
Theranostics 2022, Vol. 12, Issue 10 
 

 
https://www.thno.org 

4606 

Theranostics 
2022; 12(10): 4606-4628. doi: 10.7150/thno.72760 

Research Paper 

Single-cell transcriptome profiling of the immune 
space-time landscape reveals dendritic cell regulatory 
program in polymicrobial sepsis 
Ren-qi Yao1,2,3*, Zhi-xuan Li1*, Li-xue Wang1, Yu-xuan Li1, Li-yu Zheng1, Ning Dong1, Yao Wu1, Zhao-fan 
Xia2,3, Timothy R. Billiar4, Chao Ren1, Yong-ming Yao1 

1. Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 
100853, China. 

2. Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China. 
3. Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing 100730, 

China. 
4. Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.  

* These authors contributed equally to this manuscript. 

 Corresponding authors: Yong-ming Yao, MD, PhD, Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical 
Center of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, People’s Republic of China. Tel: (+86) 1066867394; Fax: (+86) 
1068989955; Email: c_ff@sina.com. Chao Ren, MD, PhD, Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical 
Center of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, People’s Republic of China. Tel: (+86) 18515366935; Email: 
rc198@sina.com. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2022.03.10; Accepted: 2022.05.26; Published: 2022.05.29 

Abstract 

Rationale: Evident immunosuppression has been commonly seen among septic patients, and it is 
demonstrated to be a major driver of morbidity. Nevertheless, a comprehensive view of the host immune 
response to sepsis is lacking as the majority of studies on immunosuppression have focused on a specific type 
of immune cells.  
Methods: We applied multi-compartment, single-cell RNA sequencing (scRNA-seq) to dissect heterogeneity 
within immune cell subsets during sepsis progression on cecal ligation and puncture (CLP) mouse model. Flow 
cytometry and multiplex immunofluorescence tissue staining were adopted to identify the presence of ‘mature 
DCs enriched in immunoregulatory molecules’ (mregDC) upon septic challenge. To explore the function of 
mregDC, sorted mregDC were co-cultured with naïve CD4+ T cells. Intracellular signaling pathways that drove 
mregDC program were determined by integrating scRNA-seq and bulk-seq data, combined with inhibitory 
experiments. 
Results: ScRNA-seq analysis revealed that sepsis induction was associated with substantial alterations and 
heterogeneity of canonical immune cell types, including T, B, natural killer (NK), and myeloid cells, across three 
immune-relevant tissue sites. We found a unique subcluster of conventional dendritic cells (cDCs) that was 
characterized by specific expression of maturation- and migration-related genes, along with upregulation of 
immunoregulatory molecules, corresponding to the previously described ‘mregDCs’ in cancer. Flow cytometry 
and in stiu immunofluorescence staining confirmed the presence of sepsis-induced mregDC at protein level. 
Functional experiments showed that sepsis-induced mregDCs potently activated naive CD4+ T cells, while 
promoted CD4+ T cell conversion to regulatory T cells. Further observations indicated that the mregDC 
program was initiated via TNFRSF-NF-κB- and IFNGR2-JAK-STAT3-dependent pathways within 24 h of septic 
challenge. Additionally, we confirmed the detection of mregDC in human sepsis using publicly available data 
from a recently published single-cell study of COVID-19 patients.  
Conclusions: Our study generates a comprehensive single-cell immune landscape for polymicrobial sepsis, in 
which we identify the significant alterations and heterogeneity in immune cell subsets that take place during 
sepsis. Moreover, we find a conserved and potentially targetable immunoregulatory program within DCs that 
associates with hyperinflammation and organ dysfunction early following sepsis induction. 
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Introduction 
Sepsis is characterized by life-threatening organ 

dysfunction due to a dysregulated host response to 
infection based on the definition of Sepsis 3.0. In fact, 
sepsis remains the leading cause of mortality for 
patients admitted to intensive care units (ICUs) [1, 2]. 
With its incidence increasing worldwide, sepsis 
results in immense economic and societal costs 
annually [3, 4]. Currently, specific biomarkers and 
therapeutic agents effective in diagnosing and 
treating sepsis remain limited [5, 6]. This can be 
attributed to the significant heterogeneity of 
populations and the lack of a clear understanding of 
the pathogenesis of the aberrant host immune 
response. A response paradoxically exhibits the 
simultaneous presence of proinflammatory and 
anti-inflammatory features manifesting a disturbed 
homeostasis [7, 8]. The immunosuppression of sepsis 
appears to be a major driver of morbidity, leading 
investigators to seek novel immunotherapeutic 
strategies targeting sepsis-induced immune 
depression [9, 10]. A comprehensive view of the host 
immune response to sepsis is lacking as the majority 
of studies on sepsis induced immune dysfunction 
have focused on a single immune cell type [7]. 
Previous gene expression analyses in sepsis have been 
applied mostly to bulk populations of cells isolated 
from whole blood or tissues with cell heterogeneity 
based on cell surface markers [11-14]. However, 
emerging evidence has confirmed that significant 
heterogeneity can be identified even within the 
identical immune cell types [15-17]. Given that, bulk 
sequencing-based gene expression profiles are likely 
to aggregate transcripts across large, heterogenous 
cell populations, these studies are unlikely to reveal 
the full range of cell states. 

Single-cell RNA sequencing (scRNA-seq) 
represents a powerful tool for deciphering the range 
of distinct cell subtypes and discovering previously 
unidentified cell types and states [18-21]. Of note, 
scRNA-seq technologies have been increasingly 
applied to resolve immune cell heterogeneity and 
identify cell type-specific disease signatures in 
various immune-related disorders, including 
rheumatoid arthritis, systemic lupus erythematosus, 
type I diabetes, inflammatory bowel disease, and 
trauma [18, 22-25]. To date, several studies have 
profiled the immune cell landscape of septic patients 
at single-cell resolution, in which peripheral blood 
mononuclear cells (PBMCs) derived from septic 
patients were subjected to scRNA-seq [26-28]. 
However, the incorporated populations across these 
studies remained largely heterogenous regarding 
source of infection and severity of illness. Meanwhile, 
all the studies to date have focused on the 

transcriptomic changes within monocytes due to the 
dramatic changes that take place in these cells in 
septic patients [28]. Moreover, based on integrative 
scRNA-seq analyses of publicly available datasets, 
two recently published studies uncovered a 
conserved transcriptome signature of monocytes, 
which shared between coronavirus disease 2019 
(COVID-19) and septic patients [29, 30]. Dendritic 
cells (DCs) are professional antigen-presenting cells 
(APCs) that play pivotal roles in initiating and 
regulating immune responses upon pathogen 
invasion [31, 32]. In addition to the well-studied type 
1 and type 2 conventional DCs (cDC1s and cDC2s), 
monocytes have been demonstrated to upregulate the 
expression of major histocompatibility complex class 
II (MHC-II) and CD11c together with downregulation 
of Ly6C under inflammatory states. These cells have 
been designated monocyte-derived DCs (moDCs) due 
to their antigen presenting capacity [33-35]. Of note, 
scRNA-seq analyses have been broadly applied in 
decoding heterogeneity across DC subsets, and their 
associations with various human diseases. Notably, 
CD26+ inflammatory cDC2s were found to prime T 
cell-specific immunity in respiratory viral infection as 
well as allergy [33]. Moreover, Janela et al. 
demonstrated that a dermal cDC1 subcluster played a 
pivotal role in mediating the activation and 
recruitment of neutrophils against cutaneous bacterial 
infections [36]. Other than canonical DC subsets, a 
recent report also identified the infiltration of a 
previously unrecognized CD123int BDCA-2+ DCs in 
skin wounds, with its involvement in sterile 
inflammation and wound healing [37]. These data 
highlight the necessity and significance of scRNA-seq 
in investigating the relationship between DC subsets 
and pathogenesis of multiple human diseases. 
Nevertheless, a study that specifically addressed 
complexity and heterogeneity within cDCs subsets in 
sepsis is currently lacking. 

Here, to profile a comprehensive immune 
landscape of sepsis, we applied scRNA-seq analysis in 
a widely studied experimental model of sepsis. 
Importantly, we incorporated elements of both time 
and sampling across multiple compartments using 
freshly isolated cells. This strategy permitted us to 
describe the broad and dynamic heterogeneity among 
T, B, natural killer (NK), and myeloid cells during 
sepsis. Strikingly, we identified a subpopulation of 
cDCs that was characterized by specific expression of 
maturation- and migration-related genes, along with 
upregulation of immunoregulatory molecules, corres-
ponding to the previously described ‘mature DCs 
enriched in immunoregulatory molecules’ (mregDCs) 
in various cancer types [38]. Our characterization of 
these cells extended into humans through a secondary 
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analysis of scRNA-seq dataset obtained from a 
large-scale single-cell study of COVID-19 patients 
[39]. The landscape data serves as a new resource for 
the study of sepsis and the discovery of the 
upregulation of mregDC opens a new avenue for 
research into the role of these cells in critical illness. 

Materials and Methods 
Mice  

Wild type C57BL/6J mice were purchased form 
the Laboratory Animal Science of Chinese Academy 
of Medical Sciences (Beijing, China). Batf3 knockout 
(KO) (Batf3-/-) mice and IRF4 KO (IRF4-/-) mice were 
provided by Shanghai Model Biological Center 
(Shanghai, China). Male mice aged six- to 
eight-week-old were adopted for in vivo experiments, 
and they were housed under specific pathogen-free 
(SPF) conditions. All practices were carried out in line 
with the National Institutes of Health Guide for the 
Care and Use of Laboratory Animals and approved 
by the scientific Investigation Board of the Chinese 
PLA General Hospital (No. SYXK2020-0015), Beijing, 
China. 

Mouse model of polymicrobial sepsis  
Experimental model of polymicrobial sepsis was 

established using cecal ligation and puncture (CLP) 
procedures [40]. Male mice (N = 30) were anesthetized 
with 5% chloral hydrate (30 mg/kg) prior to 
disinfection of abdominal skin. One-centimeter-long 
median abdominal incision was performed to ensure 
adequately exposure of the cecum. Thereafter, cecum 
was ligated below the ileocecal valve and punctured 
once using 21-gauge needle followed by extradition of 
a fraction feces by compressing the ligated cecum. 
After relocating the cecum with close of incision, CLP 
mice were subsequently undergone a fluid 
resuscitation via subcutaneous injection of 0.9% 
normal saline. As for the sham group, mice solely 
underwent cecum exposure without performing CLP. 
To evaluate the successful reproduction of sepsis 
model, the occurrence of lethargy, diarrhea, and 
piloerection were observed after operations. At 
different intervals after CLP surgery (8, 24, and 72 h), 
mice were anesthetized using chloral hydrate, 
followed by collection of retro-orbital bleeding. After 
sacrificing the mice through euthanizing with CO2, 
various tissues were then harvested, including bone 
marrow, spleen, liver, heart, kidney, and lung. 

Isolation of murine immune cells  
PBMCs were isolated using density gradient 

centrifugation based PBMCs isolation kit 
(TBDsciences, Tianjin, China) following the 
manufacturer’s recommendations. In brief, whole 

blood (700-800 μL for each mouse) was obtained from 
murine retro-orbital bleeding using sodium heparin 
blood collection tubes and diluted with precooled 
phosphate-buffered saline (PBS) containing EDTA. 
Next, washed cell suspensions were superimposed on 
the surface of lymphoprep and centrifugated for 30 
min at 450 g, followed by collection of interphase- 
containing PBMCs. Thereafter, red blood cells were 
lysed with lysis buffer for 5 min, which was 
terminated through adding RPMI supplemented with 
2% fetal bovine serum (FBS). Cells were washed and 
resuspended using PBS containing bovine serum 
albumin (BSA) for further processing. To isolate bone 
marrow derived leukocytes, whole bone marrow cells 
were flushed from the femur with PBS containing 15 
mM EDTA and 1% BSA. Suspensions were filtered by 
a 70 μm strainer, and cell debris was discarded by 
centrifugation for 10 min at 500 g. Complying the 
manufacturer’s instructions for murine bone marrow 
lymphoprep (TBDsciences, Tianjin, China), 
re-suspended cells were layered onto the surface of 
lymphoprep resolution carefully, which were 
subsequently centrifugated for 30 min of 500 g at 
room temperature. Thereafter, bone marrow derived 
leukocytes were obtained by collecting the middle 
layer of the mixture. For splenic leukocyte isolation, 
spleens were harvested and dispersed in PBS, 
followed by disaggregation using a 70 μm cell 
strainer. After collecting splenocytes, leukocytes were 
derived using Ficoll-Paque density gradient 
centrifugation (500 g for 15 min). Following 
centrifugation, interphase-containing cells were 
collected, washed, and resuspended in PBS containing 
1% BSA. Splenic leukocytes were collected as 
previously described, followed by isolation of splenic 
DCs using a CD11c+ DC isolation kit (MiltenyiBiotec, 
BergischGladbach, Germany) complying with the 
manufacturer’s protocols. 

Single cell collection and single-cell RNA-seq  
Following the manufacturer’s guidelines, CD45+ 

immune cells were sorted using fluorescence- 
activated cell sorting (FACS) from the leukocytes 
stained with anti-mouse CD45 antibody. Thereafter, 
we used Countess II Automated Cell Counter to 
estimate viability and density of CD45+ cells stained 
with trypan blue, and single with viability higher than 
85% was eligible for further sequencing. Cell 
suspensions were then processed for scRNA-seq 
using Chromium Controller. Library was prepared in 
accordance with the 10× genomics protocol for Single 
Cell 3’ tag Gene Expression (10× Genomics, 
Pleasanton, CA). After performing single-cell gel 
bead-in-emulsions reverse transcription, PCR amplifi-
cation was carried out to yield sufficient indexed 



Theranostics 2022, Vol. 12, Issue 10 
 

 
https://www.thno.org 

4609 

complementary DNA (cDNA) for constructing 
scRNA-seq library. Finally, the libraries were 
sequenced on an Illumina HiSeq4000 (Illumina, San 
Diego, CA). 

Single-cell RNA-seq analysis  
Cell Ranger Single-Cell Software Suite (10× 

Genomics, Pleasanton, CA) was adopted to convert 
Illumina base call files to FASTQ files with the 
‘cellranger mkfastq’ function. It was subsequently 
used to align the sequenced reads to the reference 
genome (mm10 mouse transcriptome) and quantify 
expression level of transcripts for single-cell. Default 
quality control was performed to remove low-quality 
reads. This pipeline yielded files containing 
expression matrix among all samples, which 
documented unique molecular identifiers (UMIs) for 
each gene corresponding to each cell. 

Single-cell RNA-seq analysis-Data processing  
Subsequent analyses were implemented using R 

software version 4.0.3 and the ‘Seurat’ package 
version 3.1.1 [41]. Cells with detected genes lower 
than 200 as well as mitochondrial content greater than 
10% were filtered out during the quality control 
process. In line with gene expression signature, cells 
confirmed as doublets or multiplets were removed as 
well using the function ‘DoubletFinder’, when two or 
more population marker genes were highly expressed 
in single cell. Cells with UMI count above 40000 and 
detected genes above 5000 were also removed to 
exclude potential doublets. Following exclusion of 
low-quality cells, filtered UMI counts were 
normalized using the function ‘NormalizeData’, in 
which normalization method was designated as 
‘logNormalize’ with a scaling factor of 10000.  

Dimension reduction and unsupervised 
clustering  

‘FindVariableGenes’ function was performed 
with default parameters to select the highly variable 
genes, which were applied in conducting the linear 
dimensionality reduction. Next, principal component 
analysis (PCA) was performed regarding the top 2000 
highly variable genes using ‘RunPCA’ function. 
Thereafter, numbers of PCs were selected corres-
ponding to the ElbowPlot, followed by performing 
the ‘RunUMAP’ function with a perplexity value of 30 
to acquire bidimensional coordinates for single-cell. In 
addition, we performed unsupervised cell clustering 
using ‘FindClusters’ function with a resolution of 0.6 
on the basis of the identical PCs as for the ‘RunUMAP’ 
function. Consequently, the datasets were visualized 
by uniform manifold approximation and projection 
(UMAP) plots [42].  

Identification of differentially expressed genes 
(DEGs)  

Based on the normalized data, DEGs across clus-
ters were identified using function ‘FindAllMarkers’ 
or ‘FindMarkers’. We used Bonferroni correction 
method to adjust for P values, and DEGs with 
adjusted P values higher than 0.05 were ruled out. 
Differential expression analysis between each 
immune cell subcluster was conducted using 
non-parametric Wilcoxon rank sum test from the 
‘Seurat’ package. 

Cell cycle and pseudotime transcriptional 
trajectory analysis  

Based on the expressions of marker genes 
associated with G2M or S phase, cells were designated 
a fraction of cell cycle. We applied ‘CellCycleScoring’ 
function to yield cell cycle score for each cell, which 
was subsequently matched into the metadata. This 
pipeline results in predicted classification for each cell 
in distinct proliferative phases was also calculated 
and grouped via the above package. 

Trajectory and pseudotime analysis were carried 
out using ‘Monocle2’ package with the top 400 
signature genes derived from the ‘Differential 
GeneTest’ function, which was designed to infer the 
potential developmental trajectory [43]. The RNA 
counts among all cells from the subclusters were 
selected as input of ‘Monocle2’ for downstream 
analysis. Generalized additive models (GAMs) were 
constructed to generate the mean expression of each 
isoform. Tobit model was applied to access the 
relative gene expression of each cell. The linage 
differential trajectory among cDC subpopulations was 
performed using the default parameters of ‘Monocle’ 
following dimension reduction and cell ordering. 

Cell-cell interaction network analysis  
To gain insight into the potential interactions 

between disparate immune cell types, we performed 
cell-cell network analysis to explore significant 
ligand-receptor pairs using ‘CellPhoneDB’ package 
[44]. The interaction intensity between two immune 
cell subsets was determined using permutation test. 
Bonferroni multiple testing correction was applied for 
adjusting P value that was calculated across the 
ligand-receptor pairs. Ligand-receptor pairs with 
interacting intensity larger than 10 as well as an 
adjusted P value less than 0.01 were regarded as 
potential molecular partner that mediated cell-cell 
communications.  

Analysis of public scRNA-seq datasets  
Publicly available scRNA-seq datasets were 

downloaded from Gene Expression Omnibus (GEO) 
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as well as Single Cell Portal (SCP) using accession 
codes. GSE151658 scRNA-seq dataset containing renal 
cells isolated from LPS challenged mice was used to 
enrich murine DCs subset using R package ‘Seurat’ as 
mentioned above [45]. Immune cells were re-clustered 
and annotated in line with our definition of cDCs 
(Cd74) and pDCs (Siglech). For the data of COVID-19 
patients, we applied GSE158055 scRNA-seq dataset 
for subsequent analysis [39]. BALF derived cells were 
exclusively incorporated, in which cluster information 
and gene expression from DCs were used as described 
in the article. SCP548 dataset containing CD45+ cells 
and DCs from PBMCs of septic patients was 
downloaded and used for secondary analysis. 
Clustering was carried out using human DCs marker 
genes (CD1C and CLEC9A), corresponding to DCs 
subtypes [28]. To identify the presence of mregDCs, 
we subclustered DCs and profiled the expression level 
of mregDCs signature genes among DCs 
subpopulations. 

Bulk RNA sequencing and data processing 
Total mRNA was extracted from splenic DCs 

sample by use of the Qiagen RNeasy Mini Kit 
(Qiagen, Mainz, Germany) complying for the 
manufacturer’s instruction booklets. cDNA libraries 
were sequenced on an Illumina HiSeq2500 (Illumina, 
San Diego, CA). We assessed the quality of sequenced 
reads and filtered out reads of low quality by 
applying FastQC and MultiQC, followed by 
alignment to the mouse reference sequence 
(GRCm38/mm10). The counts were quantile 
normalized followed by log transformation, and they 
were then converted to expression matrix for 
downstream analysis. 

Histological examination  
The dissected spleen, liver, lung, heart, and 

kidney were fixed in 4% paraformaldehyde (PFA) 
overnight at 4 °C, and embedded in paraffin blocks. 
Cryosections of the tissues (4-5 μm) were deparaf-
finized, followed by staining with hematoxylin-eosin 
(HE) for histological assessment. Histological 
manifestations were observed and analyzed via 
microscopy (Nikon Instruments Co., Japan). Two 
experienced histologists independently evaluated the 
sections, who were unaware of the grouping. The 
histological score of organs were calculated based on 
a four-point scale (0 [absent] to 3 [severe]) assigned to 
each criterion, for which at least three microscopic 
areas were examined to score each specimen (Table 1) 
[46, 47]. 

Multiplex immunofluorescence tissue staining  
Specimens of mouse spleen were stained using 

Opal Multiplex Immunohistochemistry Detection Kit 

(Akoya Biosciences, Marlborough, MA), and images 
were obtained with Vectra 3.0 Pathology Imaging 
System Microscope (Perkin-Elmer, Fremont, CA). 
Tissue sections of spleen were firstly deparaffinized, 
rehydrated, followed by antigen retrieved using 
microwave treatment. Subsequently, slides were 
blocked with 1% BSA containing 0.1% Triton X-100 
(Sigma, St. Louis, MO) after keeping in 3% H2O2 for 15 
min. Cryosections were incubated with primary 
antibodies, including anti-CD11c (Abcam, ab219799), 
anti-MHC-II (I-A/I-E) (Thermo Fisher Scientific, 
14-5321-82), anti-CD80 (Abcam, ab215166), and 
anti-PD-L1 (Abcam, ab233482), and detection dye 
corresponding to each antibody was listed as follows: 
Opal520 dye (CD11c), Opal570 dye (MHC-II), 
Opal620 dye (PD-L1), and N700 dye (CD80). DAPI 
was adopted to counterstain nuclei. The digital 
images were analyzed using Halo Image Analysis 
software (Indica Labs, Corrales, NM). 

 

Table 1. Criteria for the histological scoring of organ injuries 

Organ injuries Items 
Pulmonary injury Pulmonary edema 
 Parenchymal congestion 
 Alveolar hemorrhage 
 Peribronchial inflammation 
 Perivascular inflammation 
  Interstitial inflammation 
Liver injury Ischemic necrosis 
 Parenchymal congestion 
 Hepatocellular injury 
 Periportal inflammation 
 Vacuolary degeneration 
Renal injury Congestion 
 Glomerular necrosis 
  Tubular necrosis 
Cardiac injury Parenchymal congestion 
 Necrosis 
  Inflammation 

Scores for each criterion were given as: 0, none; 1, mild; 2, moderate; 3, severe. At 
least three microscopic areas were evaluated for each slide. 

 

Flow cytometry 
Flow cytometry were carried out using 

antibodies listed as follows: CD3e [BD Biosciences, 
561824 (PE)], CD4 [Thermo Fisher Scientific, 
11-0042-82 (FITC)], CD8a [BioLegend, 100706 (FITC)], 
CD11b [BD Biosciences, 561098 (PE/Cy7)], CD11c 
[BioLegend, 117353 (BV510)], CD19 [BD Biosciences, 
561736 (PE)], CD25 [Thermo Fisher Scientific, 
17-0251-82 (APC)], CD45 [BD Biosciences, 561037 
(APC-Cy7)], CD49b [BD Biosciences, 561066 (PE)], 
CD80 [BioLegend, 104714 (APC)], CD274 [BioLegend, 
124315 (BV421)], Ly-6G [BD Biosciences, 561104 (PE)], 
MHC-II (I-A/I-E) [BD Biosciences, 562363 (PerCP- 
Cy5.5)], and FOXP3 [BioLegend, 126419 (BV421)]. To 
determine the relative expression of surface markers, 
cells were stained in FACS buffer for 30 min at 4 °C. 
For intracellular staining, FOXP3 staining buffer kit 
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(Thermo Fisher Scientific, Waltham, MA) was used 
following the manufacturer's instructions. Flow 
cytometry analyses were conducted on a LSR II 
instrument (BD Biosciences, Mountain View, CA). 
Results were obtained from the FACSDiva V 7.0 
software (BD Biosciences, Mountain View, CA), and 
all data were analyzed by FlowJo Version 10.0 
software. As for FACS, splenic mononuclear cells 
were isolated, prepared, and stained as described 
above, followed by sorting of mregDCs as well as 
non-mregDCs using BD FACSAria flow cytometer 
(BD Biosciences, Mountain View, CA). 

CD4+ T cell assay  
Naïve CD4+ T cells were sorted from the spleen 

of untreated wild type C57BL/6J mice. 2 × 105 CD4+ T 
cells were plated in complete RPMI 1640 medium, and 
stimulated with plate-bound anti-CD3 and anti-CD28 
(1 μg/mL; Thermo Fisher Scientific, Waltham, MA) at 
a 1:1 ratio in 96-well plates for 24 h prior to 
subsequent experiments. 1 × 104 mregDCs or 
non-mregDCs were subsequently added and 
co-cultured with T cells for another 72 h. Upon 
harvesting, co-cultural supernatants and CD4+ T cells 
were analyzed.  

Proliferation assay  
To assess cell proliferation, we stained CD4+ T 

cells with CFSE Cell Division Tracker Kit (BioLegend, 
San Diego, CA) in accordance with the manufacturer’s 
instructions. After activation and co-culture with 
sorted mregDCs or non-mregDCs, CD4+ T cells were 
harvested on day 4 and evaluated using flow 
cytometry. Cell proliferation was also quantified 
using CCK-8 reagent (Roche, Mannheim, Germany) in 
line with the manufacturer’s specifications. The 
results were assayed by applying ELx808 absorbance 
readers (BioTek Instruments, Winooski, VT). 

Measurement of cytokine levels  
Supernatants collected from co-culture medium 

were initially diluted for two-ten times with PBS + 1% 
BSA, and assayed by enzyme-linked immunosorbent 
assay (ELISA) kits (MyBioSource Inc., San Diego, CA) 
for measuring levels of IL-2, IL-4, IL-10, IL-12, IFN-γ, 
and high mobility group box-1 protein (HMGB1) 
according to the manufacturer’s protocols. The results 
were analyzed by ELISA plate reader (Spectra MR, 
Dynex, Richfield, MN). Luminex liquid suspension 
chip detection was performed to quantify the level of 
various cytokines and chemokines in serum and 
splenic interstitial fluid derived from sham and CLP 
mouse. The Bio-Plex Pro Mouse Cytokine Grp I Panel 
23-plex (Bio-Rad, Austin, TX) was applied in line with 
the manufacturer's instructions. The results were 
assessed using Bio-Plex MAGPIX System (Bio-Rad, 

Austin, TX). 

Western blotting  
Protein extracts were loaded onto and separated 

by SDS-PAGE resolution (Pulilai Co., Beijing, China), 
followed by transferred onto a PVDF membrane. 
Next, membrane was blocked and incubated with 
primary antibodies and HRP-conjugated secondary 
antibody. Primary antibodies used in current experi-
ments were listed: anti-NF-κB (Abcam, ab32536), 
anti-phospho-NF-κB (S536) (Abcam, ab76302), 
anti-IκBα (Cell Signaling Technology, 4812), 
anti-phospho-IκBα (S32) (Cell Signaling Technology, 
2859), anti-TRAF2 (Cell Signaling Technology, 4712), 
anti-STAT3 (Cell Signaling Technology, 12640), 
anti-phospho-STAT3 (Y705) (Cell Signaling Techno-
logy, 9145), anti-IFNGR2 (ABclonal Technology, 
A7558), and anti-PD-L1 (Proteintech, 66248-1-Ig). 
β-actin was applied as a control for protein loading. 
Gels were visualized using the ECL system 
(Amersham Biosciences, Uppsala, Sweden) to 
determine the expression level of targeted proteins. 

Inhibitory experiment  
To explore the role of NF-κB and STAT3 in 

mediating PD-L1 upregulation and mregDC program, 
wild type C57BL/6J mice (N = 40) were randomly yet 
equally divided into four groups: sham group, CLP 
group, CLP + JSH-23 group, and CLP + SH-4-54 
group. DMSO dissolved JSH-23 (50 mg/kg) or 
SH-4-54 (10 mg/kg) was intraperitonially injected 30 
min prior to CLP operation. JSH-23 and SH-4-54 were 
all purchased form Selleckchem (Houston, TX). 

Statistical analysis  
All statistical analyses were carried out using R 

software (4.0.3) as well as GraphPad Prism software 
Version 8. All grouped data were summarized as 
mean ± standardized error mean (SEM). An unpaired 
student t test and one-way analysis of variance 
(ANOVA) were used to determine the statistical 
significance when two groups and more than three 
groups were compared, respectively. Linear 
regression analysis was carried out to testify the 
association between cell proportions and expression 
level of various cytokines as well as chemokines. 
Two-tailed P values less than 0.05 were deemed as 
having statistical significance. 

Results 
Single-cell profiling of the immune landscape 
in polymicrobial sepsis  

To resolve the changes upon sepsis induction at 
the single cell resolution, we performed scRNA-seq of 
immune cells isolated from bone marrow, peripheral 
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blood, and spleen from mice subjected to CLP, a 
widely accepted experimental model of sepsis [48]. 
FACS-sorted CD45+ cells were subjected to 3′ tag 
scRNA-seq using the 10× Genomics Chromium 
platform. Overall, 88780 cells passing the quality 
control were eligible for subsequent analysis. A total 
of 21303 genes were identified, with median detected 
genes per cell higher than 1500. A schematic of the 
workflow was presented in Figure 1A. To visualize 
the qualitative changes in immune cell composition 
across tissue compartments and over time, cells were 
analyzed by the ‘Seurat’ package and displayed in 2-D 
space using UMAP (Figure 1B) [41]. Cells from each 
tissue compartment and time point were shown as 
separate UMAP plots (colored by cell type, time 0 h = 
sham controls) and the percentages and absolute 
counts of all cell types within each sample were 
shown in Figure 1C. All major immune cell types 
were easily identified across collecting time points 
and sample types, albeit at different proportions. 
Based on the expression of canonical genes, the 
clusters were annotated into five major immune cell 
types: T cells (Cd2, Cd3d), B cells (Ms4a1, Cd79a), NK 
cells (Klrd1, Nkg7), myeloid-derived cells (Itgam, 
Lyz2), and cycling cells (Figure 1D; Table S1-S2) 

[49-51]. The change in the relative abundance of each 
immune cell type over time was plotted across 
according to tissue types (Figure 1E; Table S3).  

Subtype analyses of immune cells during the 
course of sepsis 

Transcriptomic data from all cells across time 
and compartments were combined and unsupervised 
clustering analyses performed on each major immune 
cell type. A total of 17 subclusters emerged within the 
T lymphocytes, including 8 clusters for CD4+ cells, 3 
clusters for CD8+ cells, and 4 clusters for double 
negative T cells (DNT) (Figure 2A-B; Table S4). T cells 
from four clusters (T01, T02, T04, and T05) revealed 
high expression of ‘naïve’ marker genes, including 
Ir7r, Ccr7, and Sell [52]. Three CD4+ clusters (T06, T09, 
and T17) were characterized by the sole expression of 
Ctla4, in association with T cells with exhaustion 
phenotype. Cells from T07 and T11 expressed 
transcripts suggestive of regulatory T cells (Treg), 
which specifically expressed high level of Foxp3 and 
Il2ra (Cd25) with low or intermediated expression of 
Ir7r. The second CD8+ cluster (T03) exhibited high 
expression of Ccr7 and Cd44, commonly related to 
central memory T phenotype (Tcm). Additionally, 
cells from the T12 cluster expressed transcripts 
indicative of effector memory T cells (Tem), with high 
expression of Cd44 and Klrd1 along with negative 
expression of Ccr7 [53]. Of note, the high 
representation of naïve CD4+ T cells was sustainable 

over 24 h post-sepsis and even transiently higher than 
that of the sham group at 24 h after CLP, whereas 
splenic and circulating naïve CD4+ T cells underwent 
a substantial reduction at 72 h after sepsis. 
Meanwhile, the proportion of splenic Cd4+ Cd25+ 

Foxp3+ Treg continually increased after the onset of 
sepsis, and proportion of circulating Treg attained the 
highest level at 72 h (Figure 3A-B; Table S5).  

A similar UMAP analysis was performed on B 
lymphocytes, yielding 18 subclusters based on 
differential expression of canonical genes (Figure 
2A-B; Table S4) [54, 55]. Eleven clusters (B01-B06, B08, 
B10, B11, B14, and B17) expressed high level of Cd19, 
Ighd, and Ighm, which were annotated as mature B 
cells. Cells from B07 and B09 clusters expressed 
transcripts indicative of transitional B cells, whereas 
B12 cluster was characterized by specific expression of 
Cd1d, Cd9, commonly associated with the phenotype 
of marginal zone B (MZB) cells. Cells from B13 cluster 
expressed transcripts indicative of immature B cells, 
with low expression Ighm along with negative 
expression of Fcer2a (Cd23) and Ighd. Cells from B15 
and B18 clusters specifically expressed Sdc1 (Cd138) 
and Dntt (Tdt), corresponding to plasma cells and 
pre-B cells, respectively. The percentage of mature B 
cells persistently declined in peripheral blood, while 
spleen-derived mature B cells remarkably increased at 
24 h following septic challenge. Notably, a substantial 
expansion of immature B cells in peripheral blood and 
spleen was observed at 24 h after CLP, hinting an 
impaired B cell maturation in sepsis (Figure 3A-B; 
Table S5). 

Re-clustering of myeloid cells yielded 21 
subpopulations, for which annotations of neutrophils 
(M01-M07, M11, M15, and M19) (Lcn2, Ltf), monocytes 
(M08 and M10) (Csf1r, Ly86), basophils (M12 and 
M16) (Prss34), macrophages (M13) (C1qb), cDCs (M14 
and M17) (Cd74), eosinophils (M18) (Prg2), and pDCs 
(M20) (Siglech) were based on the expression of 
canonical genes (Figure 2A-B; Table S4) [21, 56]. The 
proportion of splenic monocytes diminished at 72 h 
after sepsis, while a cluster of macrophages that 
preferentially enriched in spleen substantially 
expanded upon the induction of sepsis. A dramatic 
loss in splenic plasmacytoid and conventional 
populations of DCs was observed at 72 h after CLP, in 
agreement with previous findings (Figure 3A-B; Table 
S5) [10, 57]. NK cells were comprised of 2 clusters for 
Itgam+Cd27+ NK cells (N01 and N05), 5 clusters for 
Itgam+Cd27- NK cells (N02-N04, N06, and N09), and 1 
cluster for Itgam-Cd27+ NK cells (N07), whereas 
cycling cells could be further categorized into 
multipotent progenitor (MPP) (P07), megakaryocyte- 
erythroid progenitor (MEP) (P09), granulocyte- 
monocyte progenitor (GMP) (P01, P04-P06, and P10), 
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and common lymphoid progenitor (CLP) (P02 and 
P03) (Figure S1A-D; Table S4) [58, 59]. The absolute 
number and proportion of each subcluster across 
separate samples were shown in Figure S1E-F and 

Table S5. Collectively, these results highlight a 
substantial alteration of the immune system following 
the onset of sepsis. 

 

 
Figure 1. Single-cell analyses reveal major immune cell composition in polymicrobial sepsis. A. Schematic workflow depicting the experimental design of the 
current study. B. UMAP plots of major immune cell groups, across three immune-relevant tissue sites and time after cecal ligation and puncture (CLP) operation. C. Proportion 
and absolute counts of each major immune cell type in each sample. D. UMAPs showing expression of canonical annotation marker gene by color (blue, low expression; yellow, 
high expression). E. Proportion of major immune cell type at distinct time points among different tissue types, including bone marrow (BM), peripheral blood (PB), and spleen 
(SP). 
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Figure 2. Subtype analyses of T, B, and myeloid cells based on single-cell gene expression. A. UMAP projections of subclustered T, B, and myeloid cells, labeled by 
distinguishing colors (left panels). Phenotypic annotations of each subcluster were presented in independent UMAP plots (right panels). B. Violin plots revealed expression level 
of selected marker genes for immune cell subsets within each lineage color coded by the subclusters shown in A.  
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Figure 3. Proportional and numerical alterations of T, B, and myeloid cells in sepsis. A. Proportion and absolute counts of each subcluster of T, B, and myeloid cells, 
across three immune-relevant tissue sites and distinct time points after sepsis. B. Percentage of each annotated T/B/myeloid subtype at distinct time points across the anatomic 
sites. 
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Trajectory and cell-cell interaction analyses of 
immune cells in sepsis  

To confirm the annotation of each immune cell 
subset, we profiled the expression patterns of marker 
genes among subclusters based on scRNA-seq data 
(Figure 4A; Figure S1G; Table S6). To characterize the 
expression of transcripts for known ligand-receptor 
pairs and identify potential interactions between cell 
types, we analyzed the scRNA-seq data using the 
‘CellPhoneDB’ package [60]. Heatmap revealed dense 
intercellular communication among immune cells, 
especially between DCs and T lymphocytes (Figure 
4B-C). Broadcast ligands for which isogenous 
receptors were identified indicated extensive 
communications between cDCs and T cells (Figure 
4D). Notably, cDC subset exhibited expression of 
stimulatory molecules, including CD80, CD86 as well 
as CD40, and the paired receptors were widely 
expressed in all populations of T lymphocytes. 
Multiple immune checkpoint markers (CD274, 
HAVCR2, CD200) could be detected in cDCs as well, 
implying that various inhibitory communications 
were presented between cDCs and T lymphocytes. 
Thus, the phenotype of the DCs is likely to be a 
potential factor in the immune regulation of 
lymphocytes during sepsis (Figure 4C-D) [38, 61].  

We next assessed the phenotypic alterations in 
immune cell populations in the development of 
sepsis. DCs had the lowest S phase and G2M phase 
score in comparison to other cell types, suggesting 
that DCs exerted low proliferative and self-renewal 
ability (Figure S2A-D). To gain insight into the 
temporal dynamics within immune cell clusters, we 
applied ‘Monocle2’ to conduct pseudotime and 
trajectory analyses on the basis of scRNA-seq data 
(Figure S3A) [43]. The percent representation of cells 
from each cluster was shown by cell state. The 
putative trajectories based on cell states were 
summarized in Figure S3B-D. As expected, T cells had 
the largest number of states, but somewhat 
unexpected was the many differentiation states 
observed in NK cells during sepsis. 

Characterizing cDCs heterogeneity in sepsis  
To gain insight into the heterogeneity in 

functional subtypes of cDCs in sepsis, an 
unsupervised re-clustering was performed on overall 
cDCs using a UMAP algorithm, yielding 7 subclusters 
(Figure 5A; Table S7). Murine cDCs could be further 
divided into cDC1s and cDC2s based on functional 
and developmental differences [16, 62]. The 
development of cDC1s is driven by the transcription 
factors (TFs) BATF3 and interferon regulatory factor 8 
(IRF8), while cDC2s are developmentally dependent 
on IRF4 [63-65]. Monocytes have been demonstrated 

to phenotypically shift to moDCs under inflammatory 
states [33]. Herein, the identified populations were 
comprised of three major subtypes based on 
cluster-specific enrichment of Batf3, Irf4, and Lyz2, 
including 2 cDC1s clusters (Cd8a, Clec9a, Xcr1), 2 
cDC2s clusters (Itgam, Runx3, Sirpa, Zbtb46), and 2 
moDCs clusters (Apoe, Cd14, Csf1r, Fgcr3) (Figure 
5B-C). Although cDC03 cluster did not express 
canonical cDC1s genes, it specifically expressed Fscn1, 
a cell migration marker, thus representing migratory 
cDC1s. Of note, cells from cDC05 cluster shared 
common genes with those of cDC04, and expressed 
high level of Fscn1, suggesting that these cells had a 
migratory cDC2s phenotype. In addition, cells from 
cDC07 cluster were identified as the proliferative 
cDCs, which were confirmed by the enrichment of 
both ribosome- and cell cycle-related genes (Figure 
5B-C) [66].  

moDCs were prevalent in bone marrow and 
peripheral blood, especially for the cDC01 cluster, 
while cDC1s and cDC2s were preferentially localized 
in spleen. The proportion of splenic derived 
non-migratory cDC1s and cDC2s underwent a 
substantial reduction in prevalence at 24 h following 
septic challenge. Conversely, cells forming the cDC05 
cluster, while scarce in the sham group, were 
predominantly enriched at all time points after CLP, 
and could be observed among all tissue types. Since 
cDC05 cluster was provisionally annotated as 
migratory cDC2s, these results suggested a potential 
phenotypic shift from non-migratory subtype to 
populations bearing migratory capacity (Figure 5D-E; 
Table S8). Additionally, we profiled the expression 
level of the top 10 marker genes for each cDC 
subpopulation (Figure 5F; Table S9). Ccr7 and H2-Q6 
(MHC-II), commonly associated with cell migration 
and antigen presentation, respectively, were 
upregulated in the cDC05 cluster. These findings 
indicate remarkable shifts in cDC populations that are 
time and tissue specific. 

Identification and confirmation of mregDCs 
upon sepsis induction  

Our analyses showed that increased percentage 
of cDC05 cluster was significantly associated with 
elevated expression level of various cytokines and 
hyperinflammatory state under septic challenge, as 
evidenced by bio-plex and linear regression analyses 
(Figure 5G; Figure S4). Meanwhile, the emergence of 
the cDC05 cluster at 24 h after sepsis was correlated 
with injuries of multiple organs, which was 
determined by histological examination using 
standardized scoring system (Figure 5H). 
Consequently, we focused our subsequent analysis on 
cDC05.  
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Figure 4. Composition and cell-cell interacting network of the immune cells in sepsis. A. Heatmaps displaying the relative expression level of cell type-specific genes 
across subclusters of T, B, and myeloid cells. B. Heatmap with double projection showing the cell-cell interacting density among all identified immune cell subtypes, which was 
proportional to the number of ligands when isogenic receptors were expressed in the recipient cell type (blue, low density of cell-cell interactions; purple, dense cell-cell 
interactions). C. Ligand-receptor pairs between T lymphocytes and DCs were categorized into six patterns in line with their biological functions, including chemokines, cytokines, 
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adhesion, co-stimulatory/inhibitory, growth and others. Numbers of each pattern were ranked accordingly. D. Detailed analysis of the receptors expressed by each T lymphocyte 
and DC subtype and the cells expressing the cognate ligands primed to receive the signal. Statistical significance (P<0.05) was determined by permutation test using CellPhoneDB, 
with grey color indicating no statistical significance. The color gradient indicated the level of interaction (blue, low level of interaction; red, high level of interaction). 

 
Figure 5. Characterization of conventional dendritic cell subset in sepsis. A. UMAP plot showing subclusters of conventional dendritic cells (cDCs) by color. B. 
UMAPs showing expression level of key lineage markers of cDCs, including Batf3, Irf4 and Lyz2, corresponding to cDC1s, cDC2s and monocyte-derived DCs (MoDCs), 
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respectively. C. Violin plots displaying expression level of marker genes for cDC subsets within each lineage (blue, low expression; yellow, high expression). D. Proportion and 
absolute counts of each subcluster of cDCs, across three immune-relevant tissue sites and distinct time points. E. Percentage of each cDC subclusters at distinct time points 
among different tissue types. F. Heatmaps displaying the relative expression level of top 10 differentially expressed genes (DEGs) among all cDC subpopulations. G. Heatmaps 
of Luminex liquid suspension chip analysis indicating relative expression level of various cytokines/chemokines in serum and splenic interstitial fluid derived from mice underwent 
sham or CLP surgery. H. Histological scores (right panel) and representative images of hematoxylin and eosin (HE) staining (left panel) elucidating the pathological alterations in 
multiple organs of mice underwent sham or CLP surgery, including lung, liver, kidney, and heart. One-way analysis of variance (ANOVA) with Tukey HSD test was applied to 
testify the statistical significance. Data were expressed as means ± standard error of mean (SEM). *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. 

 
The specific expression of Ccr7 led us to question 

if this type of DCs shared similar features with the 
recently annotated “mregDCs”, which was 
characterized in lung cancer as mature DCs enriched 
in immunoregulatory molecules [38, 67]. To test such 
hypothesis, we assessed the expression of mregDC 
signature genes among all cDCs clusters identified by 
our scRNA-seq analyses. Only cDC05 exhibited high 
levels of maturation-related genes (Cd40, Cd80, Relb, 
Cd83), along with expression of immunoregulatory 
molecules (Cd274, Pdcd1lg2, Cd200, Fas, Socs1, Socs2, 
Aldh1a2) (Figure 6A). This cluster highly expressed 
genes associated with cell migration (Ccr7, Myo1g, 
Cxcl16, Fscn1, Marcks1) and helper T cell (Th)2 
response (Il4i1, Ccl22, Tnfrsf4, Bcl2l1), while 
transcripts for Toll-like receptor (TLR) pathway genes 
were downregulated. Taken together, our data 
suggest that the cDC05 cluster closely resembles 
mregDC, and has feature homologous to LAMP3+ 
cDCs or CCR7+ cDCs, which have been widely 
detected in various types of tumors [38, 61, 68-70].  

It has been reported that the development of 
mregDCs might be attributed to both cDC1s and 
cDC2s differentiation [38]. By adopting aforemen-
tioned cell cycle and pseudotime analyses, we 
examined the origin of sepsis-induced mregDCs 
(Figure 6B; Table S10-S11). The cDC05 cluster 
associated with mregDCs features was found to be 
predominantly enriched in state04, which emerged in 
relatively late phase along pseudotime. This cluster 
also had the lowest G2M + S score, indicating its 
diminished proliferative activity. Thus, our data 
implicated that sepsis-induced mregDCs might be 
developmentally originated from the other cDCs 
populations [68]. We subsequently investigated the 
transcriptional alterations correlated with transitional 
states and found that the signature genes could be 
further categorized into 3 gene sets (Figure 6C). The 
first gene set, comprised of mregDC (Cd86, Cd274, 
Marcks, Il4ra) and cDC2 (Itgam, Irf4) signature genes, 
was activated at the end of the trajectory. The second 
and third sets were characterized by cDC1s marker 
genes (Batf3, Cd8a, Clec9a, Xcr1), and they were 
enriched at the early stage along pseudotime. 
Pathway analysis of upregulated genes revealed that 
nuclear factor-kappa B (NF-κB), tumor necrosis factor 
(TNF), Janus kinase (JAK)-signal transducer and 
activator of transcription (STAT) signaling pathways 
were enriched in the cluster of sepsis-induced 

mregDCs. These signaling pathways play 
indispensable roles in regulating programmed 
death-ligand 1 (PD-L1) expression (Figure 6D) [71-73]. 
Therefore, we confirm that cDC05 represents a unique 
DC cluster induced in sepsis and displays features 
similar to the previously described “mregDCs” [38, 
67]. We refer to these cells as mregDCs in the 
subsequent studies. 

mregDCs exert dual immunoregulatory and 
immunogenic functions  

We next investigated the change in prevalence of 
mregDCs during the course of sepsis using flow 
cytometry analysis. As shown in Figure 7A, CD45+ 
Lin- MHC-II+ CD11c+ cells were gated from splenic 
immune cells, in which CD45+ Lin- MHC-II+ CD11c+ 
CD8a+ CD11b- and CD45+ Lin- MHC-II+ CD11c+ CD8a- 
CD11b+ cells were defined as cDC1s and cDC2s, 
respectively [74]. From these cell populations, CD45+ 
Lin- MHC-II+ CD11c+ CD80hi CD274hi cells were 
defined as mregDCs based on signature genes of 
mregDCs. Frequencies of mregDCs as percentages of 
total DCs were sustainably increased upon induction 
of sepsis and were highest at 24 h at 15% of total 
splenic DC, and then decreased at 72 h after CLP 
(Figure 7B-C). To probe the origins of mregDCs, we 
analyzed the proportion of mregDCs in cDC1 and 
cDC2 subsets independently (Figure 7D). mregDCs 
were more strongly represented with the cDC2 subset. 
Furthermore, the mregDC module was significantly 
diminished in Batf3-/- and Irf4-/- septic mice in 
comparison with wild-type mice with sepsis, 
reduction in Irf4-/- mice was notably greater (Figure 
7E). Although these results suggest that both cDC1 
and cDC2 can differentiate into mregDCs, cDC2s 
derived mregDCs are more abundant compared to 
those of cDC1s upon septic insults, in agreement with 
previous work [38, 61, 68]. We observed the identical 
trend regarding the protein expression of mregDC 
marker genes, including CCR7, CD274 (PD-L1), and 
CD80, which were consistently upregulated and 
enriched at 24 h after sepsis (Figure 7F). In addition, 
we identified MHC-II+ CD11c+ CD80+ CD274+ 
mregDCs in spleens from CLP mice in stiu using 
multiplex immunofluorescence tissue staining (Figure 
7G).  

To evaluate the unique function of mregDCs on 
T cell response, splenic mregDCs and non-mregDCs 
from CLP mice (24 h) were sorted by FACS, and 
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co-cultured with spleen derived CD4+ naïve T cells 
obtained from unmanipulated mice. CD4+ T cells 
co-cultured with mregDCs were more potent in 
secreting interleukin (IL)-2 and IL-10 compared to 
those co-cultured with non-mregDCs (Figure 7H). 
mregDCs were also found to upregulate IL-12 
production in comparison to those of non-mregDCs. 
The ratio of interferon (IFN)-γ to IL-4 was 
significantly lower in the supernatants obtained from 
mregDCs co-cultured with CD4+ T cells, indicating a 
phenotypic shift to Th2 cells, in agreement with the 
mregDC gene module (Figure 6A). Using both cell 
counting kit-8 (CCK8) and carboxyl fluorescein 
succinyl ester staining (CFSE) assays, we found that 
mregDCs possessed more potent than non-mregDC in 
driving the activation/ proliferation of CD4+ naïve T 
cells in vitro (Figure 7I-J). Similarly, mregDCs were 
more effective in potentiating the differentiation of 
naïve T cells toward CD4+ CD25+ Foxp3+ Treg than 
non-mregDCs (Figure 7K) [38]. Thus, sepsis-induced 
mregDCs might exert dual immunoregulatory and 

immune stimulatory functions on CD4+ T cell 
responses. 

NF-κB and JAK-STAT pathways are critically 
involved in mediating the mregDC program  

To clarify the regulators of the mregDC program 
upon sepsis induction, we explored the contribution 
of pathways known to mediate expression of PD-L1 
[71]. Corresponding to the KEGG analysis, NF-κB and 
JAK-STAT signaling pathways are known to activate 
the mregDC program (Figure 6D). The roles of their 
downstream transcriptional factors, STAT3 and RELA 
(p65, a subunit of NF-κB) in regulating PD-L1 
expression have been well established, prompting us 
to probe their potential impacts on mregDC 
differentiation in the setting of sepsis [71, 75, 76]. By 
integrating splenic CD11c+ cDCs bulk-seq data, we 
noted a substantial transcriptional activation of gene 
sets associated with both NF-κB and JAK-STAT 
pathways at 24 h after CLP surgery, including Jak3, 
Stat1/3/5a, Socs1/2/3, Tirap, and Myd88 (Figure 8A). We 

 

 
Figure 6. Sepsis-induced mregDCs exhibit unique transcriptional signatures. A. Heatmap showing relative expression level of mregDC signature genes among 
subclustered cDC subsets (blue, low expression level; red, high expression level). B. The developmental trajectory of cDCs inferred by Monocle2, colored-coded by the clusters 
and pseudotime (left panel). Putative trajectory for cell transition states of cDCs, with proportion of each subcluster (upper right panel). Composition of cells at disparate 
proliferative phases calculated by cell cycling scores (G1, G2M and S) (lower right panel). C. Heatmap displaying the dynamic transitions in expression level of cDC1, cDC2 and 
mregDC marker genes along with the pseudotime (left panel). Pseudotime plots illustrating expression of selected signature genes over pseudotime with distribution of cDC 
subclusters (right panel). D. Volcano plot showing upregulated genes in the cluster of mregDCs (left panel). Bar graph listed the enriched activated pathways in mregDCs by 
KEGG analysis (right panel).  
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further investigated the possible receptors and 
molecular axis downstream that potentiated NF-κB 
and JAK-STAT signals, thereby mediating 
upregulation of PD-L1. As we known, IFN-γ receptor 
(IFNGR) and TNF receptor superfamily (TNFRSF) 
signaling are a well-studied molecular axis in 
mediating STAT3- and p65-dependant PD-L1 
expression [73, 77, 78]. In the present experiments, 
genes encoding IFNGR (Ifngr2) and TNFRSF proteins 
(Tnfrsf1a and Tnfrsf11a) were found to be upregulated 
in the CLP group compared to the sham group, 
urging us to hypothesize the existence of interacting 
receptor-ligand pairs with respect to TNFRSF and 
IFNGR2 between mregDCs and other immune cell 
types (Figure 8A-B). Interestingly, using cell-cell 
communication analysis, mregDCs were noticed to 
express high levels of TNFRSF receptors TNFRSF9 
(4-1BB), TNFRSF1A (TNFAR), FAS, CD40, and LTBR. 
They interacted with their cognate ligands expressed 
on moDCs, cDC2s as well as neutrophils, including 
TNF, TNFSF9 (4-1BBL), GRN, TNFSF13B (BAFF), and 
LTB. In addition, CD8+ Tem and various NK subsets 
putatively released IFN-γ, thereby signaling to the 
IFNGR2 on mregDCs.  

We further validated these findings in the 
protein level. A time course study using splenic 
CD11c+ DCs isolated from CLP mice revealed that the 
phosphorylation of p65 and IκBα was highest at 24 h 
after sepsis, in parallel with the activation of TNF 
receptor-associated factor 2 (TRAF2), which served as 
a pivotal adaptor in transmitting signals from 
TNFRSF (Figure 8C-D). Likewise, phosphorylation of 
STAT3 was markedly augmented at 24 h after the 
onset of sepsis, in combination with simultaneous 
induction of IFNGR2. Correspondingly, sepsis 
induced PD-L1 expression on DCs increases at 24 h 
and then markedly diminished at 72 h after CLP 
surgery. Meanwhile, the elevated proportion of 
mregDCs as well as PD-L1 expression levels in sepsis 
were significantly attenuated following inhibition of 
p65 and STAT3 via specific inhibitor JSH-23 as well as 
SH-4-54, respectively (Figure 8E). As shown in Figure 
8F, these results implicate a model in which 
sepsis-induced mregDCs program is developmentally 
dependent on both TNFRSF-NF-κB and IFNGR2- 
STAT3 axes. 

Validating our findings in multiple organs and 
human sepsis  

To determine whether sepsis-induced mregDCs 
were presented in other tissues in the setting of sepsis, 
we conducted a secondary analysis of scRNA-seq data 
from a study that comprehensively profiled the 
spatial and temporal transcriptomic alterations of 
kidneys in a murine lipopolysaccharide (LPS) model 

[45]. We reanalyzed the data using an unsupervised 
UMAP clustering method that focused on the DC 
subsets in line with our definitions (Figure 9A; Table 
S12). The identified DC population could be further 
categorized into three subclusters based on expression 
level of canonical genes, including cDC1s, cDC2s, and 
pDCs. By comparing the temporal change in each 
cluster after LPS administration, cells form cDC2s 
were preferentially enriched at 16 and 27 h after LPS 
stimulation, implying that the proportion of these cell 
types might reach the peak between 16 and 27 h after 
LPS challenge (Figure 9B). In support of our CLP 
results in spleen, we clarified a kidney-resident 
cDC2s-like cluster that highly shared characteristics of 
mregDCs (Figure 9C; Table S13). Therefore, we 
showed the evidence for the presence of cDC2s 
originated mregDCs in murine kidneys during 
endotoxemia, an acute insult with characteristics 
similar to sepsis. 

Lastly, we sought to determine whether cells 
with features of mregDC could be found in human 
sepsis. Up to now, four scRNA-seq based studies 
focusing on human sepsis have been reported, all 
using only PBMCs [26-28, 79]. By reanalyzing the data 
from the study by Reyes et al., we found no evidence 
of a mregDC cluster in the circulating DC cell 
populations, in accordance with the tissue-resident 
feature of mregDCs (Figure S5A-B). Patients 
hospitalized with COVID-19 are at high risk of 
developing severe acute respiratory syndrome 
associated sepsis, especially in severe cases [80-82]. 
Therefore, we reanalyzed scRNA-seq data from a 
study that included cells from bronchoalveolar lavage 
fluid (BALF), sputum, and pleural fluid [39]. 
Re-clustering of cells from BALF samples revealed 
four DC subclusters based on expression of marker 
genes CD1C+ DCs, CLEC9A+ DCs, LAMP3+ DCs, and 
LILR4A+ DCs (Figure 9D-F; Table S12). CD1C+ DCs 
were characterized by high expression of CD1C and 
FCER1A, thus representing cDC2s, whereas CLEC9A+ 
DCs specifically expressed CLEC9A and XCR1, 
corresponding to cDC1s. Meanwhile, LILR4A+ DCs 
were annotated as pDCs. Similar to our results in the 
experimental model, LAMP3+ DCs in COVID-19 
patients were identified as a cluster of human sepsis 
associated mregDCs that highly expressed maturation 
(CD40, CD80, CD86, CD83)- and migratory (CCR7, 
MYO1G, ADAM8, FSCN1, MARCKS, MARCKSL1)- 
related marker genes as well as immunoregulatory 
molecules (CD274, PDCD1LG2, CD200, ALDH1A2, 
SOCS2), along with low expression of TLR signaling 
pathway genes (Figure 9G; Table S13). Strikingly, a 
significantly elevated percentage of LAMP3+ DCs 
could be observed in the BALF of six severe 
COVID-19 cases in comparison to cells from healthy 
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controls or mild to moderate COVID-19 patients. 
Furthermore, the proportion of CD1C+ DCs was 
markedly higher in healthy controls compared to 
COVID-19 patients, suggesting a positive correlation 

between elevation of mregDCs and the progression of 
SARS-CoV-2 infection-induced sepsis (Figure 9H; 
Table S14). 

 

 
Figure 7. mregDCs are enriched upon sepsis induction with dual immunoregulatory and immunogenic functions on CD4+ T cell responses. A. 
Representative contour plots elucidating flow cytometry-based gating strategy for spleen-derived cDCs in wild-type mice. cDCs were defined as CD45+ Lin (CD3e, CD19, 
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CD49b, Ly6C)– CD11c+ MHC-II+ cells, in which cDC1 and cDC2 were defined CD45+ Lin- CD11c+ MHC-II+ CD8a+ CD11b- and CD45+ Lin- CD11c+ MHC-II+ CD8a- CD11b+ 
cells, respectively. B, C. Frequency of splenic mregDCs as a proportion of total cDCs at disparate time points after CLP operation. mregDCs were defined as CD45+ Lin- CD11c+ 
MHC-II+ CD274hi CD80hi cells. Contour plots B. and quantitative bar charts C. showing alterations in mregDCs proportion upon sepsis induction measured by flow cytometry 
analysis. D. Scatter plot showing mregDCs proportion in cDC1 and cDC2 subsets independently between sham and sepsis groups. E. Quantitative bar plots displaying and 
comparing mregDCs proportion between wild-type, Batf3−/− and Irf4−/− mice. F. Histograms with quantitative bar charts showing proportion of CCR7, CD80, and CD274 
positive cells measured by flow cytometry, across distinct time points after onset of sepsis, as a percentage of total cDCs. G. Multiplex immunofluorescence images 
demonstrating the in situ existence of mregDCs in spleen after septic challenge, using antibodies, including CD11c, MHC-II, CD80, and CD274. Scale bar, 100 μm. H. Quantitative 
bar charts showing the level of multiple cytokines in supernatants between mregDCs and non-mregDCs groups, including interleukin (IL)-2, IL-4, IL-10, IL-12, and IFN-γ. I. 
Quantitative bar chart displaying the results from cell counting kit-8 (CCK-8) assay. J. Histogram with quantitative bar plot illustrating and comparing the proliferative activity of 
naïve CD4+ T cells co-cultured with either mregDCs or non-mregDCs based on carboxyl fluorescein succinyl ester staining (CFSE) assay. K. Contour plots with quantitative bar 
chart showing the proportion of CD4+CD25+Foxp3+ Tregs between mregDCs and non-mregDCs groups. One-way ANOVA with Tukey HSD test C, F, J, K; Unpaired 
two-sided Student’s t test D, H, I. Data were expressed as means ± SEM. *P<0.05; **P <0.01; ***P<0.001; ****P<0.0001. 

 
Figure 8. Sepsis-associated mregDC program is initiated in a TNFRSF-NF-κB and IFNGR2-STAT3 dependent manner. A. Histogram indicating the relative 
expression level of selected genes related to JAK-STAT and NF-κB pathways from bulk RNA-seq analyses (blue, low expression level; red, high expression level). B. Histogram 
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showing the cell-cell communication between mregDCs and other immune cell types, based on selected ligand-receptor pairs in association with TNFRSF-TNFSF and IFN-γ- 
IFNGR2. Statistical significance (P<0.05) was determined by permutation test from CellPhoneDB, with color of grey indicating no statistical significance. The color gradient 
indicated the level of interaction (blue, low level of interaction; red, high level of interaction). C. Representative Western blotting images of splenic CD11c+ DCs isolated from 
wild-type mice undergone sham or CLP operation at distinct time points. D. Quantitative bar charts displaying the results of Western blotting analyses. The values represent 
protein levels relative to the unphosphorylated form or β-actin level. The data shown are representative of 3 independent experiments. E. Inhibitory experiments were 
performed to validate the effect of TNFRSF-NF-κB and IFNGR2-STAT3 pathways on mregDC program using STAT3 and NK-κB inhibitors, JSH-23 and SH-4-54, respectively. 
Contour plots (left panel) with quantitative bar chart (upper right panel) showing the proportion of mregDCs upon inhibition of STAT3 and NK-κB. Western blot analysis of 
PD-L1 expression in splenic CD11c+ DCs after treatment with inhibitors (lower right panel). F. Proposed model of mregDC program upon sepsis induction. Graphs were 
created with BioRender.com. Statistical significance was calculated using one-way ANOVA with Tukey HSD test D, E. Data were expressed as means ± SEM. *P<0.05; **P<0.01; 
***P<0.001. 

 
Figure 9. Single-cell analyses of publicly available data demonstrate multiorgan and cross-species conservation of sepsis-induced upregulation of 
mregDCs. A. Single-cell analysis of previously published scRNA-seq dataset containing various immune cell subpopulations in lipopolysaccharide (LPS) challenged murine kidney 
projected in UMAP, with color-coded DC subtypes, including cDC1, cDC2, and plasmacytoid dendritic cell (pDC). B. Proportion and absolute counts of renal cDC2s as a 
percentage of total DCs, across distinct time points after the onset of endoxemia. C. Heatmap showing relative expression level of mregDC signature genes among subclustered 
DC subsets (blue, low expression level; red, high expression level). D. Unbiased Seurat-based clustering analysis of immune cells derived from bronchoalveolar lavage fluid (BALF) 
of the novel coronavirus disease (COVID-19) patients yielded four disparate clusters of DCs visualized by UMAP. E. Phenotypic annotations of each DC subcluster were 
presented in independent UMAP plots based on the relative expression level of cell-type specific genes, including CD1C, CLEC9A, LAMP3, and LILR4A (blue, low expression; yellow, 
high expression). F. Histogram indicating proportion and absolute counts of each DC subpopulation in BALF from healthy individuals and COVID-19 patients with disparate 
severity, as a percentage of total DCs. G. Heatmap displaying expression level of selected mregDC marker genes for each DC subset (blue, low expression level; red, high 
expression level). H. Quantitative box plots showing and comparing the proportion of CD1C+ DCs (left panel) and LAMP3+ DCs (right panel) among healthy participants and mild 
or severe cases of COVID-19. Statistical significance was determined using one-way ANOVA with Tukey HSD test H. Data were presented as means ± SEM. *P<0.05. 
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Discussion 
This landscape study of the single cell 

transcriptomic changes in sepsis demonstrates the 
remarkable heterogeneity within the immune cell 
populations in response to severe sepsis across tissues 
and time. Among the many notable findings, we 
unexpectedly notice that sepsis induces marked 
heterogeneity within cDC that includes the 
appearance of mregDC in multiple organs. We 
confirm that these cells simultaneously exert 
profound immune stimulatory and regulatory 
changes in CD4+ T cells. The transcriptome profiling 
in combination with trajectory and cell-cell interaction 
network analyses provides a comprehensive and 
dynamic picture for understanding how immune cells 
within different tissues differentiate and crosstalk 
with each other. The novel findings along with the 
foundational datasets will serve as a valuable resource 
to guide future research in critical illness. 

The mregDC-like cells we identified in sepsis 
closely resembled the mregDCs recently described 
within human cancers [38, 68]. Intriguingly, in 
contrast to the previous study where tumor- 
associated mregDCs lacked expression of cDC1 and 
cDC2-related signature genes, we noted that 
sepsis-induced mregDCs expressed low or 
intermediate level of cDC2-specific markers, 
including Sirpa, Runx3, and Zbtb46. Meanwhile, the 
UMAP clustering analysis closely associated sepsis 
mregDCs with the canonical cDC2 subset, suggesting 
that sepsis-induced mregDCs might originate from 
cDC2s. Nevertheless, the expression pattern of gene 
sets related to cDC1s, cDC2s, and mregDCs along 
with pseudotime analysis elucidated a transition from 
cDC1s to mregDCs, as shown by the upregulation of 
mregDC signature genes in the very late phase of cell 
differentiation and away from the expression of 
cDC1-specific genes, such as Batf3, Cd8a, Clec9a, and 
Xcr1, implying that cDC1s could also differentiate to 
mregDCs. At the protein level, by gating mregDCs in 
cDC1s and cDC2s independently, we demonstrated 
that both lineages could become the source of 
mregDCs [38, 61, 68]. Furthermore, we found a 
statistically significant reduction in mregDCs 
proportion upon deletion of Batf3 and Irf4, leading to 
the specific loss of cDC1s and cDC2s, respectively. 
Thus, mregDCs likely originate from both cDC1s and 
cDC2s, while cDC2-derived mregDCs are 
predominantly enriched in the setting of sepsis.  

A previous study on non-small-cell lung cancer 
suggested that induction of the mregDC program in 
cDC1s could be attributed to the uptake of tumor 
cell-associated antigen. In this report, antigen uptake 
of cDC1s was specifically dependent on the 

phagocytic cell-surface receptor AXL in association 
with the load of apoptotic cells within tumor 
microenvironment [38]. Herein, our scRNA-seq data 
showed no upregulated expression of phagocytic cell- 
surface receptors in the cluster of sepsis-associated 
mregDCs. Instead, cell-cell communication analysis 
identified enriched receptor-ligand interactions 
between mregDCs and other immune cell types via 
TNRSF/TNFSF/TNF-α and IFNGR2/IFN-γ. Our 
findings point to the TNFRSF-NF-κB and IFNGR2- 
JAK-STAT3 signaling axes as the main signaling 
pathways potentiating mregDC program. These 
results were further validated in the protein level, 
along with inhibitory experiments, indicating the 
critical role of two TFs, NF-κB and STAT3, in 
modulating sepsis-induced PD-L1 upregulation in 
DCs. Consistent with our hypothesis, a previous 
report demonstrated that in vitro stimulation of LPS + 
IFN-γ facilitated the differentiation of naïve primary 
cDC1, cDC2, and pDCs toward LAMP3+ DCs, 
representing a subset that was homogenous to 
mregDCs in homo sapiens [61]. It was notable that 
various inflammatory mediators peaked at 24 h and 
were then substantially diminished by 72 h after CLP, 
corresponding with the prevalence of mregDCs. 
Therefore, it appears that the priming of the 
sepsis-associated mregDC program is closely 
correlated with the hyperinflammatory stage during 
sepsis.  

Based on the functional analyses, we found that 
sepsis-induced mregDCs were potent at driving the 
phenotypic shift of naïve CD4+ T cells towards Tregs 
and Th2, implicating a role for mregDCs in promoting 
immune suppression. This would be in accordance 
with prior pan-cancer analyses on cDC2-derived 
LAMP3+ cDCs [68, 72]. Given the important role of 
Treg and Th2 in promoting tissue repair, it could be 
that mregDCs were induced to counter sepsis-related 
hyperinflammation and to alleviate organ damage. 
However, at the same time mregDCs were capable of 
activating CD4+ T cells in vitro, as shown by elevated 
levels of IL-2 and IL-12, and enhanced proliferation. 
Hence, sepsis-associated mregDCs might exert 
diverse functions with high immunogenicity, 
consistent with a recent study that proposed dual 
functions for cDC1-derived mregDCs in upregulating 
Treg and CD8+ T cells [38]. Altogether, this study 
uncovers an underlying mechanism, during which the 
mregDC module is actively initiated upon 
sepsis-induced hyperinflammation and these cells 
migrate to multiple organs. We speculate that within 
organs mregDC can ameliorate organ dysfunction 
and promote tissue repair via restoring homeostasis of 
the immune microenvironment.  
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Several limitations should be taken into 
consideration when interpreting our findings. Firstly, 
the precise mechanisms underlying the regulation of 
mregDC program during sepsis require further 
investigation. While we demonstrate roles for NF-κB 
and STAT3 in driving differentiation toward 
mregDCs, further analysis including an assessment of 
open chromatin patterns in cDC should be performed 
to fully decipher the transcriptional regulators and 
ontogeny of this subset [28]. Secondly, receptors 
involved in the induction of mregDCs program 
remain largely elusive. Although we demonstrate that 
hyperinflammation could be one of the prerequisites 
for the development of mregDCs, the stimuli and 
receptors-ligand pairs have not been fully 
interrogated. Given the complexity of the 
pathogenesis of sepsis, further well-designed in vitro 
experiments using single stimuli are needed to 
validate the findings from cell-cell interacting 
analyses. Finally, it is not yet feasible to selectively 
delete mregDC to fully assess the roles of these cells in 
the immune response to septic challenge.  

Conclusions 
In summary, we have generated a 

comprehensive single-cell immune landscape for 
polymicrobial sepsis, in which we identify the 
significant alterations and heterogeneity in immune 
cell subsets that take place during sepsis. More 
importantly, we find a conserved and potentially 
targetable immunoregulatory program within DCs 
that associates with hyperinflammation and organ 
dysfunction early following sepsis induction. Our 
results generalize prior reports that deciphered 
mregDC program in multiple tumor types to 
demonstrate the mregDC program in critical illness. 
This example indicates that this dataset can serve as a 
rich resource to gain insight into the cellular and 
molecular basis of sepsis pathogenesis, thereby 
contributing to the identification of novel biomarkers 
and therapeutic targets modulating host immune 
response in sepsis.  
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