing (single-cell RNA sequencing [scRNA-seq]) of peripheral
CD4+ T cells from 72 SLE patients and 30 healthy controls. Chromatin accessibility signatures of CD4+ T cells
are correlatedwithdisease severity. Further, we generate 34,176 single-cell transcriptomes of healthy andSLE
CD4+ T cells and reveal transcriptional dysfunction of regulatory T (Treg) cells, identifying two Treg subpopu-
lations, amongwhich the CCR7lowCD74hi Treg subgroup features type I interferon-induced functional exhaus-
tion inSLEpatients. These transcriptome-level findings forSLETregsaremirrored in trends fromtheATAC-seq
data. Our study establishes a rich empirical foundation for understanding SLE and uncovers previously un-
known contributions of Treg with exhaustion-like properties to SLE pathogenesis.
INTRODUCTION

Systemic lupus erythematosus (SLE) is a complex systemic

autoimmune disease caused by perturbations in self-tolerance,

leading to the activation of autoreactive B cell and T cell immune

responses in multiple tissues (Tsokos, 2020). Compelling

evidence has shown that epigenetic modifications (e.g., gene

regulation that involves chromatin modifications or chromatin

accessibility) of T cells are involved in SLE pathogenesis (Tsokos

et al., 2016). Specifically, increased acetylation of histone H3/H4

was identified inSLECD4+Tcells (Huet al., 2008), anddecreased

methylation of costimulatorymolecules (e.g.,CD40LG) and inter-

feron (IFN) signature genes (e.g., IFI44L) (Hedrich et al., 2017) in

CD4+ T cells was found to correlate with the extent of inflamma-

tion and tissue damage in SLE patients (Coit et al., 2016). There-

fore, understanding the impacts of global chromatin accessibility

inCD4+ T cells and linking differential accessibility to SLEdisease

activity can deepen our understanding of SLE pathogenesis.

Recent studies have employed single-cell transcriptome

sequencing (single-cell RNA sequencing [scRNA-seq]) technol-

ogy to delineate the landscapes of immune cells in the peripheral
C
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blood and kidneys of SLE patients (Arazi et al., 2019; Nehar-Be-

laid et al., 2020). These foundational studies have provided an

empirical basis for dissecting the cellular heterogeneity of pa-

tients’ immune systems. However, the current lack of data for

specific cell populations—for example, CD4+ T cells—has thus

far limited our capacity to make data-driven inferences about

the specific impacts of distinct immune cell types on this autoim-

mune disease.

Regulatory CD4+ T (Treg) cells are a subset of CD4+ T cells

known to function in maintaining immune tolerance and are

essential for immune system homeostasis (Sakaguchi et al.,

2020). Multiple studies on patients with autoimmune diseases

have observed attributes of defective Treg cells (Dominguez-

Villar and Hafler, 2018; Wing et al., 2019), such as increased

proportions of Th1-like Treg cells, which produce the inflamma-

tory cytokine IFN-g (Sumida et al., 2018). Interleukin (IL)-17-

producing Foxp3-expressing Treg cells were also reported by

a previous study (Komatsu et al., 2014). However, there is

increasing awareness that some trends observed in early

studies may be misleading, owing to the introduction of poten-

tially confounding factors related to the identification of Treg
ell Reports 41, 111606, November 8, 2022 ª 2022 The Author(s). 1
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cells (based on the expression of surface markers) (Dominguez-

Villar and Hafler, 2018). Single-cell profiling technologies pro-

vide an alternative method for identifying and investigating

Treg cells under pathological conditions.

Type I IFNs were reported to be blood transcriptional signa-

tures in SLE patients (Banchereau et al., 2016). Several studies

have suggested that excess levels of type I IFNs may induce

Treg dysregulation, with obvious trends to differing extents in

SLE patients with different disease severities (Crow et al.,

2019); in contrast, other studies have reported positive effects

of IFN mediation on Treg expansion (or function) under inflam-

matory conditions (Lee et al., 2012). It is thus clear that the

impact(s) of type I IFNs on Treg suppression remain quite contro-

versial in autoimmune disease studies.

Here, we utilized the assay for transposase-accessible

chromatin sequencing (ATAC-seq) and scRNA-seq to analyze

peripheral CD4+ T cells from SLE patients and healthy controls

and generated high-resolution landscapes of the epigenome

and single-cell transcriptome of CD4+ T cells in vivo. We found

major epigenetic regulatory patterns corresponding to SLE dis-

ease activity based on in-depth analyses of our ATAC-seq

data. Additionally, single-cell transcriptome analysis enabled

the identification of CD4+ T cell subtypes in SLE patients that

were distinct from those of healthy controls and enabled an

exploration of their potential contributions to SLE pathogenesis.

Ultimately, we discovered that CCR7lowCD74hi Treg cells feature

type I IFN-associated functional exhaustion in SLE patients as

well as consistently dysregulated patterns at the transcriptome

and chromatin accessibility. We also detected apparently similar

Treg cells in CD4+ T cell datasets from patients with ulcerative

colitis and multiple sclerosis.

RESULTS

Chromatin accessibility landscapes of CD4+ T cells from
healthy controls and SLE patients
We generated 102 high-resolution ATAC-seq profiles of primary

CD4+ T cells and conducted a genome-wide analysis to map the

locations and profile the accessibilities of diverse regulatory ele-

ments (Figure 1A). The examined cells were freshly isolated from

peripheral blood mononuclear cells (PBMCs) using fluores-

cence-activated cell sorting (FACS) (Figures S1A and S1B).

Our dataset included a total of 65 samples from 63 SLE patients

(58 of which had clinical information) and 37 samples from 25

healthy controls (Table S1). For each SLE patient, detailed medi-

cation history and comorbidities at the time of blood draw were

recorded and summarized (Table S1). Specifically, the patient

cohort comprised 40 individuals with new-onset disease (24 of

whom were drug naive). According to the disease activity index

(DAI) determined using the SLEDAI-2Kmethod (Yee et al., 2007),

38 SLE patients were at a severe stage, with a DAI > 11 (24 of

whom were freshly diagnosed). The average DAI was �15 in

this patient cohort for bulk ATAC-seq of primary CD4+ T cells

(Table S1).

Each ATAC-seq library was sequenced to obtain an average of

more than 20 million paired-end reads (Table S1). With this data-

set, we identified a total of 103,317 high-quality peaks for DNA

accessibility in healthy and SLE CD4+ T cells using the previously
2 Cell Reports 41, 111606, November 8, 2022
reported tool ATAC-pipe (Zuo et al., 2019); these high-quality

peaks had strong signal-to-noise ratios (Figures S1C and S1D)

and reproducibility (Figures S1E and S1F). Confirming the plau-

sibility of our analysis, our ATAC-seq analysis successfully

detected focal enrichments for open chromatin around the

CD3D and CD4 loci (Figures S1G and S1H) but not for CD8A

(Figure S1I). In addition, the number of accessible peaks ap-

proached saturation (�100,000) when the number of samples

from SLE patients reached 60, indicating that the sample size

of our cohort was sufficiently large to identify most of the DNA

accessible sites in CD4+ T cells from patients (Figure 1B).

Thus, our ATAC-seq analysis of primary CD4+ T cells yielded a

large-scale and reliable dataset of genome-wide chromatin

accessibility profiles for both healthy individuals and those with

SLE.

Chromatin accessibility signatures of SLE CD4+ T cells
We next explored the chromatin accessibility signatures related

to SLE disease activity. We first performed a principal-compo-

nent analysis (PCA) of all the ATAC-seq samples; the healthy

control samples were closely clustered together, whereas the

SLE patient samples were more diffusely distributed (Figure 1C,

average Euclidean distance at the PCA space: controls = 0.09

versus patients = 0.17, p < 10�88), indicating a higher extent of

heterogeneity for the chromatin accessibility of primary CD4+

T cells from SLE patients (Figures S1J and S1K). We observed

no clear pattern that can distinguish between drug-treated SLE

patients and drug-naive SLE patients (Figure S1L). This substan-

tial heterogeneity among the SLE patient samples apparently

masked obvious differences between the SLE patients and

healthy controls per se, as, when we tried to identify uniform

chromatin accessibility differences in SLE versus healthy control

samples, we found no lupus- or autoimmune disease-related on-

tologies among the 3,563 sites with differential DNA accessibility

(3.4% of total peaks) (|log2 fold change| > 1, false discovery rate

[FDR] <0.05, p < 0.05; Figures S1M and S1N).

We therefore adopted an alternative approach to help identify

informative chromatin accessibility signatures related to SLE dis-

ease activity. We extracted the most variable chromatin-acces-

sible sites among all patients (coefficient of variation >0.5) and

performed a PCA of the patient samples based on the intensity

values for these peaks (STAR methods). The patient samples

were clustered into three distinct groups (Figures 1D and 1E).

Because these three groupings were supported by the detection

of strong correlations with their respective patient disease activ-

ity (DA) scores (Figure 1F), we defined these patient groups as

DAlow, DAint, and DAhi.

We also assessed potential impacts of a set of comorbidities in

healthy controls and in DAlow, DAint, and DAhi patients (Fig-

ure S2A). We found that the DAhi SLE patients showed severe

disease activity with high proportions for most of the comorbid-

ities, such as hematuria, leukopenia, pericarditis, and pyuria

(Figure S2A). The DAint SLE patients showed moderate disease

activity, and the DAlow SLE patients had mild disease activity

(Figure 1F). These results demonstrated that the three groupings

classified based on the divergence of the chromatin accessibility

of peripheral CD4+ T cells were closely related to the clinical

severity of SLE.
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Figure 1. Landscape of the heterogeneity of DNA accessibility in SLE peripheral CD4+ T cells

(A) Flowchart depicting the overall design of the study. Blood draws were obtained from a total of 72 SLE patients (SLE) and 30 healthy controls. CD4+ T cells were

purified by FACS and used for assay for transposase-accessible chromatin sequencing (ATAC-seq) and single-cell RNA-seq (scRNA-seq) library construction.

The ATAC-seq dataset comprised 37 samples from 26 healthy controls and 65 samples from 63SLE patients. The scRNA-seq dataset comprised a total of 34,177

cells, with 10,711 cells from six healthy controls and 23,466 cells from 10 SLE patients.

(B) Saturation curve of the number of accessible peaks along with the number of samples. Each peak number represents the average of 10 random samplings in

the indicated number of samples. The light red dots represent the 10 random sampling results.

(C) PCA of the top variant (coefficient of variation >0.2) chromatin-accessible elements for all ATAC-seq samples from healthy controls and SLE patients. Each dot

represents a sample, and samples are color coded by their clinical status: healthy samples are marked in blue, and SLE samples are colored in red, with shading

according to their SLE disease activity index (DAI).

(D) Heatmap showing the unsupervised hierarchical clustering of all SLE samples. Each square was color coded by the Pearson correlation between row and

column sample according the peak intensity of the top variant chromatin-accessible elements. Color bars in the right panel indicate the range of SLE DAI values

(top), the treatment information (middle), and the range of Pearson correlation coefficient values (bottom). Top: first row, samples were categorized into three

groups, DAlow, DAint, DAhi; second row, the SLE DAI of each SLE patient; third row, the treatment information.

(E) PCA of the top variant (coefficient of variation >0.45) chromatin-accessible elements for all ATAC-seq samples from SLE patients. Each dot represents an SLE

sample, and samples are color coded by their clinical groups.

(F) Bar plots showing the SLE DAI (left) and the nephritis DAI (right) in healthy controls and in DAlow, DAint, and DAhi SLE patients. **p < 0.01, ***p < 0.001, Student’s

t test.
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Next, we performed a pairwise differential analysis of each

patient group and the healthy controls (STAR methods), thereby

identifying a total of 11,774 DNA elements across the genome

with significant differential chromatin accessibility (Figure 2A).

Unsupervised hierarchical clustering grouped these differentially

accessible peaks into five distinct clusters of regulatory ele-

ments (Figure 2A). Clusters I–III comprised chromatin regions
that were more accessible in primary CD4+ T cells from healthy

controls, DAhi and DAint SLE patients, and DAint and DAlow SLE

patients, respectively. Cluster IV consisted of a small number

of peaks that could distinguish the SLE patients from the healthy

controls. In cluster V, the CD4+ T cells from DAhi SLE patients

contained fewer accessible peaks than those from the other

patient groups.
Cell Reports 41, 111606, November 8, 2022 3
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Figure 2. The epigenetic signatures of different groups of SLE patients

(A) Heatmap of differentially accessible peaks in CD4+ T cells based on pairwise comparisons between healthy controls and DAlow, DAint, and DAhi SLE patients

(false discovery rate [FDR] <0.05, log2 fold change >1.2). Each column is a sample, and each row is a differentially accessible peak. Samples and elements were

organized by 2D unsupervised hierarchical clustering. The differentially accessible peaks were classified into five clusters (I–V). The color scale of the heatmap

shows the relative ATAC-seq peak intensity. The right panel heatmap shows the average peak intensity and representative genes around the peaks (<2 kb) in

normal controls and in DAlow, DAint, and DAhi SLE patients. Top: first row, samples are colored by their SLE DAIs; second row, samples are categorized into four

clinical groups: normal controls and DAlow, DAint, and DAhi SLE patients.

(legend continued on next page)
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To explore the relationship(s) between the distinct chromatin

accessibilities of primary CD4+ T cells and the clinical statuses

of the patients, we performed a correlation analysis of the

average intensity value of each peak cluster versus the DA of

the SLE patients. We observed that the accessible peaks from

cluster I showed a trend toward a positive correlation with the

SLEDAI score (p = 0.057; Figure 2B). Notably, we found that the

chromatin accessibility intensity of peaks in cluster II, but noother

clusters, was significantly positively correlated with SLE DA

(p = 0.00017, R = 0.47; Figure 2B). In contrast, the chromatin

accessibility intensity of peaks in cluster III was significantly

negatively correlated with SLE DA (p = 0.0095, R = �0.42;

Figure 2B).

We next investigated the potential biological functions of clus-

ter II peaks; as we were still aiming to identify chromatin acces-

sibility signatures related to SLE, we used genomic regions

enrichment of annotations tool (GREAT) (McLean et al., 2010)

for functional annotation and conducted an enrichment analysis

of the peak-associated genes from our analysis against SLE

signature gene sets reported from previous SLE studies (Azizi

et al., 2018; Hutcheson et al., 2008; Lowther et al., 2016; Smillie

et al., 2019; Takeshita et al., 2015) (Table S2; STAR methods).

Many genes known to regulate SLE tissue injury (Goropevsek

et al., 2017), including STAT1, STAT4, and IFNAR—together

with signature genes of Th17 cells, which are known as major

contributors to SLE (Goropevsek et al., 2017), such as IL17F,

RORA, and IL6R—were associated with cluster II peaks (Fig-

ure 2A). We also found that the cluster II peaks associated with

the aforementioned genes had elevated chromatin accessibil-

ities in DAhi severe-stage SLE patients compared with DAint

and DAlow patients (Figures 2C, 2D, and S2B–S2D).

Furthermore, gene set enrichment and disease ontology an-

alyses (STAR methods) showed that genes associated with

cluster II peaks had strong enrichment for predicted functions

related to the ‘‘inflammation’’ (p < 10�5) and ‘‘IFN response’’

(p < 10�2) terms. There was also enrichment for genes known

to contribute to autoimmune diseases, including SLE

(p < 10�5), rheumatoid arthritis (p < 10�5), and type 1 diabetes

(p < 10�5) (Figures 2E and S2E). Interestingly, genes involved in

T cell exhaustion and Treg cell exhaustion (e.g., PDCD1 and TI-

GIT) (Lowther et al., 2016; Yang et al., 2017) were highly en-

riched for cluster II peaks (p < 10�2), which were more acces-

sible in DAhi and DAint SLE patients (Figures 2E and S2F). These

results suggested that the cluster II peaks represent an SLE

disease chromatin signature associated with abnormal inflam-

mation and immune responses in primary CD4+ T cells.

Increased accessibility of cluster II peaks may induce the

dysfunction of CD4+ T cell subtypes, such as Th17 cells and

Treg cells, and promote the aggravation of SLE.
(B) Scatterplot representing the linear regressions of the SLE DAI and the average

upper and lower limits of the light gray shading represent the 95% confidence

correlation are shown at the bottom right.

(C and D) Normalized ATAC-seq profiles at the loci STAT1 (C) and IL17A (D).

(E) Functional annotations of peaks from clusters I–V. Shown are the enrichment p

sets in peaks from clusters I–V. The gene sets were classified into three categorie

and autoimmune disease risk gene sets (Tn, naive CD4+ T cells; Tem, effector me
Single-cell atlas of CD4+ T cells from severe-stage SLE
patients
CD4+ T cells are heterogeneous and comprise multiple sub-

types, including naive, memory, effector, and Treg populations.

Effector CD4+ T cells can be further divided into cytokine-polar-

ized T helper (Th) 1, Th2, and Th17 cells (Sallusto, 2016). Previ-

ous studies on blood from SLE patients have reported a

decreased proportion of naive T (Tn) cells and an increased pro-

portion of effector T (Teff) cells (Suarez-Fueyo et al., 2016). The

data for altered Treg proportions in blood from SLE patients

are inconclusive, and this idea remains controversial (Schei-

necker et al., 2020). Chromatin accessibility analysis of our

bulk ATAC-seq data indicated that particular CD4+ T cell sub-

types may be involved in SLE pathogenesis (Figures 2A and

2B). We therefore used the 10X platform to perform scRNA-

seq analysis of the primary CD4+ T cells from six healthy control

individuals and 10 severe-stage SLE patients (average DAI of

�22), a different cohort from that in the bulk ATAC-seq analysis

(Figure 1A; Table S1).

After quality control (QC) filtering (Figures S3A–S3D), we

obtained a total of 34,176 high-quality single cells, of which

23,464 were from patients and 10,712 were from healthy con-

trols. We then applied Seurat (Stuart et al., 2019) to integrate

the cells from SLE patients and healthy controls and identified

16 clusters of CD4+ T cell subtypes (Figures 3A and 3B). We

also used Harmony (Korsunsky et al., 2019) to assess the accu-

racy and robustness of our single-cell clustering results and

found strong correlations of the identified CD4+ T cell clusters

and gene expression patterns between the two integration

methods (Figures S3E–S3I). These results support that we

obtained a reliable and high-quality atlas of single-cell transcrip-

tomes of CD4+ T cells from severe-stage SLE patients and

healthy controls.

Next, we analyzed known marker genes for particular CD4+

T cell subtypes (STAR methods) and evaluated their expression

profiles within each of the 16 cell clusters to identify the cell types

in each cluster (Figure 3C). We identified seven major cell

subtypes, namely CCR7+ Tn, CXCR5+ T, TBX21+ Th1, GATA3+

Th2, RORC+ Th17, FOXP3+ Treg, and GNLY+ Tct cells (Fig-

ure 3D). Although the other clusters each fitted clearly within

one of the seven major cell subtypes, the cells of cluster 15

appeared to be in a mixed state among the known CD4+ T cell

subtypes and were defined as ‘‘Tx’’, while the cells of cluster

16 exhibited a small number of genes and were named ‘‘unde-

fined’’ (Figure S3J). Further, we obtained signature gene sets

for multiple known CD4+ T cell subtypes from previously re-

ported studies (Azizi et al., 2018; Hutcheson et al., 2008; Lowther

et al., 2016; Smillie et al., 2019; Takeshita et al., 2015) and found

remarkable enrichment in the corresponding cell subtypes we
peak intensity of peaks from clusters I–V. Each dot is an SLE patient, and the

intervals. The two-tailed t-statistic p values and coefficients (R) of Pearson’s

values (dot color) and average peak numbers per gene (dot size) of predefined

s: cell subtype-specific gene signatures, SLE-associated functional gene sets,

mory CD4+ T cells; Treg, regulatory CD4+ T cells; Tct, cytotoxic CD4+ T cells).
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Figure 3. Single-cell atlas of peripheral CD4+ T cells from normal controls and SLE patients

(A and B) Two-dimensional t-distributed stochastic neighbor embedding (t-SNE) of the 34,098 CD4+ T cells profiled herein, with each cell color coded by the cell

cluster (A) and sample type of origin (B).

(C) Heatmap showing the expression of selected marker genes for CD4+ T subtypes in the 15 cell clusters. The dot size represents the percentage of cells

expressing the selected marker genes (right). The dot color represents the mean expression levels of the selected marker genes.

(D) t-SNE of the 34,098 profiled CD4+ T cells, with each cell color coded by subtype.

(legend continued on next page)
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classified through our scRNA-seq analysis (Figure 3E), confirm-

ing our cell subtype identification.

We then explored the distributions of the seven major cell

subtypes in samples from SLE patients and healthy controls.

Multiple studies on PBMCs from SLE patients have reported a

decrease in the proportion of naive CD4+ T cells and an increase

in effector CD4+ T cells compared with cells from healthy con-

trols (Suarez-Fueyo et al., 2016). We also observed decreases

in the proportions of CCR7+ Tn and CXCR5+ T cells in SLE pa-

tients and noted increases in the proportions of multiple Teff

cell subtypes, including Treg cells and cytotoxic CD4+ T cells

(Tct), by comparing the proportion of each cell type directly

(Figure 3F).

We next applied Demuxlet (Kang et al., 2018) and Souporcell

(Heaton et al., 2020) to deconvolute the cell sources and identi-

fied the sources of 15,301 (45%) and 31,752 (93%) sequenced

single cells, respectively (STAR methods). We then calculated

and compared the proportions of each major cell subtype in

SLE patients with those in healthy controls and found that Treg

cells were significantly increased in SLE patients (p < 0.05)

(Figures 3G and S3K). Pursuing this, we used flow cytometry

to measure the distributions of the seven major cell subtypes

in CD4+ T cells from the PBMCs of an independent cohort of

27 severe-stage SLE patients and 15 healthy controls (Fig-

ure S3L; Table S1) and again noted a remarkable and significant

decrease in the proportion of CCR7+ Tn cells in the SLE patients

(2.44-fold, p = 0.0001) as well as significant increases in the

proportions of Treg cells (1.82-fold, p = 0.005) and Tct cells

(1.76-fold, p = 0.02) (Figure 3H).

Divergent changes in the single-cell transcriptomes of
CD4+ T cell subtypes from severe-stage SLE patients
To explore the functional divergence of each CD4+ T cell subtype

in the disease state, we performed pairwise comparisons of the

CD4+ T cell subtypes from SLE patients and the corresponding

cell subtypes from healthy controls, which identified a total of

1,331 differentially expressed genes (DEGs) (Figures 4A and

4B; Table S3; STAR methods). Among these DEGs, 197

(28.67%) and 183 (28.42%) genes were up- and downregulated,

respectively, in more than five cell subtypes (defined as ‘‘shared

DEGs’’), while 259 (37.70%) and 277 (43.01%) genes were up-

and downregulated, respectively, in fewer than three cell sub-

types (‘‘specific DEGs’’) (Figures 4A, 4B, and S4A–S4C). When

accounting for the number of specific DEGs for each of the seven

major cell subtypes, there were clearly more specific DEGs that

were either up- or downregulated in Treg, Th2, Th17, and Tct

cells than in the other cell subtypes (i.e., naive CD4+ T cells,

CXCR5+ T cells, Th1 cells) (Figures 4C, S4D, and S4E). Both
(E) Heatmap showing the expression of the cell-type-specific signature genes in

(F) Pie chart showing the proportions (i.e., percentage of total sequenced CD4+

patients.

(G) Boxplot showing the percentages of CD4+ T cell subsets in normal controls and

The cells from each individual were identified by the published tool Demuxlet (S

1.5 3 interquartile range (IQR), 50% quantile, and 25% quantile � 1.5 3 IQR, re

(H) Flow cytometry analysis of a larger cohort of normal controls and SLE patien

proportions of CCR7+ T cells, CXCR5+ T cells, Treg cells, Th2 cells, Th17 cells, Th

center, and lower lines indicate the 75% quantile + 1.5 3 interquartile range (IQR
Euclidean distance and Spearman correlation analyses indi-

cated that the Treg cells showed the largest differences in

gene expression between SLE patients and healthy controls

(Figure 4D). These results indicate that Treg, Tct, Th17, and

Th2 cells dominated the transcriptomic changes in CD4+

T cells from severe-stage SLE patients.

Given that nuclear factor kB (NF-kB) signaling pathway

genes are known to promote the inflammatory development

and progression of SLE (Brightbill et al., 2018), we consistently

observed strong expression of these genes, including NFKB1,

NFKB2, and REL, in Th17 cells from severe-stage SLE patients

(Figure S5A). In addition, strong expression of the effector

molecule CCL20 was reported to mediate the Th17-driven in-

flammatory process and to be associated with SLE pathogen-

esis (Koga et al., 2016), and this gene was expressed at signif-

icantly higher levels in SLE Th17 cells than in healthy Th17 cells

(Figure S5B; p = 1.40e�110, Mann-Whitney U test). SLE Tct

cells showed obviously increased levels of a series of cytotoxic

molecules, including GZMH, NKG7, and GZMB, supporting

previous claims about their potential involvement in exacer-

bating autoimmune diseases (Takeuchi and Saito, 2017)

(Figure S5C).

Interestingly, our single-cell analysis revealed that quite a few

T cell exhaustion-related genes, such as TIGIT, PDCD1, and

LAG3 (Wherry and Kurachi, 2015), were significantly upregulated

in SLE Treg cells (Figures 4A, 4E, and S5D). We purified Treg

cells from an additional cohort of healthy controls and severe-

stage SLE patients (Table S1) and then performed qPCR and

flow cytometry analysis of these genes, and found that each

gene was expressed at a significantly higher level in the patients

(Figures 4F and S5E; p < 0.05, Student’s t test). We also found

that the signature score of Treg exhaustion-like properties was

higher in SLE Tregs than in normal Tregs (Figure 4G; p =

2.01 3 10�29). Chromatin accessibility analysis of the isolated

Treg cells using ATAC-seq (Table S1) also indicated that these

loci were more accessible in SLE patients than in healthy

controls (Figures 4H–4J and S5F).

To further explore this apparent dysfunction of SLE Treg cells,

we isolated Treg cells from another cohort of four healthy con-

trols and four severe-stage SLE patients using flow cytometry

(Table S1) and examined their abilities to inhibit Teff cells by a

carboxyfluorescein succinimidyl ester (CFSE)-based T cell

suppression assay. We found that Treg cells isolated from SLE

patients showed lower suppressive activity than healthy controls

(Figures 4K and S5G). Together, these results indicate that SLE

Treg cells may undergo functional exhaustion and thus fail to

suppress the over-reactive immune system. Moreover, Treg

with exhaustion-like properties was also observed in the
the 15 cell clusters.

T cell complement) of each CD4+ T cell subtype in normal controls and SLE

SLE patients in our scRNA-seq data. Each dot is a normal control/SLE patient.

tudent’s t test, the upper, center, and lower lines indicate the 75% quantile +

spectively).

ts (cohort independent of those used in the scRNA-seq analysis), showing the

1 cells, and Tct cells among the gated CD4+ T cells. (Student’s t test, the upper,

), 50% quantile, and 25% quantile � 1.5 3 IQR, respectively).
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Figure 4. Compositional and functional differences between normal and SLE CD4+ T subtypes

(A and B) Heatmap showing the normalized expression of DEGs between normal controls and SLE patients in each of the CD4+ T cell subtypes. The upregulated

and downregulated DEGs in SLE are shown in (A) and (B), respectively. The upper panels in (A) and (B) show the shared DEGs across all of the CD4+ T cell

subtypes. The lower panels in (A) and (B) show the specific DEGs in each of the CD4+ T cell subtypes.

(C) t-SNE showing the numbers of upregulated DEGs (left) and downregulated DEGs (right) specific to SLE in all CD4+ T cell subtypes between normal controls

and SLE patients.

(D) Heatmap showing the results of Euclidean distance (upper) and Spearman correlation (lower) analyses of gene expression between healthy controls and SLE

patients in each cell subtype.

(E) Violin plot showing the expression of TIGIT in Tregs from healthy controls and SLE patients (Mann-Whitney U test).

(legend continued on next page)
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inflamed intestinal mucosa of patients with ulcerative colitis

(Smillie et al., 2019) (Figures S5H–S5K).

CCR7lowCD74hi Treg cells from SLE patients are
functionally exhausted
A previous study identified three phenotypically and functionally

distinct human Treg cell subpopulations based on the expres-

sion of CD45RA and FOXP3: CD45RA+FOXP3low naive Treg

(nTreg) cells, CD45RA�FOXP3hi effector Treg (eTreg) cells, and

CD45RA�FOXP3low fraction (Fr. III) cells (Miyara et al., 2009). In

our single-cell transcriptomes of CD4+ T cells from SLE patients

and healthy controls, we identified two subpopulations of Treg

cells, which we defined as Treg1 and Treg2, from a total of

3,239 cells (Figure 5A). We first obtained the cell subtype-spe-

cific genes of the nTreg, eTreg, and Fr. III cells from published

microarray datasets (Cuadrado et al., 2018) (Figure S6A; STAR

methods). Correlation analysis of the expression of these spe-

cific genes between Treg1 and Treg2 cells with nTreg, eTreg,

and Fr. III cells (Figure S6B) indicated that Treg1 cells typically

exhibitedmarker expression profiles similar to that of nTreg cells,

whereas the Treg2 cell profiles appeared more similar to eTreg

and Fr. III cells (Figure S6B).

We then utilized Monocle3 (Cao et al., 2019) to perform a

pseudotime analysis of the differentiation potential of Treg cell

subsets from healthy controls and SLE patients to investigate

the specific trajectories of Treg1 and Treg2 cells. We found

that Treg2 trajectory-enriched cells strongly expressed genes

related to T cell exhaustion and Treg cell exhaustion (Figure 5B),

while Treg1 trajectory-enriched cells exhibited higher levels of

lineage-specific genes for Th1, Th2, Th17, and Tct cells

(Figures S6C, S6D, and Table S4).

Among the 1,064 significant DEGs between Treg1 and Treg2

cells (Table S4), we identified two putative surface marker

genes, CCR7 and CD74, that could be used to distinguish

the two Treg subpopulations (Figures 5C–5E). Flow cytometry

analysis indicated that the proportions of both Treg1 (CCR7hi

CD74low) and Treg2 (CCR7lowCD74hi) cells were significantly

higher in severe SLE patients than in healthy controls (Figure 5F;

Student’s t test, *p <0.05). There were 830 and 818 DEGs be-

tween healthy controls and SLE patients for Treg1 and Treg2

cells, respectively (Figures 6A and 6B; Table S4). We noted

that the SLE Treg2 cells highly expressed signature genes of

T cell exhaustion, such as PDCD1 and LAG3 (Figures 6C and

S6E–S6G) (Lowther et al., 2016). We validated the expression

trends for these genes in Treg cells from healthy controls and

SLE patients by qPCR and flow cytometry (Figures 6D and

S6H). These results suggested that CCR7lowCD74hi Treg2 cells,

which are an effective Treg subpopulation in SLE patients, may
(F) qPCR showing the expression of TIGIT, CTLA4, PDCD1, and LAG3 in Tregs fr

(G) Violin plot showing the signature score of Treg exhaustion-like properties in T

(H) Volcano plot showing the significantly differential (Student’s t test p <0.05, |lo

whose promoters were nearest to these peaks are shown.

(I) Normalized ATAC-seq profiles in Treg cells from normal controls (blue) and SL

(J) Boxplots showing the chromatin accessibility signature scores of Treg exhaus

patients (Student’s t test; the upper, center, and lower lines indicate the 75% q

1.5 3 IQR, respectively).

(K) The ratios of the suppressive function of Treg cells from healthy controls and
undergo functional exhaustion that weakens their immunosup-

pressive function.

We then examined peripheral blood samples from SLE pa-

tients using flow cytometry to detect the secretion of IFN-g,

IL-2, and tumor necrosis factor alpha (TNFa) in CCR7hiCD74low

Treg1 and CCR7lowCD74hi Treg2 cells upon phorbol 12-myris-

tate 13-acetate (PMA)/ionomycin stimulation. In contrast to the

characteristics of CD8+ T cell exhaustion, which exhibits an

insufficient ability in producing IFN-g, IL-2, and TNFa, we found

significantly higher proportions of IFN-g (p < 0.05, Student’s t

test), IL-2 (p < 0.01, Student’s t test), and TNFa (Figure 6E;

p < 0.01, Student’s t test) production by Treg2 cells compared

with Treg1 cells in SLE patients. As previous studies have shown

that these cytokine-producing Treg cells are phenotypically Th1-

like Tregs, which contribute to the observed Treg dysfunction in

autoimmune diseases (Dominguez-Villar et al., 2011; Korn et al.,

2007; McClymont et al., 2011), this result provides further pro-

tein-level support for the functional exhaustion-like properties

of the CCR7lowCD74hi Treg2 cells in SLE patients.

We also assessed peripheral blood samples from SLE patients

using flowcytometry to detect the expressionof exhaustion-asso-

ciated transcription factors (Tcf1andTox) inCCR7hiCD74lowTreg1

andCCR7lowCD74hiTreg2cells upon in vitroPMA/ionomycin stim-

ulation. We observed that there were no significant differences in

the expression of Tcf1 between Treg1 and Treg2 cells (Figure 6F).

Notably, we found that Treg2 cells displayed significantly higher

expression levels of Tox than Treg1 cells (Figure 6F; p < 0.05,

Student’s t test). These data are consistent with the findings

from previous reports showing Tox as a promoting factor for

T cell exhaustion (Kim et al., 2020; Scott et al., 2019) and provide

additional support for the conclusion that CCR7lowCD74hi Treg2

cells are Tregs with exhaustion-like properties.

Excessive type I IFN production promotes Treg cell
exhaustion in SLE patients
A previous study showed that chronic stimulation by persistent

antigens or inflammatory signals is sufficient to drive the exhaus-

tion and functional disability of T cells (Rome et al., 2020). There-

fore, we sought to investigate whether persistent stimulation of

inflammatory signals can induce Treg cell exhaustion. We first

defined a Treg cell exhaustion signature score (TES) as the

average expression of genes involved in Treg cell exhaustion

and then ranked the genes whose expression was significantly

correlated with the TES score across all Treg cells (Figure 7A;

Pearson’s correlation >0.4, p <0.05). We performed functional

annotation analyses of these genes by Metascape (Zhou et al.,

2019) and gene set enrichment analysis (GSEA) (Mootha et al.,

2003) according to the correlation coefficients between the
om healthy controls (n = 8) and SLE patients (n = 8). *p < 0.05, Student’s t test.

regs from healthy controls and SLE patients (Mann-Whitney U test).

g2 fold change| >1) peaks between healthy controls and SLE patients; genes

E patients (red) at the loci of PDCD1.

tion-like properties in Treg ATAC-seq samples from healthy controls and SLE

uantile + 1.5 3 interquartile range (IQR), 50% quantile, and 25% quantile �

SLE patients.
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Figure 5. Treg cell subsets and their functional divergence in SLE patients

(A) t-SNE of 3,239 Treg cells profiled in this study, with each cell color coded by the cell cluster and sample type of origin.

(B) Trajectory of Treg cells determined using the Monocle 2 algorithm. The cell clusters, sample types of origin, pseudotimes, and differences in the signature

scores of T cell exhaustion and Treg exhaustion-like properties between SLE patients (SLE) and healthy controls (Ctrl) are colored.

(C) Heatmap showing the normalized expression of the DEGs (Mann-Whitney U test p < 0.01, FDR < 0.05, expression difference >0.4) between Treg cells from

healthy controls and SLE patients.

(D) Violin plot showing the normalized expression of CCR7 and CD74 in Treg1 and Treg2 cells from healthy controls and SLE patients.

(E) Representative contour plot showingCCR7 andCD74 expression in gated CD4+CD25+CD127� Treg cells isolated from SLE patients. Data are representative

of at least five independent experiments.

(F) The percentages of CCR7hiCD74low Treg1 cells and CCR7lowCD74hi Treg2 cells in CD4+ T cells from normal controls and SLE patients (*p < 0.05, Student’s t

test).
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expression of genes and TES (STARmethods). The genomic fea-

tures of IFN signaling (Figure 7B) and response to type I IFNs

(Figure 7C) were significantly enriched. The average expression

levels of genes associated with Treg cell exhaustion and genes

involved in the type I IFN signaling pathway were also found to

be highly correlated along the Treg cell pseudotime trajectory

in SLE patients (Figures 7D–7F and S7A). In addition, the chro-

matin accessibility level of Treg cells between the exhaustion

signature genes and type I IFN genes showed a close correlation

(Figure S7B). We also found that the expression of IFN-induced

genes was higher in SLE Tregs than in Th1, Th2, Th17, and Tct

cells, suggesting that Treg cells from SLE patients are more sen-

sitive to IFN stimulation than Th1, Th2, Th17, and Tct cells

(Figures S7C–S7F). We therefore hypothesize that persistent

stimulation of type I IFN signaling may promote the Treg cell
10 Cell Reports 41, 111606, November 8, 2022
exhaustion observed among the primary CD4+ T cells of SLE

patients.

Pursuing this, we purified primary Treg cells from healthy con-

trols and performed transcriptome sequencing analysis of Treg

cells that were stimulated with different concentrations of type I

IFN via multiple protocols. As expected, we noticed that the

expression of genes involved in the type I IFN signaling pathway

was successfully induced (Figure 7G). We also found that persis-

tent type I IFN stimulation was sufficient to induce the expression

of Treg exhaustion-associated genes and genes upregulated in

SLETreg2cells (Figure7G;TableS4;STARmethods).Theaverage

expression of Treg exhaustion-associated genes in each sample

was also found to be significantly positively correlated with that

of genes involved in the type I IFN signaling pathway (p = 0.047,

R = 0.5; Figures 7H and S7G), suggesting that type I IFN signaling
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is responsible for the Treg exhaustion-like properties in SLE pa-

tients. In addition, a CFSE-based T cell suppression assay indi-

cated that IFNa-treated Treg cells decreased their capacity to

inhibit theproliferation andactivationofTeff cells (Figure7I), further

supporting that persistent exposure to activated IFN signaling can

induce Treg cell exhaustion. In summary, we found that the Treg

cells from SLE patients exhibited exhaustion characteristics that

were related to IFN signaling and verified in vitro that chronic IFN

stimulation could induce Treg dysfunction.

DISCUSSION

SLE is a complex systemic disease characterized by a wide

spectrum of clinical manifestations and has substantial interindi-

vidual heterogeneity (Lisnevskaia et al., 2014). CD4+ T cells from

the peripheral blood are an essential contributor and indicator of

immune overactivation (Caielli et al., 2018), and the chromatin

accessibility of this cell type is highly informative for their identity,

activity state, and regulatory programs (Qu et al., 2017). In the

present study, we used ATAC-seq to survey the landscape of

active regulatory DNA in a single cell type (CD4+ T) sorted from

peripheral blood samples of a large cohort of SLE patients.

Further analysis of data from this large cohort identified three

groups of patients with divergent transcriptional regulatory pat-

terns, and these same groups were clustered similarly based

on their DAI. Notably, the SLE disease signature evident in chro-

matin accessibility patterns was most obvious in severe-stage

patients; perhaps patterns in patients with mild or moderate

DA can be identified in studies with larger patient cohorts. Our

analysis detected a correlation between the epigenome of

CD4+ T cells and SLE clinical states and provided a rich empirical

foundation from the perspective of epigenetic regulation for un-

derstanding SLE heterogeneity.

Previous studies have reported an expansion of PD-1+

CXCR5+CD4+ T (Tfh) cells and PD-1+CXCR5�CD4+ T (Tph) cells

in SLE patients (He et al., 2013; Kim et al., 2018; Makiyama et al.,

2019). However, researchers have paid minimal attention to

changes in the proportion of PD-1�CXCR5+CD4+ T cells in dis-

ease states. The flow cytometry analysis of blood samples

from lupus patients showed that the patients exhibited higher

proportions of Tfh and Tph and a lower proportion of PD-1�

CXCR5+ CD4+ T cells than healthy control individuals (Lin

et al., 2019). In line with these results are data from peripheral

blood of patients with Sjögren’s syndrome showing diminished

CXCR5 expression in T cell subsets (Aqrawi et al., 2018). There-

fore, the finding of a significant decrease in the fraction of

CXCR5+ T cells in SLE patients in our study may be associated

with an expansion of Tph cells. In addition, CXCR5 is also ex-

pressed on 20%–25% of peripheral blood human central mem-

ory CD4+ T cells, and these cells are a heterogeneous pool con-

sisting of functionally distinct Th1-, Th2-, and Th17-like subsets
(E) Expression of IFNg, IL-2, and TNFa in gated Treg1 cells and Treg2 cells from

Treg1 cells and Treg2 cells fromSLE patients with PMA and ionomycin stimulation

Treg1 cells and Treg2 cells from SLE patients with PMA and ionomycin stimulati

(F) Expression of Tcf1 and Tox in gated Treg1 cells and Treg2 cells fromSLE patien

cells fromSLE patients with PMA and ionomycin stimulation in vitro (left). Bar plots

SLE patients with PMA and ionomycin stimulation in vitro (right). *p < 0.05, Stude
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(Chevalier et al., 2011). The reduction of CXCR5+ T cells in SLE

patients may also be attributed to the activation of these central

memory CD4+ T cells that transformed into effector T cells, sup-

ported by the results that SLE patients exhibited higher propor-

tions of Th1, Th2, Th17, and Tct cells compared with healthy

control individuals (Figures 3G and 3H). Nevertheless, biological

function of the CXCR5+ cells, especially the PD-1�CXCR5+CD4+

T cells, remains to be further investigated.

Since Treg cells function in maintaining immune homeostasis

(Dominguez-Villar and Hafler, 2018; Sakaguchi et al., 2020; Wing

et al., 2019), it seems counterintuitive that Treg numbers were

increased in patients with an autoimmune disease. We explored

the heterogeneity and dysfunction of SLE Treg cells in SLE pa-

tients and healthy controls, identified two distinct subsets of

Treg cells, and confirmed their existence by flow cytometry. In

healthy controls, these two subsets have polarized cell activities,

separately displaying characteristics of naive and effector Treg

cells. While both subsets of Treg cells were significantly

increased in SLE patients, it was interesting to note that both

SLE Treg1 and Treg2 cells in SLE patients adopted an

effector-like state, with SLE Treg2 cells tending to display

markers of functional exhaustion. ATAC-seq data also sup-

ported that this SLE Treg2 exhaustion phenotype results from

epigenetic regulation. In addition, when we expanded the scope

of our analysis to other autoimmune diseases by examining

scRNA-seq? data for Tregs from patients with ulcerative colitis,

we again observed upregulated Treg exhaustion-associated

genes (Figures S5J–S5M), indicating that these Treg2-like ex-

hausted cells may be features of multiple autoimmune diseases.

High levels of PD-1 expression on human Treg cells were

described as a dysfunctional Treg exhaustion phenotype (Low-

ther et al., 2016). These exhausted Tregs exhibited high secre-

tion of IFN-g and were identified in healthy individuals and

were enriched in tumor infiltrates (Lowther et al., 2016). Blockade

of PD-1 activity reinvigorated the regulatory ability of dysfunc-

tional Treg cells (Yang et al., 2017). In the present study, we iden-

tified CCR7lowCD74hi Treg cells with exhaustion-like properties

(e.g., high expression of PD-1, TIM3, TIGIT, IFN-g, IL-2, TNFa,

Tox) that enriched in severe-stage SLE patients, as measured

by scRNA-seq and supported by protein-level examination re-

sults. Treg exhaustion phenotype was also accompanied by

several properties, such as an increase in pFoxo1 (Ser319),

shortened telomere length, and decreased telomere-specific

demethylated region (TSDR) (Lowther et al., 2016). However,

the limited number of CCR7lowCD74hi Treg cells from human pe-

ripheral blood hindered the further in-depth investigation of the

phenotypic and functional exhaustion of this Treg cell

subpopulation.

Several studies have characterized the impact of type I IFNs

on the function of Treg cells in a variety of contexts, leading to

contrasting results (Piconese et al., 2015). It has been shown
SLE patients. Flow cytometry analysis of IFN-g, IL-2, and TNFa expression in

in vitro (left). Bar plots displaying the frequencies of IFN-g+, IL-2+, and TNFa+ in

on in vitro (right). *p < 0.05, **p < 0.01, Student’s t test.

ts. Flow cytometry analysis of Tcf1 and Tox expression in Treg1 cells and Treg2

displaying the frequencies of Tcf1+ and Tox+ in Treg1 cells and Treg2 cells from

nt’s t test.
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that type I IFN signaling regulates the dynamic balance between

human-activated regulatory and effector T cells and attenuates

Treg cell function in viral infection and in the tumor microenviron-

ment (Bacher et al., 2013; Gangaplara et al., 2018; Golding et al.,

2010; Hashimoto et al., 2014; Srivastava et al., 2014). In line with

these studies, we found that type I IFN signaling is responsible

for the Treg exhaustion-like properties and Treg dysfunction in

SLE patients, as shown by the fact that type I IFN stimulation

was sufficient to induce the expression of Treg exhaustion-asso-

ciated genes and genes upregulated in SLE Treg2 cells (Fig-

ure 7G). IFN-mediated positive effects on Treg function have

also been reported under stress conditions (Lee et al., 2012; Me-

tidji et al., 2015). This is likely because chronic or sustained expo-

sure to type I IFN signaling may give rise to an opposite effect on

Treg homeostasis and functions (Piconese et al., 2015).

The use of glucocorticoids or other immunosuppressive

agents is still the mainstay of SLE management (Kiriakidou,

2013). However, these agents have substantial adverse effects

and do not typically confer adequate therapeutic efficacy (Lis-

nevskaia et al., 2014). A recent clinical trial of anifrolumab, a hu-

man monoclonal antibody that targets the type I IFN receptor,

showed a significant therapeutic effect in treating SLE (Morand

et al., 2020). Our results also support type I IFN as an effective

drug target for the treatment of severe SLE patients and provide

a potential treatment strategy for this disorder, suppression of

Treg with exhaustion-like properties. Overall, we delineated the

chromatin accessibility and single-cell transcriptome atlases of

CD4+ T cells from SLE patients and healthy controls and found

that chronic IFN signaling pathway induction may induce periph-

eral Treg cell exhaustion in SLE patients. Our study provides a

rich source of data offering an epigenetic and transcriptomic

view of CD4+ T cell-related functions in terms of SLE clinical

manifestations and immunopathogenesis, supporting a deeper

understanding of this autoimmune disease.

Limitations of the study
Although there have been a few papers supporting an ex-

hausted phenotype in human Treg cells (Lowther et al., 2016;
Figure 7. Chronic type I IFN stimulation promotes Treg cell exhaustion

(A) Heatmap showing the normalized expression of genes whose expression was

cells. Each row depicts a gene, and each column depicts a cell. Genes were rank

exhaustion-like properties. Cells are ranked by their signature score of Treg exha

second row, each cell is categorized by the sample type of origin.

(B) Functional annotation of the genes shown in (A) by the online tool Metascape

(C) Genes were ranked by their gene expression correlation with the signature sco

analysis (GSEA) showed the enrichment of genes in response to type I IFN amon

(D and E) Trajectory of Treg cells using the Monocle 2 algorithm. The signature sc

colored. The attached panel at the top left corner shows the scatterplot of ps

exhaustion-like properties (E).

(F) Scatterplot showing the signature score of Treg exhaustion-like properties. Ea

score along the x axis.

(G) Tregs from healthy controls were stimulated with different concentrations of IF

panel show the average expression of genes involved in the type I IFN response, T

genes were excluded from this gene list). Each dot in the boxplot is an RNA sequen

center, and lower lines indicate the 75% quantile + 1.5 3 interquartile range [IQR

(H) Scatterplot representing the linear regressions between the signature scores

t-statistic p value and Pearson’s correlation coefficient (R) are shown at the bott

(I) The ratio of the suppressive function of Treg cells from healthy controls (Ctrl) wi

plus 10% SLE plasma (SLE + IFNa) for 7 days.**p < 0.01, ***p < 0.001, ns not sig
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Yang et al., 2017), the concept of Treg exhaustion has not

yet been widely recognized. A major limitation of this study is

the lack of protein-level intervention experiments, such as

knockout or CRISPR of exhaustion-related genes such as

PD-1, IFNAR1, and LKB1 in primary cells, and test the cellular

functions thereafter. Such experiments are technically not im-

plemented due to the limited number of CCR7lowCD74hi Treg

cells and the fragile state of human primary cells. Thereby,

further studies are necessary to uncover the molecular fea-

tures, particularly the exhaustion-like properties, of the human

CCR7lowCD74hi Treg cells.
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ström, B.T., Sobel, R.A., Wucherpfennig, K.W., Strom, T.B., et al. (2007).

Myelin-specific regulatory T cells accumulate in the CNS but fail to control

autoimmune inflammation. Nat. Med. 13, 423–431.

Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Ba-

glaenko, Y., Brenner, M., Loh, P.R., and Raychaudhuri, S. (2019). Fast, sensi-

tive and accurate integration of single-cell data with Harmony. Nat. Methods

16, 1289–1296.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with

Bowtie 2. Nat. Methods 9, 357–359.

Lee, S.E., Li, X., Kim, J.C.K., Lee, J., González-Navajas, J.M., Hong, S.H.,
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Antibodies

APC anti-human CD196 (CCR6) Antibody Biolegend cat#353416; RRID:AB_10945155

APC anti-human CD197 (CCR7) Antibody Biolegend cat#353214; RRID:AB_10917387

APC anti-human CD25 Antibody eBioscience cat#17-0259-42; RRID:AB_1582219

APC/Cyanine7 anti-human CD45 Antibody Biolegend cat#304014; RRID:AB_314402

Brilliant Violet 421TM Anti-human CD127 Antibody Biolegend cat#562437; RRID:AB_11153481

Brilliant Violet 421TM anti-human CD197 (CCR7) Antibody Biolegend cat#353207 ; RRID:AB_10915137

FITC anti-human CD4 Antibody Biolegend cat#300538 ; RRID:AB_2562052

PE anti-human CD127 Antibody eBioscience cat#12-1278-41; RRID:AB_10853334

PE anti-human CD185 (CXCR5) Antibody Biolegend cat#356904; RRID:AB_2561813

PE anti-human CD25 Antibody BD Bioscience cat#560989; RRID:AB_10563905

PE anti-human FOXP3 Antibody Biolegend cat#320208; RRID:AB_492982

PE/Cyanine7 anti-human CD183 (CXCR3) Antibody Biolegend cat#353720; RRID:AB_11219383

PE/Cyanine7 anti-human CD74 Antibody Biolegend cat#357609; RRID:AB_2721663

PE/Cyanine7 Anti-Human CD45RA Antibody Biolegend cat#304125; RRID:AB_10709440

PerCP/Cyanine5.5 anti-human CD3 Antibody Biolegend cat#344808; RRID:AB_10640736

Chemicals, peptides, and recombinant proteins

penicillin/streptomycin Gibco cat#15140122

Glutamine Gibco cat#25030081

sodium pyruvate Thermo Fisher Scientific cat#11360070

nonessential amino acids Solarbio cat#N1250

human recombinant IFN-a Abcam cat#ab48750

Critical commercial assays

10X Chromium Single Cell 30 Kit 10X Genomics cat#120237

CD4+CD25+ Regulatory T Cell Isolation Kit Miltenyi Biotec cat#130091301

CellTraceTM CFSE Cell Proliferation Kit Thermo Fisher Scientific cat#C34554

DynabeadsTM Human T-Activator CD3/CD28 Invitrogen cat#11161D

Roswell Park Memorial Institute (RPMI) 1640 medium HyClone cat#SH30809.01

Maxima H Minus Reverse Transcriptase Thermo Fisher Scientific cat#EP0751

SYBR Green PCR Master Mix Applied Biosystems cat#4344463

Tn5 transposome Vazyme Biotech cat#TD501

Nonidet P40 Substitute Roche cat#11332473001

MinElute PCR Purification Kit Qiagen cat#28006

Foxp3/Transcription Factor Staining Buffer eBioscience cat#00-5523-00

SPRIselect beads Beckman Coulter cat#B23318

foetal calf serum Gibco cat#16170078

Deposited data

MSigDB pathways Liberzon et al., 2015 http://software.broadinstitute.

org/gsea/msigdb/index.jsp

Microarray data of blood CD4+ T from

SLE patients and controls

N/A Gene Expression Omnibus

(GEO) (GSE4588)

Microarray data of healthy and SLE blood CD4+ T Sharma et al., 2015 Gene Expression Omnibus

(GEO) (GSE55447)

Microarray data of healthy and SLE blood CD4+ T Hutcheson et al., 2008 Gene Expression Omnibus

(GEO) (GSE10325)

(Continued on next page)
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Microarray data of CD4+ T cell subsets Takeshita et al., 2015 Gene Expression Omnibus

(GEO) (GSE61697)

RNA-seq data of three Treg groups

(nTreg, eTreg, Fr. III)

Cuadrado et al., 2018 Gene Expression Omnibus

(GEO) (GSE90600)

Single cell RNA-seq data of colon mucosa

of UC patients and controls

Smillie et al., 2019 Single Cell Portal: SCP259

Single-cell RNA-seq data of PBMCs from

UC patients and controls

Boland et al., 2020 Gene Expression Omnibus

(GEO) (GSE125527)

Single-cell RNA-seq data of PBMCs

from healthy controls

Wilk et al., 2020 Gene Expression Omnibus

(GEO) (GSE150728)

Single-cell RNA-seq data of PBMCs

from SLE patients

Schafflick et al., 2020 Gene Expression Omnibus

(GEO) (GSE137029)

Single-cell RNA-seq data of PBMCs

from multiple sclerosis patients

Schafflick et al., 2020 Gene Expression Omnibus

(GEO) (GSE138266)

ATAC-seq and scRNA-seq of CD4+ T

cells from SLE patients and healthy controls

This paper Genome Sequence Archive

(GSA) for Humans (HRA000676)

Bulk RNA-seq of Treg cells stimulated

with/without IFN-a

This paper Genome Sequence Archive (GSA)

for Humans (HRA000676)

Software and algorithms

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

DESeq Anders and Huber, 2010 http://bioconductor.org/packages/

release/bioc/html/DESeq.html

BedTools Quinlan and Hall, 2010 http://bedtools.readthedocs.

io/en/latest/

ATAC-pipe Zuo et al., 2019 https://github.com/QuKunLab/

ATAC-pipe

MetaScape Zhou et al., 2019 http://metascape.org/gp/index.

html#/main/step1

GREAT McLean et al., 2010 http://bejerano.stanford.edu/

great/public/html/

GSEA Mootha et al., 2003 https://www.gsea-msigdb.

org/gsea/index.jsp

Demuxlet Kang et al., 2018 https://github.com/statgen/

demuxlet

Souporcell Heaton et al., 2020 https://github.com/wheaton5/

souporcell

CellRanger V2.0 10X Genomics https://support.10xgenomics.

com/single-cell-gene-expression/

software/pipelines/latest/what-

is-cell-ranger

Seurat V3.0 (R package) Stuart et al., 2019 https://satijalab.org/seurat/

SAVER (R package) Huang et al., 2018 https://github.com/mohuangx/SAVER

Code in this study This paper https://github.com/QuKunLab/SLE;

https://zenodo.org/record/7118733.

(https://doi.org/10.5281/zenodo.7118733)
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Lead contact
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Materials availability
All non-commercial reagents used in this paper are available from the lead contact upon request.

Data and code availability
The processed data reported in this paper and raw data are available for download from the Genome Sequence Archive (GSA) for

Humans at GSA: https://bigd.big.ac.cn/gsa-human/browse/HRA000676. The analysis codes supporting the current study are avail-

able at Github: https://github.com/QuKunLab/SLE. The code used in this study has also been publicly deposited at Zenodo: https://

zenodo.org/record/7118733. (https://doi.org/10.5281/zenodo.7118733). Any additional information required to reanalyze the data

reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Peripheral blood samples were collected from SLE patients and healthy controls at the First Affiliated Hospital of University of Sci-

ence and Technology of China. Informed consent was obtained from the patients. Study procedures were followed in accordance

with protocols approved by the ethics committee of the University of Science and Technology of China. Detailed clinical information

for the patients is described in Table S1. The 24 clinical and laboratory parameters for SLE patients were collected according to the

internationally certified method SLEDAI-2K (Gladman et al., 2002).

The ATAC-seq data of CD4+ T cells were obtained from a cohort of 56 female and 7 male SLE patients, with a mean age of 35.48;

the scRNA-seq data of CD4+ T cells were obtained from a cohort of 10 female SLE patients, with a mean age of 31.33; the FACS

experiment of CD4+ T cells was obtained from a cohort of 27 female SLE patients, with a mean age of 39.5; the ATAC-seq data

of Treg cells were obtained from a cohort of 5 female SLE patients, with a mean age of 41; the quantitive PCR experiment of Treg

cells was obtained from a cohort of 8 female SLE patients, with a mean age of 37.3; the assay of the suppressive function for

Treg cells was obtained from a cohort of 4 female SLE patients, with a mean age of 28.75. Detailed information is also available in

Table S1.

METHOD DETAILS

Cell isolation
Peripheral bloodwas drawn in a green-top blood collection tube. PBMCswere then prepared by Ficoll-Paque density gradient centri-

fugation and stained with fluorochrome-labelled anti-human monoclonal antibodies (Biolegend). Bulk CD4+ T cells were sorted with

CD45 (clone HI30), CD4 (clone RPA-T4), and CD3 (SK7) using a SH800S flow cytometer (SONY). For CD4+ T helper cell subtypes,

cells were identified as previously described (Morita et al., 2011). Briefly, naı̈ve cells were identified as CD4+ CCR7+ CD45RA+,

CXCR5+ T cells as CD4+ CD25- CD45RA� CXCR5+, Th1 cells as CD4+ CD25- CD45RA�CXCR3+ CCR6-, Th2 cells as CD4+ CD25-

CD45RA� CXCR3- CCR6-, Th17 cells as CD4+ CD25- CD45RA� CXCR3- CCR6+, Treg cells as CD4+ FOXP3+, and Tct cells as

CD4+ CD25- CD45RA+ CCR7-. The post-sort purities were confirmed to be >95% prior to ATAC-seq. For single-cell RNA-seq,

CD4+ T cells were sorted and cryopreserved according to the 10X Genomics official recommendation.

Intracellular staining
PBMCs were prepared and stained using the indicated human mAbs. Homologous IgGs served as the negative control. FACS

surface marker staining was performed according to the Biolegend antibody instructions. For intracellular staining, cells were

blocked, stained with Foxp3 (clone 259D) or CD74 (clone pin.1) and then washed with Foxp3/Transcription Factor Staining Buffer

(eBioscience, cat no. 00-5523-00) according to the manufacturer’s instructions.

Single-cell RNA-seq library preparation and sequencing
Single-cell suspensions were prepared as described in the 10X Genomics protocol. Briefly, we sorted CD4+ T cells from 10 SLE pa-

tients and 6 healthy controls. The cells reached a final viability of 85%.We then resuspended the cells at a concentration of 700 cells/

mL and mixed the same sample types immediately according to the 10X Genomics Chromium single-cell protocol for the v2 reagent

kit (10X Genomics). Cell suspensions were loaded onto a chromium single-cell chip along with reverse transcription (RT) master mix

and 30 gel beads. After generation of single-cell gel beads in emulsion (GEMs). RT was performed using a C1000 TouchTM Thermal

Cycler (Bio-Rad) using the manufacturer’s standard parameters. cDNA was amplified and purified with SPRIselect beads (Beckman

Coulter). Single-cell 30 libraries were then constructed following fragmentation, end repair, polyA tailing, adaptor ligation and size se-

lection. Single-cell sequencing libraries were generated with one sample index for each sample and sequenced on the Illumina HiSeq

X-Ten platform.

ATAC-seq library preparation and sequencing
ATAC-seq of CD4+ T cells was performed as previously described with minor modifications. Briefly, CD4+ T cells were sorted using a

SH800S sorter (SONY). Samples were lysed in cold lysis buffer (10 mM Tris-HCl (pH 7.4), 10 mMNaCl, 3 mMMgCl2 and 0.1%NP-40
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(Roche)) for 3 min on ice to prepare the nuclei. Immediately after cell lysis, nuclei were centrifuged at 500 g for 5 min, and the super-

natant was discarded carefully. Nuclei extracts were then incubated with Tn5 transposome (Vazyme Biotech, cat no. TD501) at 37�C
for 30 min. After DNA purification with the MinElute Kit (Qiagen), PCR was performed to amplify the library for 12–15 cycles based on

the quantitative data regarding the optimum number of PCR cycles. The PCR conditions were as follows: 98�C for 30 sec and cycling

at 98�C for 10 sec, 63�C for 30 sec and 72�C for 1 min. After PCR amplification, the sample libraries were purified and sequenced on

the Illumina HiSeq X-Ten platform with the 150-bp paired-end configuration.

Assessment of the inhibitory function of Treg cells
For functional analysis, CD4+CD25+ T cells and CD4+CD25- T cells were purified from PBMCs using a CD4+CD25+ Regulatory T Cell

Isolation Kit (Miltenyi Biotec, cat no. 130091301). Briefly, a non-CD4+ cocktail and anti-biotin beads were used for the isolation of

CD4+ T cells. After detachment, the cells were washed, and CD4+CD25+ Treg cells were positively selected using CD25microbeads.

The cells were reanalysed after sorting and routinely showed a purity greater than 95%. The negative fraction of CD4+CD25- T cells

from healthy controls served as effector cells and were stained with a CellTraceTM CFSE Cell Proliferation Kit (Thermo Fisher Scien-

tific, cat no. C34554) at 1 mm for 15 min. Then, CD4+CD25- T cells (2*10^4) were incubated with DynabeadsTM Human T-Activator

CD3/CD28 (Invitrogen, cat no. 11161D) at a 20:1 ratio in Roswell Park Memorial Institute (RPMI) 1640 medium (HyClone, cat no.

SH30809.01) supplemented with 10% foetal calf serum (Gibco, cat no. 16170078), 100 U/mL penicillin/streptomycin (Gibco, cat

no. 15140122), 2 mM glutamine (Gibco, cat no. 25030081), sodium pyruvate (Thermo Fisher Scientific, cat no. 11360070) and nones-

sential amino acids (Solarbio, cat no. N1250). Purified CD4+CD25+ Treg cells from healthy controls or SLE patients were added to the

culture at a 1:0 or 1:1 ratio. After 4 days, the proliferation of CD4+CD25- T cells was determined by assessing CFSE dilution by flow

cytometry. The data are expressed as the percent inhibition of cell proliferation according to the following formula: inhibition% = 100-

(cell proliferation ratio at 1:1/cell proliferation ratio at 1:0).

In vitro stimulation of Treg with IFN-a
PBMCs from healthy controls were isolated by Ficoll-Paque gradient centrifugation and then stimulated with human recombinant

IFN-a(0 mg/mL, 0.25 mg/mL, 0.5 mg/mL, 1 mg/mL) (Abcam cat no. ab48750). The cells were cultured for 7 days in RPMI 1640 medium

supplemented with 10% heat-inactivated human serum or 10% SLE serum. After 7 days, cells were harvested and isolated by flow

cytometry using the same sorting strategy as that used for CD4+CD25+CD127lowCCR7low Treg2 cells. Finally, RNA-seq library

construction and sequencing were performed using the same strategies described above.

Bulk RNA-seq library preparation and sequencing
Treg (DAPI�CD45+CD3+CD4+CD25+CD127low) and CCR7- Treg2 (DAPI�CD45+CD3+CD4+CD25+CD127lowCCR7low) cells were

sorted by flow cytometry. For Treg and CCR7- Treg2 cells, up to 1000 cells were collected directly in a 0.2 mL PCR tube

(KIRGEN, Cat No. KG2511), and the RNA-seq library was constructed using the Smart-seq2 method (Picelli et al., 2014) and

sequenced on the Illumina NovaSeq 6000 system; at least 20 million paired reads were generated per sample.

Real-time quantitative polymerase chain reaction
The selected candidate genes were validated by qPCR. Briefly, cDNA was synthesized with Maxima HMinus Reverse Transcriptase

(Thermo Fisher Scientific, cat no. EP0751) in accordance with the manufacturer’s instructions. Two-step PCR was performed using

SYBR Green PCR Master Mix (Applied Biosystems, cat no. 4344463) in accordance with the manufacturer’s instructions on a

LightCycler96 fluorescence sequence detection system (Roche). Gene expression was quantified relative to that of the house-

keeping gene GAPDH and normalized to the control by the standard 2-DDCT calculation. The primer sequences were as follows:

GAPDH, 50- GGAGCGAGATCCCTCCAAAAT-30 and 50- GGCTGTTGTCATACTTCTCATGG-30; PDCD1, 50-ACGAGGGACAATAGGA

GCCA-30 and 50-GGCATACTCCGTCTGCTCAG-30; LAG3, 50-GCCTCCGACTGGGTCATTTT-30 and 50- CTTTCCGCTAAGTGG

TGATGG-30; CTLA4, 50-CATGATGGGGAATGAGTTGACC-30 and 50- TCAGTCCTTGGATAGTGAGGTTC-30; TIGIT, 50-TGGTCGCG

TTGACTAGAAAGA-30 and 50- GGGCTCCATTCCTCCTGTC-30.

ATAC-seq primary data processing and peak calling
ATAC-seq raw data were processed using the published ATAC-seq pipeline ATAC-pipe (Zuo et al., 2019). Sequencing reads were

mapped using the ‘‘–MappingQC’’ module with option ‘‘-c 50’’ in ATAC-pipe. Adapter sequences were trimmed, and reads were

mapped to hg19 using Bowtie2 (Langmead and Salzberg, 2012). PCR duplicates were removed as described. Mapped reads

were then shifted +4/-5 bp depending on the read strand such that the first base of each mapped read represented the Tn5 cleavage

position. All mapped reads were then extended to 50 bp centred by the cleavage position. Reads mapped to repeated regions and

chromosome M were removed. We used the ‘‘–PeakCalling’’ module in ATAC-pipe with the options ‘‘–p1 3 –q1 5 –f1 1 -w 50’’ to call

the peaks. The peaks were then filtered, and enriched regions were identified as those with a posterior probability >0.99. Samples

from the same cell type classified under the same clinical condition (healthy, SLE) were grouped for peak calling, and peaks for all

categories were then merged together to generate a peak list. The number of raw read counts mapped to each peak in each sample

was quantified by this module in ATAC-pipe. We then obtained an N3Mdata matrix where N indicated the number of merged peaks,

M indicated the number of samples, and the matrix value Di,j represented the raw read counts falling in peak i (i = 1 to N) of sample
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j (j = 1 to M). After manually removing the peaks mapping to chromosome Y, this data matrix was then normalized by the ‘‘normal-

ize.quantiles’’ function of the ‘‘preprocessCore’’ package in R, and the normalized matrix was then then log2 transformed. To avoid

the effect of the difference between males and females, we excluded the peaks that were significantly differential in male and female

samples (N = 212, screened by all male samples vs all female samples, |log2 fold change|>1.2, FDR<0.05). This final data matrix was

used for downstream analysis.

Normalization of ATAC-seq profiles
The UCSC Genome Browser provides aligned annotation tracks and can also display ATAC-seq signal peaks. To avoid the impacts

of variable sequencing depths and signal-to-noise ratios among different samples, we normalized the ‘‘bedGraph’’ files before up-

loading. To do this, we used the R package DESeq (Anders and Huber, 2010) to calculate the size factor for every sample via the

sample3peak raw count matrix (output file of ATAC-pipe). These size factors can be used to suitably measure the depth of data

at chromatin-accessible regions in all samples. To obtain the standardized data, the raw count in the ‘‘bedGraph’’ file for each sample

was divided by the size factor. Normalized ‘‘bedGraph’’ files were then converted to the UCSC Genome Browser input format

‘‘bigWig’’ using the UCSC tool ‘‘bedGraphToBigWig’’.

Saturation curve of the sample and peak numbers
Given the heterogeneity of CD4+ T cell subsets, complexity of SLE and variety between individuals, a sufficient number of samples is

necessary to ensure that all chromatin-accessible regions of SLECD4+ T cells are detectable. To construct the saturation curve of the

numbers of SLE samples used and peaks detected, we first randomly selected a certain number of SLE samples. Next, we obtained

the peak list by the same peak calling method described above, and the number of peaks called from this random selection was

obtained. This random selection was performed on 1 to 63 samples 10 times. The x-axis of the saturation curve depicts the number

of samples used, while the y-axis depicts the number of peaks called from 10 random selections.

Correlation analysis of all SLE patients
To obtain a representative correlation landscape of all samples from SLE patients, we first filtered variant peaks among all SLE sam-

ples based on a coefficient of variation (COV) greater than a certain threshold, and multiple variant peak lists were obtained from a

COV threshold ranging from 0.2 to 0.7 (step by 0.02). Then, these sample3variant peak count matrixes were used to calculate the

sample3sample Pearson’s correlation matrixes. The average of these correlation matrixes was used for the final data presentation.

After unsupervised hierarchical clustering (Seaborn clustermap, with parameter metric = ’Euclidean’, method = ’complete’), SLE pa-

tients were divided into three distinct groups.

Summary of the clinical information for the three SLE patient groups
The SLE DAI was calculated for each SLE patient with detailed clinical information according to the internationally certified method

SLEDAI-2K (Gladman et al., 2002). Nephritis is a serious and common comorbidity in SLE patients. To quantify the severity of

nephritis for each patient, we defined the sum of the four nephritis-related indicators—haematuria, proteinuria, pyuria, and tubular

urine—in SLEDAI-2K as the nephritis DAI. We compared the SLE and nephritis DAIs among the three patient groups and summarized

the ratio of patients with each comorbidity for each patient group.

Acquisition of microarray and RNA-seq datasets
We downloaded the following bulk datasets for comparison to our single-cell data: (1) the microarray gene expression data of three

CD4+ T cell subsets in each developmental stage, Tn/Tem/Tcm, downloaded from the Gene Expression Omnibus: GSE61697

(Takeshita et al., 2015); (2) the microarray gene expression data of healthy and SLE blood CD4+ T cells, downloaded from the

Gene Expression Ominibus: GSE4588, GSE10325 and GSE55447 (Hutcheson et al., 2008; Sharma et al., 2015); (3) the bulk RNA-seq

of three Treg subtypes, nTreg, effect Treg, and Fr. III Treg, downloaded from the Gene Expression Omnibus: GSE90600 (Cuadrado

et al., 2018); (4) the single-cell RNA-seq expression data of colon mucosa immune cells from ulcerative colitis patients and controls

from the Single Cell Portal: SCP259 (Smillie et al., 2019); (5) the single-cell RNA-seq expression data of PBMCs from ulcerative colitis

patients and controls from the Gene Expression Omnibus: GSE125527 (Boland et al., 2020); (6) the single-cell RNA-seq expression

data of PBMCs from healthy controls from the Gene Expression Omnibus: GSE150728 (Wilk et al., 2020); (7) the single-cell RNA-seq

expression data of PBMCs from SLE patients from the Gene Expression Omnibus: GSE137029; and (8) the single-cell RNA-seq

expression data of PBMCs frommultiple sclerosis patients from the Gene Expression Omnibus: GSE138266 (Schafflick et al., 2020).

Acquisition of gene sets
All gene sets used in this study and their citations are listed in Table S2. Marker gene lists of Th1 cells (CXCR3, TBX21, IFNG, GZMB,

TNF), Th2 cells (GATA3, IL4, IL5, IL13), Th17 cells (CCR6, RORC, IL17A, IL17F), Treg cells (FOXP3, RTKN2, IKZF2, IL10, TGFB2,

TGFB3, CTLA4, IL2RA), Tct cells (NKG7, GZMH, FGFBP2) and resting T cells (CCR7, SELL, CD27) were obtained from published

studies (Luckheeram et al., 2012; Patil et al., 2018). Signature genes of naı̈ve T (Tn), effector memory T (Tem), and central memory

T (Tcm) cells were obtained by differential expression analysis of Tn/Tem/Tcm cells with all other cell types (Tn features: Tn vs Tem

and Tcm; Tem features: Tem vs Tn and Tcm; Tcm features: Tn and Tem; |log2 fold change|>1, FDR<0.05) (Cuadrado et al., 2018).
e5 Cell Reports 41, 111606, November 8, 2022



Article
ll

OPEN ACCESS
However, we obtained 0 Tcm cell signature genes using this method, potentially because Tcm cells are intermediate between Tn and

Tem cells. Risk genes of multiple autoimmune diseases, such as SLE, rheumatoid arthritis, type 1 diabetes inflammatory bowel dis-

ease, and ulcerative colitis, were obtained from their reported genes in the GWAS catalogue (v 1.0.2) (Welter et al., 2014). SLE CD4+

T cell up-/downregulated gene setswere screened from the published dataset GSE10325 (Hutcheson et al., 2008) (p value<0.01, log2
fold change>1). The gene sets of biological processes inMSigDB (Liberzon et al., 2015) were also used in our analysis. In addition, we

excluded the gene sets that were irrelevant to the immune functions of CD4+ T cells (such as those related to the nervous system,

embryonic development, reproduction and cellular dynamics) and the gene sets with more than 1500 or less than 10 genes. The final

MSigDB gene sets used in our downstream analysis are listed in Table S2.

Screening the differential peaks between three SLE patient groups and healthy controls
Differential analysis was performed on CD4+ T cell ATAC-seq samples from each SLE patient group with all samples from the healthy

controls. Peaks with |log2 fold change|>1.2 and FDR<0.05 were defined as differential peaks. After unsupervised hierarchical clus-

tering of the sample3peak count matrix, 11775 differential peaks were divided into Clusters I-V.

Functional annotation of peak clusters
Wefirst obtained the regulatory regions of all genes using the ‘‘basal plus extension’’ model in GREAT (McLean et al., 2010) (proximal:

5 kb upstream, 1 kb downstream; plus distal: up to 500 kb). Then, we overlaid all peaks with these regulatory regions using ‘‘inter-

sectBed’’ in bedtools (Quinlan and Hall, 2010) and constructed a gene3peak regulatory matrix in which each element was a 0 (peak

not in the regulatory region of a gene) or 1 (peak in the regulatory region of a gene). The regulatory elements of a gene set were defined

as peaks located in the regulatory regions of all genes in this gene set. For each gene set, we identified all its regulatory elements and

then summarized the number of these regulatory elements in each peak cluster and the average number of regulatory elements per

gene. We calculated the statistical significance of the enrichment of certain functional gene sets in a certain peak cluster compared

with all peaks (background) by Fisher’s exact test.

scRNA-seq primary data processing and gene expression imputation
Cell Ranger v2.0 was used to demultiplex the FASTQ reads, align them to the hg19 human transcriptome, and extract their ‘‘cell’’ and

‘‘UMI’’ barcodes. The output of this pipeline is a digital gene expression (DGE) matrix, which records the number of UMIs for each

gene that are associated with each cell barcode. Next, we created the Seurat objects for three DGE matrixes of three batches using

Seurat3.0, and merged them into a big Seurat object. Cells with fewer than 400 genes, more than 4000 genes and a percentage of

mitochondrial genes greater than 5% were removed, and genes expressed in fewer than 10 cells were removed. Gene expression

was normalized by ‘‘LogNormalize’’ in Seurat3.0. To further recover the expression of genes, we input a normalized expressionmatrix

into the published imputation tool SAVER (Huang et al., 2018) with the default settings. The output of SAVERwas the recovered gene

expression matrix, which was used for downstream analysis.

Cell clustering
We first created the Seurat objects for all three batches of 10X single-cell RNA-seq data and identified the top 1000 variable features

(genes in the Y chromosome were eliminated) individually for each object with default parameters. Next, we identified anchors for

these three objects and integrated them with the top 15 canonical correlation analysis (CCA) dimensions. Then, we performed

PCA on the integrated object and found cell clusters with the top 25 PCA dimensions (resolution set to 1).

Determination of the sample identity for each cell type
To capture interindividual variability in this population genetics study, we sequenced a large number of cells each from 4–6 individ-

uals. Therefore, the sample (healthy controls and SLE patients) from which each cell type was derived was unknown. The published

tool Demuxlet can be used to determine the sample identity of each single cell based on a comparison of single nucleotide polymor-

phisms (SNPs) between individuals and cells (Kang et al., 2018). To obtain the input file for Demuxlet (VCF file containing the SNPs of

all samples), we first aligned the ATAC-seq sequencing reads to the reference genome hg19 using the ‘‘–MappingQC’’ module with

option ‘‘-c 100’’ in ATAC-pipe. Then, we integrated these output bam files into a single mpileup file using ‘‘samtools mpileup’’. Next,

SNPs were called by VarScan (Koboldt et al., 2012) with the options ‘‘–min-coverage 5 –p-value 0.01 –output-vcf 1’’. The output

VarScan file was the VCF file that was used as the input file for Demuxlet, and Demuxlet was then run with default settings. Only

the cells in the ‘‘.best’’ file (a Demuxlet output file) marked by ‘‘SNG’’ (singlet) could be determined. In total, we identified 47% of

all cells. To further confirm the sample identities of more cells, we applied another tool, Souporcell (Heaton et al., 2020), to classify

all CD4+ T cells by genotype. A total of 93% of the CD4+ T cells were divided into 10 clusters, and cells in the same cluster derived

from the same sample. We identified the samples in each cell cluster by overlapping the results of Demuxlet and Souporcell.

Identifying the statistically significant differences in cell proportions
To identify changes in the proportion of each cell subset in blood from healthy controls and SLE patients, we used two statistical tests

that each captured distinct but complementary types of information: (1) Student’s t-test and (2) Fisher’s exact test. The proportion of

each CD4+ T cell subtype was calculated for each sample according to the results of Demuxlet and Souporcell. We compared the
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proportions of CD4+ T cell subtypes between healthy controls and SLE patients (Student’s t-test). However, a t-test was used to

examine each cell subset independently; for cell proportions, an increase in the percentage of one cell subset would necessitate de-

creases in the percentages of other cell subsets.We therefore performed Fisher’s exact test on the numbers of cells from each subset

that were isolated from the blood of healthy individuals and patients with SLE, and the odds ratios and p values were used tomeasure

the enrichment of each cell subset in each clinical state. These two methods reflected almost the same statistically significant

differences.

Scoring gene signatures based on gene expression and chromatin accessibility
We defined the signature score to compare the degrees of enrichment of a gene set among cells or samples. For gene expression

data, we first calculated the sums of the normalized expression across all genes in a signature gene set and then normalized them to

values from 0 to 1 among cells/samples ðnormalized Li = ðLi � minðLÞÞ =ðmaxðLÞ � minðLÞÞÞ, which was deemed the gene expres-

sion-signature score. For chromatin accessibility data (ATAC-seq), we first overlaid all ATAC-seq peaks with the regulatory regions

(defined in ‘‘functional annotation of peak clusters’’) of all genes by ‘‘intersectBed’’ in bedtools and constructed connections between

peaks and genes. We then calculated the sums of the normalized peak intensities across all peaks that were connected to genes in a

signature gene set and then normalized them to values from 0 to 1 among samples. This was deemed the chromatin accessibility

signature score.

Screening the differentially expressed genes between healthy controls and SLE patients for eachCD4+ T cell subtype
We first obtained the log-normalized gene expression matrix (after SAVER imputation) through the method described above,

removed genes with amaximum expression value of less than 1 across all cells, and then converted the expression to a standardized

z-score across cells. For each CD4+ T cell subtype, the DEGs were screened by three thresholds: (1) p value <0.01 (Mann-Whitney U

test), FDR <0.05 (Bonferroni correction), (2) average z score of cells from healthy controls ðAZnÞ >0.1 or average z score of cells from

SLE patients ðAZpÞ >0.1, and (3) difference between AZn and AZp >0.4. The DEGs of each cell subset are listed in Table S3. We sum-

marized the number of upregulated and downregulated DEGs for each cell subset and showed them on a t-SNE scatter plot. The

DEGs between Treg cells from healthy controls and SLE patients were also screened in this manner and are listed in Table S4.

Construction of the functional change profiles in all cell subsets
To explore the functional differences in each cell subtype between healthy controls and SLE patients, we first calculated the differ-

ence in average expression (DAV) between healthy and SLE cells ðDAV = AZp �AZnÞ for all cell subtypes and obtained a differential

expression matrix (DEM) in which each row was a gene and each column was a cell subtype. To construct a complete profile of func-

tional changes, we used all MSigDB gene sets and created a 0/1 matrix in which each column was a functional gene set, each row

was a gene, and each value was 0 (row gene was not in the column gene set) or 1 (row gene existed in the column gene set). The DEM

and 0/1matrix were used as the ‘‘input file’’ and ‘‘gene sets file’’ of Genomica, respectively, and ‘‘Module Map’’ (parameters: exclude

gene sets with less than 3 genes or more than 1000 genes; expression level R0.3 denoted upregulation, expression level % -0.3

denoted downregulation; value was displayed as the negative log p value of gene hit enrichment) was then run to obtain the enrich-

ment of each gene set in each cell subset. The top enriched gene sets are shown in Table S3.

Estimating the differences in gene expression patterns between Treg cells from healthy controls and SLE patients
We first obtained the log-normalized gene expression matrix (after SAVER imputation) and calculated the average gene expression

(AGE) for each CD4+ T cell type from healthy controls and SLE patients. For each CD4+ T cell subtype, genes with AGEs greater than

0.2 ðAGEcells from healthy controls > 0:2 or AGEcells from SLE patients > 0:2Þ were used to calculate the Euclidean distance and Spearman

correlation between healthy controls and SLE patients.

Screening of differentially expressed genes between two Treg clusters (Treg1 and Treg2)
We first obtained the log-normalized gene expression matrix (after SAVER imputation) through the method described above,

removed genes with maximum expression values of less than 1 across all Treg cells, and then converted expression to a standard-

ized z-score across all Treg cells. The DEGs between Treg1 and Treg2 cells were screened by a p value <0.01 (Mann-Whitney U test),

FDR <0.05 (Bonferroni correction), and the difference in the average z score between Treg1 and Treg2 cells was more than 0.4

ð��AZTreg1 cells � AZTreg2 cells

�
� > 0:4Þ. The DEGs between Treg1 and Treg2 cells are listed in Table S4.

Identifying the SLE Treg2 up-regulated DEGs
We identified the SLE Treg2 up-regulated DEGs by the same thresholds described in ‘‘Screening of differentially expressed genes

between two Treg clusters (Treg1 and Treg2).’’, and the interferon response genes were removed in the analysis of Figure 6A, the SLE

Treg2 up-regulated DEGs were listed in Table S4.

Identifying the signature genes for three published Treg groups
Previous studies defined three fractions of FOXP3+CD4+ T cells: naı̈ve Tregs (nTregs), effector Tregs (eTregs) and nonsuppression

Tregs (Fr. III). We used the bulk RNA-seq data to identify their signature genes (Cuadrado et al., 2018). We performed differential
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expression analysis (log2 fold change>1, p value<0.05 (t-test) and FDR <0.5 (Bonferroni correction)) for each Treg group versus all

other Treg groups (eTreg vs nTreg and Fr. III; nTreg vs eTreg and Fr. III; Fr. III vs eTreg and nTreg). The signature genes of these three

Treg groups are listed in Table S2. The relative expression of all signature genes in eTreg, nTreg and Fr. III cells are shown in the

heatmap.

Screening specific genes for Th1, Th2, Th17, and Tct cells
We used the single-cell gene expression data of healthy controls to identify the specific genes of Th1, Th2, Th17 and Tct cells.

Differential expression analysis (log2 fold change >0.2 and Mann-Whitney U test p value <0.01) was performed for each subtype

of Teff cells versus all other subtypes of Teff cells. The specific genes of each Teff subtype are listed in Table S4.

Identifying the Treg exhaustion-associated functional gene set
We used two different methods that each captured distinct types of information to identify Treg exhaustion-associated functions: (1)

Metascape gene list annotation and (2) GSEA. We described each of these below. We first calculated the Pearson’s correlation be-

tween normalized gene expression and the signature score of Treg exhaustion-like properties for all detected genes across all Treg

cells and then identified the genes whose expression was significantly correlated with the signature score of Treg exhaustion-like

properties (correlation >0.4). We uploaded this gene list to the Metascape main page and clicked ‘‘express analysis’’. The Meta-

scape’s report page showed the functional annotations of Treg exhaustion-associated genes.We showed the top enriched functions

via a bar plot. To further verify the correlation between Treg exhaustion-like properties and the type I IFN response, we performed

GSEAPreranked analysis of Treg-detected genes (ranked by their Pearson correlation with the signature score of Treg exhaus-

tion-like properties) and a type I IFN response gene list.

QUANTIFICATION AND STATISTICAL ANALYSIS

The analysis, software, and quantification methodology that are specific to ATAC-seq, RNA-seq, and scRNA-seq experiments are

included under the relevant subsections of the method details section. Information regarding replicate numbers is provided in figure

legends. If error bars are used in figures, information about what error bars represent is also provided in the figure legend. If the

degree of significance is provided in the figure legend, further details regarding the statistical test used are provided in the relevant

subsections of the method details that are specific to the analysis being performed.

Flow cytometry data were analysed using FlowJo V.X.0.7 software (Tree Star). Statistical analyses and approximations were

performed with GraphPad Prism 7 software (GraphPad).

Statistical significance was analyzed with two-tailed Student’s-tests, Mann-Whitney U test, or two-way ANOVA. A p-value of less

than 0.05 was considered statistically significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data are presented as the upper,

centre, and lower lines indicate the 75%quantile +1.5 * interquartile range (IQR), 50%quantile, and 25%quantile�1.5 * IQR, respec-

tively which are indicated in the figure legends.
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