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SUMMARY

Molecular mechanisms of ovarian aging and female
age-related fertility decline remain unclear. We
surveyed the single-cell transcriptomic landscape
of ovaries from young and aged non-human pri-
mates (NHPs) and identified seven ovarian cell types
with distinct gene-expression signatures, including
oocyte and six types of ovarian somatic cells. In-
depth dissection of gene-expression dynamics of
oocytes revealed four subtypes at sequential and
stepwise developmental stages. Further analysis of
cell-type-specific aging-associated transcriptional
changes uncovered the disturbance of antioxidant
signaling specific to early-stage oocytes and granu-
losa cells, indicative of oxidative damage as a
crucial factor in ovarian functional decline with
age. Additionally, inactivated antioxidative path-
ways, increased reactive oxygen species, and
apoptosis were observed in granulosa cells from
aged women. This study provides a comprehensive
understanding of the cell-type-specific mechanisms
underlying primate ovarian aging at single-cell
resolution, revealing new diagnostic biomarkers
and potential therapeutic targets for age-related hu-
man ovarian disorders.
INTRODUCTION

The ovary is a critical female reproductive organ, serving as

the source of oocytes and major supplier of steroid sex hor-

mones (Rimon-Dahari et al., 2016). Thus, the ovary is indispens-

able for both the maintenance of female fertility and endocrine

homeostasis. The ovary is one of the organs that exhibit

early-onset aging-associated dysfunction in human, with evident

declines after only 30 years of age (Broekmans et al., 2009; Tilly

and Sinclair, 2013). Age-associated decreases of follicle number

and oocyte quality result in female fertility decline (Perheentupa

and Huhtaniemi, 2009). Menopause is the natural consequence

of ovarian physiological aging (Colman, 2018; Li et al., 2012).

Other disorders, such as ovarian cancer, type 2 diabetes melli-

tus, and breast cancer could also be related to ovarian aging

(Perry et al., 2015; Webb and Jordan, 2017). Therefore, an in-

depth understanding of the mechanisms driving ovarian aging

is of critical importance.

The ovary is a complex structure consisting of numerous

heterogeneous cell types at various stages, including follicles

at different developmental stages. Each follicle is comprised

of an oocyte, surrounding granulosa cells and/or theca cells
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(Sánchez and Smitz, 2012). They are generally scattered

throughout the ovarian cortex, moving into the medulla during

maturation. Besides the reductions in follicle number, other ag-

ing-associated anatomical and physiological changes include

increased fibrosis, expanded stromal cell compartment, and

changed medullary and cortex volume (Nicosia, 1987; Walker

et al., 2009).

For a heterogeneous organ such as the ovary, conventional

bulk RNA-sequencing (RNA-seq) approaches have difficulties

in accurately revealing cell-type-specific changes in gene

expression, particularly for rare cell types. With advances in

the single-cell RNA sequencing (scRNA-seq) technique, it is

now possible to analyze alterations in gene transcription within

highly heterogeneous tissues at single-cell level (Baryawno

et al., 2019; Cao et al., 2019; Su et al., 2018). Of note, modified

single-cell tagged reverse transcription (STRT) technique en-

ables multiplexed single-cell RNA-seq with detection of abun-

dant genes per cell, especially for fewer cells (Cui et al., 2019;

Islam et al., 2011).

Due to ethical constraints and limited access to disease-free

human ovarian tissues, a non-human primate (NHP) sharing

similar genetic and physiological features with humans, makes

an ideal model for studying ovarian aging and dysfunction (An-

derson and Colman, 2011; Bellino and Wise, 2003; Walker and

Herndon, 2008; Zhang et al., 2018a). Additionally, their ovarian

morphological characteristics, menstrual cycle, and patterns of

sex hormone secretion are similar to human ovaries (Bellino

and Wise, 2003). Importantly, the aging characteristics of NHP

ovaries are also similar to those in humans (Walker and Herndon,

2008). To date, however, scRNA-seq has not been used to sys-

tematically characterize the NHP ovary (including oocytes and

ovarian somatic cells), and the effect of aging on various ovarian

cell types in primates has not been analyzed in depth either.

In this study, we used cynomolgus monkeys to survey the first

comprehensive single-cell transcriptomic landscape of ovarian

aging. We identified gene-expression signatures for seven

ovarian cell types and mapped the unique transcriptional

landscape of four oocyte subtypes during folliculogenesis

by scRNA-seq. Moreover, aging-associated gene-expression

changes revealed that oxidative damage was an essential factor

of ovarian aging. Analysis of human granulosa cells revealed

similar aging-associated downregulation of antioxidant genes

and knockdown of these genes compromised oxidative stress
Figure 1. Distinct Ovarian Cell Subpopulations with Transcriptional S

Ovaries

(A) Left: hematoxylin and eosin (H&E)-stained sections of young and old monk

respectively. Right: density quantification of different stages of follicles indicated

ns, not significant, *p < 0.05 and **p < 0.01 (one-tailed t test).

(B) Percentage of atretic follicles to total follicles based on H&E-stained sections

(C) Masson’s trichrome staining of young and old monkey ovaries. Dashed lines

t test).

(D) Flowchart overview of monkey ovarian scRNA-seq.

(E) t-SNE plot showing seven ovarian cell types.

(F) t-SNE plots characterizing representative transcriptional regulators for diffe

transcriptional regulators.

(G) t-SNE plots showing expression levels of oocyte and somatic cell marker ge

(H) Left: heatmap showing expression signatures of top 50 specifically expressed

representative GO terms.

See also Figures S1 and S2; Table S1.
responses. These data indicate that the functional decay of

cell-type-specific redox regulatory networks has profound ef-

fects on ovarian aging, providing potential biomarkers for the

clinical diagnosis of ovarian aging and targets for developing

novel therapeutic interventions to treat aging-associated ovarian

disorders and female infertility.

RESULTS

Diminished Follicle Reserve in Aged Ovaries from
Cynomolgus Monkeys
We obtained ovaries from four juvenile (4–5 years old) and four

aged (18–20 years old) cynomolgus monkeys (Appt et al.,

2010; Drevon-Gaillot et al., 2006) (Figure S1A). As species of

the genus Macaca undergo menopause at approximately 25

years of age (Colman, 2018; Kavanagh et al., 2005; Walker and

Herndon, 2008), the aged monkeys analyzed here were in the

period of pre-menopause or peri-menopause and thus suitable

for studying ovarian aging. Histologically, the ovaries collected

from aged monkeys had fewer follicles at each developmental

stage (primordial, primary, secondary, and antral follicles) than

those collected from young monkeys (Figure 1A). Notably,

aged ovaries had a higher percentage of atretic follicles

than did young ovaries (Figures 1B and S1B). These results

revealed an aging-associated decline in ovarian follicle reserves

and an accelerated loss of primordial follicle pool during

aging, as reported (Nichols et al., 2005). In addition, increased

ovarian fibrosis was observed in the stroma of aged ovaries

(Figure 1C).

Single-Cell Transcriptome Profiling of Monkey Ovaries
Identified Different Ovarian Cell Types and Gene
Expression Signatures
To investigate the cell-type-specific alterations in gene

expression during ovarian aging at single-cell resolution, we

subjected ovaries from cynomolgus monkeys to scRNA-seq

analysis by using the modified STRT technique (Figure 1D).

For these analyses, we roughly divided the ovary into cortex

and medulla before enzymatic digestion (Figure 1D). After

stringent cell filtration, the high-quality transcriptomes of

2,601 single cells (418 oocytes and 2,183 somatic cells)

collected from four young and four aged individuals were re-

tained for subsequent analyses (Figure S1C; Table S1). To
ignatures Determined by Single-Cell RNA-Seq Analysis of Monkey

ey ovaries. Arrowheads and asterisks denote secondary and antral follicles,

by the morphology shown by the cartoons. Scale bar, 100 mm. n = 4 monkeys.

. n = 4 monkeys. *p < 0.05 (two-tailed t test).

denote fibrosis areas. Scale bar, 100 mm. n = 4 monkeys. *p < 0.05 (two-tailed

rent cell types. Blue color denotes the cells with the activation of indicated

nes.

genes in each cell type; the value for each gene is row-scaled Z score. Right:
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Figure 2. Single-Cell RNA Expression Survey

of Oocytes in Monkey

(A) Boxplots showing representative oocyte-specific

markers.

(B) Immunofluorescence analysis of SYCP3 and

LMOD3 in monkey oocytes. Asterisk represents the

newly identified oocyte marker LMOD3. Scale bar,

50 mm.

See also Figure S2; Table S1.
characterize ovarian cell types, we performed single-cell reg-

ulatory network inference and clustering (SCENIC) analysis

to score the activity of gene regulatory networks in each

single cell to identify the stable cell states (Aibar et al., 2017;

Davie et al., 2018). Modules with genes co-expressed with

transcription factors (TFs) were first established, and cis-regu-

latory motif analysis was applied to select significantly

enriched modules for scoring the activity of subnetworks.

We then performed t-distributed stochastic neighbor embed-

ding (t-SNE) dimensionality analysis according to the subnet-

work activity information obtained from SCENIC analysis

and revealed seven main cell types by unsupervised cluster-

ing analysis (Figure 1E) (Lake et al., 2016). Global transcrip-

tomic profiling showed no significant differences in ovarian

cell type distribution among monkeys of different ages,

indicating that these cell types reflected physiological differ-

ences between cells, rather than technical variations or

the effect of genetic backgrounds (Figure S1D). SCENIC anal-

ysis revealed several important transcriptional regulators

modulating cell-type-specific gene regulatory networks, such

as FIGLA for oocytes (OOs), NR5A2 for granulosa cells

(GCs), and TCF21 for stromal cells (SCs) (Figure 1F) (Meinsohn

et al., 2017; Soyal et al., 2000; Stevant et al., 2019). To further

identify these cell clusters, we mapped the gene-expression

profiles of well-defined cell-type-specific markers in the
588 Cell 180, 585–600, February 6, 2020
t-SNE plot (Figures 1G and S1E). Accord-

ingly, seven cell clusters were iden-

tified, including oocyte and six types of

ovarian somatic cells (Figures 1E and

1H; Table S1).

A cluster corresponding to oocytes was

identified based on the expression of

oocyte-specific markers, such as SYCP3

(essential for meiosis) (Prieto et al., 2004),

DDX4 and GDF9 (essential for oocyte

development) (Castrillon et al., 2000;

Dong et al., 1996), and ZP3 (essential for

the composition of the zona pellucida) (Fig-

ures 1G, 2A, and S1E) (Ringuette et al.,

1986). Localization of SYCP3 and DDX4

to these cells was confirmed via immuno-

fluorescence imaging (Figures 2B and

S2A). Besides these classic markers, we

identified a panel of novel markers for oo-

cytes, including LMOD3 that was primarily

expressed in the oocytes of primordial

and primary follicles (Figures 2A and 2B),
and RBM46 and NETO1 (Figures 2A and S2A) that were

dominantly expressed in oocytes at different stages of

folliculogenesis.

A cluster corresponding to GCs was identified by the expres-

sion of classic markers AMH, WT1, and INHA (Figures 1G and

S1E) (Rimon-Dahari et al., 2016). Notably, some cells in this

cluster expressed a mural granulosa cell marker CYP19A1

(Stocco, 2008) (Figure S1E). WT1was detected in GCs in follicles

of each stage, whereas AMH was primarily detected in GCs of

antral follicles by immunostaining (Figures S2B and S2C), similar

to the expression pattern of AMH in human ovaries (Zhang

et al., 2018b).

Stromal cell (SC) markers, TCF21 and COL1A2, were specif-

ically expressed in one cluster (Figures 1G and S1E) (Hatzirodos

et al., 2015). Interestingly, some cells in this cluster expressed

high levels of the theca marker STAR (Figures 1G and S2D),

implying that this cluster contained theca cells that are associ-

ated with the development andmaturation of follicles (Magoffin,

2005). Smooth muscle cells (SMCs) and endothelial cells (ECs)

were identified by SMC markers DES and ACTA2, and EC

markers CDH5 and VWF, respectively (Figures 1G, S1E, and

S2E) (Owens et al., 2004; Randi et al., 2018). Immune cells,

such as natural killer T cells (CD3D- and KLRB1-positive) and

macrophages (CD68- and CD14-positive), were also captured

in the scRNA-seq dataset (Figures 1G and S1E) (Kurioka



Figure 3. Dynamic Gene-Expression Patterns of Oocyte Subtypes at Stepwise Developmental Stages

(A) PCA plot showing four oocyte subtypes based on gene-expression patterns exhibited by PC1 and PC2.

(B) Relative gene-expression patterns of representative genes essential for oocyte development along the PC1 dimension.

(C) Boxplot showing the normalized UMI number in each oocyte subtype. The two-tailed t test p value is indicated.

(D) Heatmap showing scaled expression levels of top 50 subtype-specific genes in four oocyte subtypes. Representative GO terms for stage-specific genes

are shown.

(legend continued on next page)

Cell 180, 585–600, February 6, 2020 589



et al., 2018; Sousa et al., 2015). Finally, we found that GCs and

SCs were mostly from the ovarian cortex whereas SMCs and

immune cells were mainly from the ovarian medulla (Fig-

ure S1D), consistent with the enrichment strategy and ovarian

anatomy.

We next analyzed the biological function of each cell cluster by

using Gene Ontology (GO) analysis of differentially expressed

genes (DEGs) (Figure 1H; Table S1), revealing unique character-

istics of these NHP ovarian cells. For example, GO terms specific

to oocytes included ‘‘meiotic cell cycle’’ and ‘‘gamete genera-

tion.’’ GO terms including ‘‘anti-Müllerian hormone signaling

pathway’’ and ‘‘reproductive structure development’’ were en-

riched for GCs. GO terms including ‘‘extracellular matrix organi-

zation’’ and ‘‘blood vessel development’’ were enriched for SCs,

suggesting that SCs provide structural and nutritional support for

ovarian tissue (Rimon-Dahari et al., 2016). Collectively, we iden-

tified seven different ovarian cell types, including oocyte and

ovarian somatic cells, and depicted gene-expression signatures

for each cell type, including novel markers for oocytes.

UniqueGene-Expression Signatures of Four Subtypes of
Oocytes at Sequential and Stepwise Developmental
Stages
To explore the gene-expression dynamics of oocytes during

folliculogenesis, we performed unsupervised analysis of oocyte

gene-expression profiling and identified four subtypes of oo-

cytes (C1 to C4). Principal component analysis (PCA) revealed

that the four oocyte subtypes were distributed along the prin-

cipal component 1 (PC1) dimension (Figure 3A; Table S2).

Consistently, the relative expression levels of genes known to

be essential for follicular development also varied along PC1

axis (Figures 3B and S3A). Genes promoting follicle develop-

ment, such as ZP1, BMP15, and GDF9, were progressively

upregulated from oocyte subtype C1 to C4. Meiotic M phase

genes WEE2 and AURKA as well as DNA methyltransferase,

DNMT1 and DNMT3A, were also gradually upregulated from

subtype C1 to C4 (Figures 3B and S3A). On the contrary, ATP6

and COX2 were highly expressed in primordial follicles, as

previously described (Markholt et al., 2012), and were progres-

sively downregulated from subtype C1 to C4 (Figures 3B and

S3A). These results demonstrate that the PC1 dimension traced

the sequential and stepwise developmental trajectory of oo-

cytes. In addition, consistent with the increased levels of de-

tected transcript abundance in oocytes of growing follicles

post recruitment (Gu et al., 2019; Sha et al., 2019), the number

of transcripts (based on spike-in-normalized unique molecular

identifier [UMI]) and the number of genes detected in each

individual cell progressively increased from subtype C1 to C4

(Figures 3C and S3B). Therefore, we inferred that oocytes in sub-

types C1, C2, C3, andC4were fromprimordial, primary, second-

ary, and antral follicles, respectively.

We next dissected the regulatory pathways involved in folli-

culogenesis by performing GO analysis of genes specific for a
(E) Boxplot (left) and immunofluorescence analysis (right) of the novel marker RE

(F) Heatmap showing scaled expression levels of meiotic genes differentially exp

(G) Boxplot showing mean expression levels of meiotic genes in each oocyte su

See also Figure S3; Tables S2 and S3.
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particular oocyte cluster (i.e., stage) (Figure 3D; Table S2). In

line with the previous reports and the above canonical gene-

expression patterns, GO analysis revealed the biological

processes that were enriched for each stage of follicular

development (Figure 3D). Notably, ‘‘electron transport chain’’

and ‘‘ATP metabolic process’’ were enriched in subtype C1

with high expression of mitochondria-related genes (represen-

tative genes MT-ND2 and MT-ND4) (Table S2), which were

supported by high expression levels of TOM20 and ND1 in pri-

mordial follicles via immunofluorescence labeling (Figure S3C).

In addition, ‘‘translational initiation’’ and ‘‘ribosome biogen-

esis’’ were enriched in subtype C2 with increased expression

of ribosome-related genes (representative genes RPL23A

and RPL24) (Table S2). We also identified a new marker highly

expressed in early-stage oocytes, REXO5, which is a newly

identified RNA exonuclease that plays a crucial role in

ribosome biogenesis (Figure 3E) (Gerstberger et al., 2017).

Interestingly, ‘‘acrosomal vesicle exocytosis (representative

genes ZP3 and ZP4)’’ and ‘‘regulation of calcium ion import

(representative genes CALM2 and ATP2C2)’’ were enriched

in subtype C3 (Table S2). Finally, ‘‘meiosis I’’ was enriched

in subtype C4 with high expression levels of AURKA and

WEE2. ‘‘Maintenance of DNA methylation’’ and ‘‘methylation-

dependent chromatin silencing’’ were also enriched in subtype

C4 with high expression levels of UHRF1 and DNMT1 (Table

S2). We next investigated the expression patterns of

‘‘meiosis-related genes’’ in oocytes. A total of 197 mammalian

genes involved in meiosis were gathered from the Macaca fas-

cicularis annotated reference genome (Table S3) (Bult et al.,

2019; Harris et al., 2004). Among these genes, 140 were differ-

entially expressed across different stages of oocyte develop-

ment, with the mean expression progressively increasing in

oocytes as the follicle progressed from primordial to antral

stage (Figures 3F and 3G).

To analyze gene-expression changes involved in each

stage-to-stage transition during folliculogenesis, we identified

DEGs in comparisons between consecutive stages (Figures

S3D and S3E; Table S2). The most dramatic increase in the

number of upregulated genes occurred during the transition

of oocytes from secondary to antral follicles (C3 to C4). To

identify the master regulators of folliculogenesis, we con-

structed transcriptional regulatory networks of core transcrip-

tional regulators and their target genes. Stage-specific

regulatory networks revealed a core hub of genes that regu-

lated the cell-type-specific markers at each stage of oocyte

development, including ELF4 and FOS in oocytes from primor-

dial follicles, RPS4X and FIGLA in oocytes from primary

follicles, SPAG7 and TAF1A in oocytes from secondary

follicles, and HMGB3 and CCDC25 in oocytes from antral

follicles (Figure S3F). Altogether, our results reveal the full

continuum of gene-expression programs and stage-specific

transcriptional regulatory networks underlying folliculogenesis

in NHPs.
XO5 highly expressed in early stage oocytes. Scale bar, 50 mm.

ressed among oocyte subtypes.

btype. Two-tailed t test p values are indicated.
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Downregulation of Antioxidant Genes in Aged Early-
Stage Oocytes
We next sought to identify aging-associated changes in gene

expression in ovarian cells. SCENIC analysis revealed the evenly

distributed cell populations along with similarly expressed

cell-type-specific marker genes in young and aged ovaries,

indicating that aging had minimal effect on ovarian cell identity

(Figures S1D and S4A). Furthermore, hotspot genes annotated

in the GenAge database of aging/longevity-related genes and

in the datasets for ovarian diseases including premature ovarian

failure (POF) and primary ovarian insufficiency (POI) (Table S3)

(Cordts et al., 2011; de Magalhães et al., 2009; Rossetti et al.,

2017) were mainly expressed in oocytes, GCs, and SCs (Figures

S4B andS4C), suggesting that these cell typeswere important to

ovarian homeostasis and aging.

Calculation of age-relevant coefficient of variation (CV) re-

vealed that oocytes from primordial follicles exhibited higher

transcriptional noise than that of oocytes from late-stage follicles

(Figure 4A) (Salzer et al., 2018), indicating that aging caused

higher variability in oocytes from early-stage follicles than

those from late-stage follicles. Further analysis revealed 534,

335, 864, and 1,068 upregulated DEGs, and 106, 286, 346,

and 278 downregulated DEGs in old versus young oocyte sub-

types C1, C2, C3, and C4, respectively (Figure 4B; Table S4).

Notably, most of these aging-associated DEGs were subtype-

specific, with only 14 upregulated and six downregulated shared

by all four oocyte subtypes, indicative of the oocyte subtype-

specific effects of aging. Only modest expression changes

were observed in development-specific genes for each oocyte

subtype, such as meiosis-related genes (Figure S4D). In addi-

tion, GO analysis based on gene set enrichment analysis

(GSEA) revealed the aging-associated alterations in cellular

function of each oocyte subtype (Figures 4C and S4E). Particu-

larly, several genes in ‘‘oxidative phosphorylation’’ and ‘‘oxidore-

ductase activity’’ pathways were downregulated in oocyte

subtype C2 (Figure 4C).

Comparative analysis of aging-associated DEGs of different

oocyte subtypes with the aging/longevity-associated genes

annotated in the GenAge database (Figures 4D and S4F)

revealed a possible link between decreased antioxidant

defense of oocyte subtype C2 and ovarian aging, as evidenced

by the oocyte subtype C2-specific downregulation of several

genes related to oxidative stress response, including

GPX1 [log2(fold change) = �0.65, p value = 2.5 3 10�7], GSR
Figure 4. Downregulation of Antioxidant Genes in Aged Oocytes of Ea

(A) CV analysis showing the aging-associated transcriptional noise in oocyte subt

the right.

(B) Heatmaps showing the distribution of DEGs between old and youngmonkeys

shared by at least two oocyte subtypes and the others are oocyte subtype-spec

(C) Representative GO terms of downregulated enrichment between old and youn

listed based on the normalized enrichment score (NES). The nominal p value < 0

(D) Dot plot showing expression patterns of overlapping genes downregulated in

(E) Regulatory network visualizing potential key transcriptional regulators in down

downregulated genes in (D) are in dark blue.

(F) Violin plots showing expression levels of GPX1 and GSR in oocyte subtypes.

(G) Immunofluorescence analysis showing the downregulation of GPX1 and GS

counterparts. Scale bar, 50 mm. n = 4 monkeys. *p < 0.05 and **p < 0.01 (two-ta

See also Figures S4 and S5; Tables S3 and S4.
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[log2(fold change) = �1.04, p value = 6.5 3 10�7], GPX4

[log2(fold change) =�0.53, p value = 0.003], and PON1 [log2(fold

change) = �0.60, p value = 0.015] (Figure 4D). Transcriptional

regulatory network analysis of aging-associated downregulated

DEGs of oocyte subtype C2 further revealed TCF3, HSPA5,

KDM2A, SIX2, and NMI as the top 5 master regulators (Fig-

ure 4E). Similarly, different hub genes constituted the stage-spe-

cific aging-associated DEG regulatory networks responsible for

the altered gene-expression patterns during aging (Figures S5A

and S5B). Consistent with the detected changes in mRNA levels,

immunostaining analyses confirmed decreased GPX1 and GSR

protein levels in oocytes from early-stage follicles in aged ovaries

(Figures 4F and 4G). Altogether, these findings suggest that the

downregulation of antioxidant genes, including GPX1 and GSR,

is a unique aging feature of early-stage oocytes, likely contrib-

uting to the increased oxidative damage during ovarian aging.

Increased Apoptosis and Decreased Reductase Activity
in Aged Primate Granulosa Cells
We next detected transcriptional noise and identified aging-

associated DEGs in somatic cells (Figures 5A and 5B). Most

aging-associated changes in gene expression were somatic

cell-type-specific (Figure 5B; Table S4), as seen with oocytes.

GCs are essential for follicle development and homeostasis as

they provide nutrients and mechanical support for oocytes via

physical interactions (Rimon-Dahari et al., 2016). As apoptosis

of GCs often causes follicular atresia and ovarian aging (Matsuda

et al., 2012), we focused on the aging-associated changes of

gene expression in GCs. Comparisons between young and

agedGCs revealed 62 genes upregulated and 72 downregulated

with age (Figure 5B). GO analysis showed that upregulated

genes were enriched for ‘‘positive regulation of apoptotic pro-

cess’’ and downregulated genes were enriched for ‘‘oxidoreduc-

tase activity’’ (including IDH1 [log2(fold change) = �0.83, p

value = 7.83 10�5], PRDX4 [log2(fold change) =�0.59, p value =

0.002], andNDUFB10 [log2(fold change) =�0.76, p value = 5.43

10�5]) (Figures 5C and 5D; Table S4). Consistently, we also

observed increased DNA oxidation (8-OHdG-positive cells)

and damage (gH2AX-positive cells) (Figure 5E), along with

increased apoptosis (TUNEL-positive cells) and decreased pro-

liferation (Ki67-positive cells) in aged monkey GCs (Figures 5E

and 5F) (Khadrawy et al., 2019; Tanabe et al., 2015). The tran-

scriptional regulatory network in GCs showed ELF4 and FOSB

as hub genes to regulate the downregulated subset of genes
rly-Stage Follicles

ypes. Left shows the zoom-in view of the region highlighted by a dashed line on

in each oocyte subtype. The gray bars on the left of the heatmaps denote DEGs

ific DEGs.

g monkeys in each oocyte subtype (C1–C3). Top 10 terms for each subtype are

.05 and false discovery rate (FDR) (q value) < 0.1.

each aged oocyte subtype and included in the GenAge database.

regulated DEGs in aged C2 oocytes. Top 5 nodes are colored in light blue and

Two-tailed t test p values are indicated.

R in aged oocytes in primordial and primary follicles in comparison to young

iled t test).
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(Figures 5G and S6A). Protein levels of these antioxidant genes

were also decreased in aged GCs in comparison with GCs

from young ovaries (Figure 5H). Altogether, these findings sug-

gest that the downregulation of genes involved in reductase ac-

tivity could contribute to the compromised antioxidative re-

sponses in aged GCs.

Knockdown of Antioxidant Genes in Human Granulosa
Cells Recapitulated the Major Phenotypes of Aged
Monkey Granulosa Cells
To determine whether these antioxidant genes are also downre-

gulated in human GCs (hGCs) during aging, we obtained hGCs

from healthy women from 21 to 46 years old (Figures 6A and

S6B). First, we observed aging-associated increased reactive

oxygen species (ROS) levels and apoptosis in hGCs from healthy

donors, further supporting the aggravated oxidative damage in

hGCs during physiological aging (Figure 6B). Consistent with

the results in monkeys, hGCs exhibited aging-associated

downregulation of IDH1, PRDX4, and NDUFB10 (Figure 6C).

Next, we explored the effect of silencing these antioxidant

genes in a human granulosa cell line (KGN cells) by using

small interfering RNAs (siRNAs), with knockdown efficiencies

individually validated by RT-qPCR and western blotting (Figures

S6C and S6D). Knockdown of IDH1 and NDUFB10 decreased

cell proliferation (Figure 6D). H2O2 treatment further slowed

the proliferation of IDH1-, NDUFB10-, or PRDX4-knockdown

cells (Figure 6D). In addition, knockdown of IDH1 or NDUFB10

resulted in increased mitochondrial mass (Mito-Mass) and

mitochondrial depolarization (Figures 6E and 6F), as well as

increased cellular ROS levels and apoptosis (Figures 6G and

6H), under oxidative conditions.

Genome-wide RNA-seq analysis (Figures 6I and S6E–S6H;

Table S5) further revealed that IDH1 or NDUFB10 knockdown

upregulated 118 and 156 genes and downregulated 405 and

381 genes, respectively (Figure S6G; Table S5). GO analysis

showed that the upregulated genes were enriched in terms

‘‘regulation of cell death’’ and ‘‘response to stimulus’’ upon

knockdown of IDH1, as well as ‘‘positive regulation of cellular

senescence’’ upon knockdown of NDUFB10, whereas the

downregulated geneswere bothmainly associatedwith oxidore-

ductase activity (Figure 6I; Table S5). We next asked whether

these transcriptional changes in human cells were similar to

those in monkey GCs during ovarian aging. In the presence of
Figure 5. Downregulation of Genes Involved in Oxidative Stress Respo

(A) CV analysis showing the aging-associated transcriptional noise in different

highlighted by a dashed line on the right.

(B) Heatmaps showing the distribution of DEGs between old and youngmonkeys in

shared by at least two somatic cell types and the others are cell-type-specific D

(C) Representative GO terms of upregulated (top) or downregulated (bottom) DE

(D) Violin plots showing expression levels of IDH1, PRDX4, and NDUFB10 in you

(E) Quantification of 8-OHdG-positive (top), gH2AX-positive (middle), and Ki67-po

antral follicles. Ant, antrum. Scale bar, 30 mm. n = 4 monkeys. **p < 0.01 (two-ta

(F) TUNEL staining of young and old GCs. Arrowheads indicate the TUNEL-posit

(G) Regulatory network visualizing potential key transcriptional regulators in do

downregulated antioxidant genes are in dark blue.

(H) Immunofluorescence analysis showing the downregulation of IDH1, PRDX4,

boundaries of GCs in antral follicles. Ant, antrum. Scale bar, 50 mm. n = 4 monke

See also Figure S6 and Table S4.
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H2O2 treatment, five genes were upregulated and seven genes

were downregulated both in IDH1-knockdown human granulosa

cell line and GCs from aged monkeys, whereas six upregulated

and 11 downregulated genes were shared by NDUFB10-knock-

down human granulosa cell line and GCs from aged monkeys

(Figure S6I). Notably, several commonly downregulated genes,

such as DCXR and TXNIP, are involved in cellular redox homeo-

stasis (Figure S6I), likely associated to the imbalance of redox

homeostasis in aged GCs. Altogether, these results indicate

that IDH1 and NDUFB10 protect GCs from aging-related oxida-

tive stress in both humans andmonkeys (Figure 6J), and the con-

clusions derived from the scRNA-seq analysis of monkey ovaries

are relevant to ovarian aging in humans.

DISCUSSION

Due to the difficulty in obtaining critical human tissues such as

ovaries, it hasbeenchallenging todetermine themolecularmech-

anismsunderlying ovarian aging. In this study,wepresent the first

single-cell survey of ovarian aging in NHPs that show similar ge-

netic and physiological characteristics to humans, providing in-

sights into the mechanisms by which primate ovaries age. These

analyses provided four noteworthy contributions. First, we eluci-

dated gene-expression signatures for seven types of primate

ovarian cells (including oocyte and ovarian somatic cells) and

identified several previously unreported oocytemarkers. Second,

it allowed for the identification of four NHP oocyte subtypes

associated with different stages of folliculogenesis, as well as

stage-specific gene regulatory networks. Third, analysis of age-

associated gene-expression changes revealed cell-type-specific

downregulationof antioxidantgenes inagedmonkeyoocytesand

GCs. Fourth, human GCs exhibited similar aging-associated

downregulation of antioxidant genes, which was linked to

increased oxidative damage. Altogether, these observations pro-

vide novel insights into primate ovarian aging and identify new

biomarkers and targets for the diagnosis and treatment of human

disorders associated with ovarian aging.

Because of limited material availability, few studies concern-

ing the cell compositions of adult and aged ovaries have been

reported, particularly for primate ovaries. Han et al. (2018)

recently used the Microwell-seq technique to generate a

mouse multiple-organ cell atlas that included the ovary. Yet,

due to the limited input cell size, their study was restricted to
nse

ovarian somatic cell types. Left panel shows the zoom-in view of the region

each somatic cell type. The gray bars on the left of the heatmaps denote DEGs

EGs.

Gs between old and young monkey granulosa cells (GCs).

ng and old GCs. Two-tailed t test p values are indicated.

sitive (bottom) GCs inmonkey ovaries. Dashed lines show boundaries of GCs in

iled t test).

ive GCs. Scale bar, 100 mm. n = 4 monkeys. *p < 0.05 (two-tailed t test).

wnregulated DEGs in aged GCs. Top 5 nodes are colored in light blue and

and NDUFB10 in old GCs in comparison to young GCs. Dashed lines show

ys. *p < 0.05 and ***p < 0.001 (two-tailed t test).
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Figure 6. Knockdown of Antioxidant Genes Impaired Proliferation and Redox Homeostasis in Human Granulosa Cells

(A) A schematic showing the procedure for hGC isolation.

(B) The positive correlation of relative ROS levels (left) and apoptosis levels (right) with age in hGCs. The shadow indicates the 0.95 confidence interval around

smooth. n = 59 and 43 donors for ROS and apoptosis analyses, respectively.

(legend continued on next page)
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ovarian somatic cells, not oocytes. Here, we obtained both oo-

cytes and ovarian somatic cells and successfully mapped the

first single-cell transcriptomic atlas of young and aged NHP

ovaries by using a modified STRT technique that could detect

abundant genes per cell with high efficiency, providing high-

quality data to uncover in-depth age-related gene-expression al-

terations of ovarian cells at single-cell level.

Regarding the cellular composition of the primate ovary,

we identified six ovarian somatic compartments and four sub-

types of oocytes based on their unique scRNA-seq molecular

signatures. The majority of canonical markers were restricted

to their specific ‘‘island,’’ confirming the robustness of the

scRNA-seq strategy and reliability of our data. Although our

findings improve the understanding of ovarian cell types in pri-

mates, the absence of a cell cluster with lutein cell signature

implies that either lutein cells are difficult to obtain or the number

of sampled cells was limited by the current method. Therefore,

spatiotemporal transcriptomic analysis of other ovarian somatic

cell types could be needed in future studies.

Most of the previous studies detailed morphological changes

during ovarian aging in primates, but the molecular mecha-

nisms underlying ovarian aging remain largely unknown. A

microarray-based gene-expression analysis illustrated the ag-

ing-associated molecular alteration in ovaries from rhesus

monkeys (Wei et al., 2015). However, due to the heterogeneity of

ovariancell types, thebulk-seq resultsmight not tellwhether these

changes were intrinsic molecular changes, or simply reflected the

changes in the proportions of cell types. By using scRNA-seq

(Enge et al., 2017; Kowalczyk et al., 2015; Martinez-Jimenez

et al., 2017), we delineate comprehensive cell-type-specific and

age-associated gene-expression changes in primate ovaries.

We show that primate ovarian aging is linked to the cell-type-

specific downregulation of antioxidant proteins and the

upregulation of oxidative damage markers. Supporting these

findings, the dysregulation of antioxidant system has been re-

ported in many aging-related contexts (Agarwal et al., 2005;

Kubben et al., 2016). Consistently, bulk RNA-seq has revealed

age-related mitochondrial dysfunction and oxidative damage

in mouse ovarian somatic cells and MII oocyte populations

collected from women undergoing assisted reproductive

technology (ART) (Grøndahl et al., 2010; Lim and Luderer,

2011; Steuerwald et al., 2007). Through scRNA-seq analysis,

our study shows that in monkeys, the inactivation of the antioxi-
(C) The negative correlation of mRNA levels of IDH1, PRDX4, and NDUFB10 with

The shadow indicates the 0.95 confidence interval around smooth. n = 33 donor

(D) Proliferation ability of KGN cells upon IDH1, PRDX4, or NDUFB10 knockdown

not significant, *p < 0.05, **p < 0.01 and ***p < 0.001 (two-tailed t test).

(E) Mitochondrial mass in IDH1-, PRDX4-, or NDUFB10-knockdown KGN cells u

(F) Loss of mitochondrial membrane potential (MMP) in IDH1-, PRDX4-, orNDUFB

cells with JC-10 monomer by flow cytometry. Data are presented as the mean ±

(G) Cellular ROS levels in IDH1-, PRDX4-, or NDUFB10-knockdown KGN cells u

(H) Apoptosis of IDH1-, PRDX4-, orNDUFB10-knockdown KGN cells upon H2O2 t

not significant, **p < 0.01 and ***p < 0.001 (two-tailed t test).

(I) Representative GO terms of DEGs in IDH1- (top) orNDUFB10-knockdown cells

change)| R 1 and both the p value and FDR were <0.05.

(J) A schematic illustration showing cell-type-specific downregulation of genes in

which could contribute to increased oxidative damage and cell apoptosis.

See also Figure S6; Table S5.
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dative system occurs in both aged oocytes and aged GCs

by different regulatory mechanisms, evidenced by the cell-

type-specific transcriptional regulatory networks involving

distinct hub genes in oocytes and niche cells. Moreover, our

single-cell transcriptomic atlas of primate ovarian aging

was mapped on samples collected from monkey ovaries with

a wider age range than female donors undergoing ART and

also included oocytes from almost all follicle stages, which

undoubtedly provides invaluable in-depth information to

ovarian aging biology. Furthermore, the expression levels

of antioxidant genes were negatively correlated with age in

human GCs, and IDH1 or NDUFB10 knockdown impaired

oxidative stress responses, highlighting these genes as bio-

markers and targets for diagnosing and treating human age-

related ovarian diseases and for female fertility preservation.

In summary, this study provides the first comprehensive

single-cell transcriptomic atlas of ovaries of young and aged

NHPs and broadens our understanding of cell identities and

cell-type-specific gene signatures in the primate ovary. Impor-

tantly, it offers insights of the molecular mechanisms underlying

ovarian aging in humans and lays a foundation for the quantita-

tive assessment of oocyte quality and reproductive age of hu-

man. Moreover, great efforts are being invested for the genera-

tion of gametes and ovarian cell types from pluripotent stem

cells. The single-cell transcriptomic atlas from young and aged

ovaries presented here can be a great resource and platform

to determine the quality and capacity of differentiated gametes

in maintaining distinct gene-expression signatures, as well as

to facilitate optimizing conditions toward obtaining superior

quality gametes. In addition, the mechanistic insights arising

from this study could establish new avenues for developing

targeted antioxidant interventions to protect against physiolog-

ical ovarian aging and related diseases and for developing

new tools for aged oocyte rejuvenation for assisted reproductive

therapies and female fertility preservation.
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EXPERIMENTAL MODELS AND SUBJECT DETAILS

Ethical Statement
This study was conducted in accordance with the Principles for the Ethical Treatment of Non-Human Primates and was approved in

advance by the Institutional Animal Care and UseCommittee of the Institute of Zoology (Chinese Academy of Sciences). The isolation

procedure of human granulosa cells was approved by the Research Ethics committee of the Peking University Third Hospital andwas

conducted in accordance with approved institutional guidelines. Written informed consent was obtained from the donors.

Experiment Models and Biological Samples
AllMacaca fascicularis were of Southeast Asian origin. The animals were maintained at around 25�C on a 12 hour (h) light, 12 h dark

schedule and raised at Xieerxin Biology Resource with accreditation of Laboratory Animal Care accredited facility in Beijing, in

compliance with all local and federal laws governing animal research. All the animals were given commercial diet twice a day with

tap water ad libitum and were fed vegetables and fruits once daily under careful veterinary oversight. Before the experiment,

none of the animals had a clinical or experimental history that would affect physiological aging or increase disease susceptibility.

Ovarian tissue samples from 4 young cynomolgus monkeys (4-5 years old) and 4 old cynomolgus monkeys (18-20 years old)

were collected and processed for scRNA-seq analysis.

hGCs were isolated and purified from Peking University Third Hospital as previously described (Buck et al., 2019; Ferrero et al.,

2012; Feuerstein et al., 2007; Hu et al., 2019). Briefly, human follicular fluid was obtained from donors undergoing the assisted repro-

ductive technology procedure due to a sperm quality issue or restricted tubal patency via ultrasound-guided vaginal puncture. The

hGCs were isolated from the follicular fluid using density gradient centrifugation at 2000 rpm for 30 min with Human Lymphocyte

Separation Medium (TBD Science, Tianjin, China). Following centrifugation, the middle layer was collected and washed with Dul-

becco phosphate-buffered saline (GIBCO). After a brief exposure to 0.2% hyaluronidase (Sigma) at 37�C, the cell suspensions

were centrifuged at 3000 rpm for 5 min. Then, the purity of isolated hGCs was assessed by immunofluorescence for hGC markers.

Cell Line
KGN cells, a human granulosa tumor cell line (Nishi et al., 2001), were kindly provided by Dr. Yiming Mu from 301 Hospital of PLA

in China. The cells were cultured as previously described in DMEM/F12 medium (GIBCO) supplemented with 10% FBS (GIBCO),

100 U/ml penicillin, and 100 mg/ml streptomycin (GIBCO) at 37�C in 5% CO2. All the cell cultures were tested negative for myco-

plasma contamination.

METHOD DETAILS

Single Cell Isolation
Samples were collected separately from each individual at different days. In brief, the animals were anesthetized and perfused with

physiological saline, and then the ovaries were isolated and immediately immersed in M2 medium (Sigma M7167). Then, the fat and

other adherent tissues were removed under a dissection microscope to obtain a ‘clean’ ovary. Half of the ovaries per individual were

dissected for single cell isolation and collection. We then roughly divided the ovary into cortex andmedulla parts, which wereminced

and then transferred into 1.5 mL tubes. Then, 500 mL 2 mg/ml Collagenase, Type IV (GIBCO 17104-019) was added into each tube

and incubated with the minced tissues at 37�C for 20 min with shaking on thermomixer (1000 rpm). The tube was briefly spun at

1000 rpm, and the supernatant was then gently removed. Next, 1 mL 0.25% trypsin was added to each tube and incubated at

37�C for another 20 min on thermomixer (1000 rpm). The tube was briefly spun at 1000 rpm, and the supernatant was then gently

removed. Then, 500 mL M2 medium containing 10% BSA was used to stop digestion. The remaining tissues were pipetted 50-

100 times to dissociate the cells. The resulting cell suspensionwas then transferred into a 3.5 cm dish. Oocytes weremanually picked

under a dissection microscope and transferred to a PBS–BSA drop (with 0.1% BSA added). The oocytes were collected with a

maximum number up to 96 per individual due to the cost concern. Then the debris in the remaining cell suspension was removed

by fluorescence-activated cell sorting (FACS) (BD FACSAria II) and subjected to further single-cell collection. 323-480 somatic cells

(average 386 cells) from each animal were collected. Each cell was placed into an individual PCR tube with lysis buffer and stored

at �80�C for subsequent experiments.

Single-Cell RNA-Seq Library Construction and Sequencing
scRNA-seq libraries were constructed according to the STRT-seq protocol with modifications as previously described (Cui et al.,

2019; Dong et al., 2018; Gao et al., 2018; Hochgerner et al., 2017; Islam et al., 2011). Briefly, individual oocytes or somatic cells

were picked into lysis buffer by mouth pipetting. Then, the mRNA in lysates was reverse transcribed with SuperScript II reverse
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transcriptase (Thermo Fisher Scientific, 18064-071), and an 8 nucleotide (nt) cell-specific barcode was added to the cDNA from each

cell. Absolute counting of molecules was performed with the 8 nt unique molecular identifiers (UMIs). The synthesized cDNAs from

cells with different barcodes were pooled together and amplified with 19-21 (somatic cells) or 13 (oocytes) cycles, followed by frag-

mentation with Covaris S2 (Thermo Fisher Scientific) and enrichment of fragments of interest via Dynabeads MyOne Streptavidin C1

beads (Thermo Fisher Scientific, 65001). The enriched fragments were constructed into libraries using a KAPA HyperPrep Kit (KAPA,

KK8504) and sequenced on an Illumina HiSeq 4000 platform with a 150-bp paired-end read length by Novogene. It should be noted

that oligo-dTs priming may have a potential bias toward mRNAs with long poly(A) tails. As poly(A) tail length is often correlated with

the translational efficiency of mRNA (Lim et al., 2016; Subtelny et al., 2014), the ‘‘regulation’’ of genes (nomatter due to alteredmRNA

copies or poly(A) tail length) we observed may reflect the changes of the gene’s protein levels.

RT-qPCR
Total RNA was extracted using TRIzol Reagent (Thermo Fisher Scientific), and 2 mg total RNA was used for cDNA synthesis with

reverse transcription master mix (Promega). RT-qPCR was conducted with the iTaq Universal SYBR Green Super Mix (Bio-Rad)

on a CFX384 Real-Time PCR system (Bio-Rad). All data were normalized to the 18S rRNA transcript and calculated by DCq or

DDCq. All RT-qPCR primer pairs are listed in Table S6.

Western Blot Analysis
Western blot was performed as previously described (Wang et al., 2019). Briefly, protein quantification was performed using a

BCA Kit. Protein lysates were subjected to SDS-PAGE and subsequently electrotransferred to a polyvinylidene fluoride membrane

(Millipore). The membrane was incubated with the indicated primary antibodies overnight at 4�C and HRP-conjugated secondary

antibodies, followed by visualization using the ChemiDoc XRS system (Bio-Rad). The quantification was performed with Image

Lab software. The antibodies used in this study are shown in the Key Resources Table.

Ovary Tissue Immunostaining
Immunostaining was performed as previously described (Wang et al., 2015, 2016). Briefly, monkey ovaries were fixed with 4% para-

formaldehyde (PFA) at 4�C overnight (O/N), washed extensively with phosphate-buffered saline (PBS), soaked in 30% sucrose,

embedded in Tissue-Tek O.C.T. Compound (Sakura Finetek, 4583) and frozen. Frozen sections (8 mm) were cut and placed on posi-

tively charged slides and stored at �80�C prior to use. Sections were washed by PBS, and the antigen retrieval were performed by

microwaving the sections at 98�C in 10 mM sodium citrate buffer (pH 6.0) for three times (5 min each time). After cooling down, the

slides were washed three times with PBS and permeabilized with Triton X-100 (0.4% in PBS) for 25 min (followed by denaturation of

cellular DNA with 2 M HCl for immunostaining of 8-OHdG), blocked with blocking buffer (10% donkey serum in PBS) for 1 h at

room temperature (RT), and stained with primary antibodies overnight at 4�C. Then, after several washes with PBS, the sections

were incubated with secondary antibodies for 1 h at RT. Hoechst 33342 (Thermo Fisher Scientific) was used to stain nuclear

DNA. After additional stringent washes, sections were mounted with VECTASHIELD Antifade Mounting Medium (Vector Labora-

tories, H-1000), and images were obtained using a confocal laser-scanning microscope (Leica TCS SP5 II). The mean fluorescence

intensities of GPX1 and GSRweremeasured using the ImageJ software. An average of over 100 oocytes in primordial follicles and an

average of over 50 oocytes in primary follicles in total from three independent sections per animal were used for quantification.

To measure the mean fluorescence intensities of IDH1, PRDX4 and NDUFB10, over 300 granulosa cells in total from three indepen-

dent sections for eachmonkey were used for quantification. For quantification of the percentage of 8-OHdG-, gH2AX- and Ki67-pos-

itive cells, over 1000 granulosa cells in total from three independent sections per animal were used. The signal intensity and the num-

ber of positive cells were normalized to those of young group. The antibodies used in this study are shown in the Key

Resources Table.

Cell Immunofluorescence
Immunofluorescencewas conducted as previously described (Wang et al., 2018). Briefly, the cells were fixedwith 4%PFA for 25min,

permeabilized with Triton X-100 (0.4% in PBS) for 25 min, incubated with blocking buffer (10% donkey serum in PBS) for 1 h at RT,

and stained with primary antibodies overnight at 4�C. Then, the cells were incubated with secondary antibodies for 1 h at RT. Hoechst

33342 (Thermo Fisher Scientific) was used to stain the nuclear DNA. The antibodies used in this study are shown in the Key Re-

sources Table.

Hematoxylin and Eosin (H&E) Staining
H&E staining was performed as previously described (Nichols et al., 2005). Ovaries were sectioned into two equal-sized halves and

preserved in 4%PFA. Fixation was followed by a water rinse and subsequent storage in 70%ethanol. The tissues were subsequently

embedded in paraffin wax (Fisher Scientific) following immersion in a graded series of alcohols (70%–100%). Embedded tissue was

sectioned (5 mm) using a rotary microtome. The sections were adhered to microscope slides and dried at 56�C for 24 h. Next, slides

were passed through a series of the clearing agent xylene and rehydrated in a graded series of ethanol (100%, 100%, 100%, 95%,

80%). After a brief wash in distilled water, the slides were incubated with hematoxylin solution. The sections were then washed with

running tap water to remove excess hematoxylin. Then, the sections were differentiated in 1% acid alcohol for 30 s and washed with
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running tap water for 1 min. This step was followed by an incubation in the eosin counterstain, subsequent dehydration in a graded

series of ethanol (80%, 95%, 95%, 95%, 100%, 100%, 100%), and immersion in xylene. Then, the slides were coverslipped with

Cytoseal-60 (Stephens Scientific, USA).

Follicle Counting
Follicle counting was performed using the H&E-stained ovary sections as previously described withminor modifications (Atkins et al.,

2014; Johnson et al., 2004; Lass et al., 1997; Morita et al., 1999; Wei et al., 2015). Briefly, primordial follicles were characterized as

having a compact oocyte surrounded by a single layer of flattened GCs, while primary follicles were identified by the presence of an

enlarged oocyte surrounded by a single layer of cuboidal GCs. Secondary follicles were defined as having an enlarged oocyte sur-

rounded by at least a partial or complete second layer of cuboidal GCs but nomore than four complete layers of cuboidal GCs. Antral

follicles were characterized by the presence of areas of follicular fluid (antrum) or a single large antral space. Follicles at the primordial,

primary, and preantral stages of development were deemed atretic if the oocyte was degenerating (convoluted and condensed

or fragmented) or absent. In addition, atretic follicles at antral stage were identified by the morphology that the basement separating

the oocyte from granulosa cells often thickens to become the glassy membrane, and the granulosa cells are replaced by fibrous

material. To avoid counting a follicle twice, the numbers of primordial, primary and secondary follicles were counted in one out of

every 10 serial sections and the numbers of antral follicles were counted in one out of every 40 serial sections. The follicle density

was calculated by the number of follicles divided by the volume analyzed. Then the percentage of atretic follicles to total follicles

(including healthy follicles at each stage and atretic follicles) was calculated.

Masson’s Trichrome Staining
The ovary sections were deparaffinized and rehydrated through 100%alcohol, 95%alcohol and 70%alcohol. After a wash in distilled

water, the sections were stained with potassium bichromate solution O/N and rinsed with running tap water for 5-10 min. Then, the

sections were stained in iron hematoxylin working solution for 10 min. After a rinse in running warm tap water for 10 min, the sections

were stained in Ponceau-acid fuchsin solution for 5-10 min. Then, the slides were washed in distilled water and differentiated in

phosphomolybdic-phosphotungstic acid solution for 10-15 min or until the collagen was not red. Next, sections were directly trans-

ferred (without rinse) to aniline blue solution and stained for 5-10 min. This step was followed by a brief rinse in distilled water and

differentiation in 1% acetic acid solution for 2-5 min. After a wash in distilled water, the slides were dehydrated very quickly through

95%ethyl alcohol and absolute ethyl alcohol and cleared in xylene. Finally, the slides weremounted with resinousmountingmedium.

Fibrosis areas indicated by blue color were quantified with ImageJ software.

TUNEL Staining
The TUNEL staining of apoptotic populations within ovarian tissue was performed on paraffin sections using the In Situ Cell Death

Detection Kit, POD (Roche) following the manufacturer’s protocol. Then the slides were counterstained with hematoxylin solution for

visualization of nucleus. Finally, the slides were mounted with resinous mounting medium. Quantification of the percentages of

TUNEL-positive cells used over 1000 granulosa cells in total from three independent sections per animal. The number of positive cells

was normalized to those of young group.

Knockdown of DEGs in KGN Cells
siRNA molecules specifically targeting the mRNA of IDH1, PRDX4 and NDUFB10 were purchased from RIBOBIO (China). The se-

quences of the siRNAs are shown in Key Resources Table. The negative control duplex, which was also provided by RIBOBIO,

was not homologous to any mammalian genes and is widely used in knockdown assays (Liu et al., 2014). KGN cells were transfected

with a negative control duplex or siRNAs against IDH1,PRDX4 orNDUFB10 using Lipofectamine 3000 Transfection Reagent (Thermo

Fisher Scientific) following the manufacturer’s instructions. 48 h after transfection, the cells were collected for RT-qPCR. 72 h after

transfection, the cells were collected for Western blotting. Four days after transfection, the cells were treated or untreated with

600 mM H2O2 for 8 h and then RNAs were extracted for RNA sequencing. For crystal violet staining, five days after transfection,

the cells were treated with the different concentration of H2O2 for 24 h and cultured for another three days before staining. For

ROS, mitochondrial mass and mitochondrial membrane potential (MMP) analysis, five days after transfection, the cells were treated

with 600 mM H2O2, and analyzed by flow cytometry 18 h later. For apoptosis analysis, five days after transfection, the cells were

treated with 600 mM H2O2 and analyzed by flow cytometry 24 h later.

Crystal Violet Staining
Crystal violet staining was performed as previously described (Cheng et al., 2019; Ling et al., 2019; Zhang et al., 2019). The cells were

fixedwith 4%PFA for 30min, and then stainedwith 0.2%crystal violet for 30min. After several washeswith running tapwater, the cell

culture plates were scanned with photo scanner (Epson Perfection V370). The intensity of the crystal violet staining was quantified by

ImageJ software.
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Flow Cytometry Analysis
For analysis of apoptosis, cells were collected freshly and stained with Annexin V-EGFP and PI using an Annexin V-EGFP Apoptosis

Detection Kit (Vigorous biotechnology). Then, the apoptotic cells were quantified in a BD LSRFortesa flow cytometer. For measure-

ment of cellular ROS, cells were collected and stained with 1 mMCM-H2DCFDA (Molecular Probes, C6827) for 30min at RT, and then

the signals were quantified in a BD LSRFortesa flow cytometer. For measurement of mitochondrial mass, the cells were collected

and incubated with 1 mM Nonyl Acridine Orange (NAO) (Thermo Fisher Scientific, A1372) for 30 min at RT and analyzed in a BD

LSRFortesa flow cytometer. For analysis of MMP, the cells were stained with Cell Meter JC-10 Mitochondrial Membrane Potential

Assay Kit (AAT Bioquest, Inc.) according to the manufacturer’s protocol, and analyzed by BD LSRFortesa flow cytometer.

To avoid experimental systematic error, ROS and apoptosis signals of hGC samples from hospital were normalized with the mean

signal in each batch of experiment. The simple regression model was used to fit the relationship between experimental signals and

ages. The correlation and responding statistical significance were calculated based on the Spearman’s rank correlation.

Bulk RNA-seq Library Construction and Sequencing
Total RNA was extracted from 13 106 cells using TRIzol Reagent (Thermo Fisher Scientific). 3 mg per sample were constructed into

libraries through NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, E7530L) following manufacturer’s manuals. Sequencing data

were generated on Illumina HiSeq 4000 platform with 150-bp paired-end read length by Novogene.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-Cell RNA-Seq Data Processing
The template switch oligo (TSO) and poly(A) tail sequences were trimmed from the raw single-cell RNA-seq data, and then the reads

with adapters and low-quality bases were removed to obtain clean reads. The clean reads were mapped against the Ensembl

Macaca fascicularis reference genome (version: Macaca_fascicularis_5.0) using Tophat (version: 2.0.12) (Trapnell et al., 2009).

Only the uniquely mapped reads according to UMI numbers were counted using HTSeq (Anders et al., 2015), i.e., reads with the

same UMI sequence were counted only once.

The gene expression level g in cell cwas quantified as the transcripts permillion (TPM) TPMg,c as the UMI number of gene g divided

by the total UMI number of cell c and then multiplied by 1,000,000. Since the complexity of scRNA-seq libraries was estimated with

�100,000 transcripts, gene expression levels were transformed into log2(TPM/10 + 1), and unless otherwise stated, ‘‘expression

levels’’ indicate the transformed TPM in this study. Genes with TPM s 0 were defined as expressed genes.

We retained the high-quality single-cell data that met the following three criteria: the rate of uniquely mapped reads aligned against

the reference genome was greater than 20%, the number of detected genes was greater than 700, and the number of detected UMI

was greater than 3,000 (Figure S1C; Table S1). After the critical filtering process, 2,601 (191 young oocytes, 227 old oocytes, 931

young somatic cells, 1,252 old somatic cells) out of 3,521 cells were retained for downstream analysis, and the median value of map-

ping rate was 48.0% and the median number of genes detected in each cell was 1,862.

Identification of Cell Types and Cell Type-Specific Markers
Because of individual variation, we calculated regulation modules based on transcriptional regulators using SCENIC (Aibar et al.,

2017), and because there is no transcriptional regulator database for theMacaca fascicularis and the genome ofMacaca fascicularis

is similar to the human genome, we used the human hg19 transcriptional regulator database for the SCENIC analysis. We used the

UMI counts of 2,601 cells to perform the SCENIC analysis. There were 1,797 transcriptional regulators in the hg19 database, and

1,539 transcriptional regulators were detected in theMacaca fascicularis known gene set. We then clustered cells using the SCENIC

output file ‘3.7_binaryRegulonActivity_noDupl.RData’ with the modified ‘clustering-and-classification’ algorithm (Lake et al., 2016).

The algorithm was slightly modified, i.e., overdispersed genes were not chosen, and all regulons were used to perform unsupervised

clustering. Then, we visualized a t-SNE plot using the SCENIC output file ‘4.1_tsneBinaryActivity_50PC.Rdata’.

We used a standard area under the curve (AUC) classifier to identify cell type-specific markers (DEGs among different cell types)

with the function FindAllMarkers in the R package Seurat (Satija et al., 2015). Markers were selected only if the average difference of

the log2-transformed TPM was greater than 0.5, with a corresponding power value greater than 0.25 and a percentage of expressed

cells (TPM s 0) greater than 30%. GO analysis of cell type-specific markers was performed with ToppGene (Chen et al., 2009). We

selected GO terms representing the function of each cell type with P value < 0.05 among top 30 terms (Figure 1H).

Identification of Oocyte Subtypes and Subtype-Specific Markers
During calculations, SCENIC performs well in the identification of cell types with high heterogeneity but performs poorly in the iden-

tification of cell subtypes with low heterogeneity (Aibar et al., 2017). We identified 418 oocytes based on the SCENIC analysis and

then identified oocyte subtypes using expression data normalized by mutual nearest neighbors (MNN) (Haghverdi et al., 2018). We

applied MNN correction using the functionmnnCorrect in the R package scranwith the parameters ‘cos.norm.in = TRUE, cos.norm.

out = TRUE, var.adj = TRUE, k = 4, sigma = 0.1’ (Lun et al., 2016). Then, we clustered oocytes using the modified ‘clustering-and-

classification’ algorithm as described above based on the correction data. To construct the oocyte development trajectory, PCA

was performed using the R function procomp with the correction expression data.
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Given the variation in coverage and sequencing depth among different scRNA-seq libraries, we normalized UMI counts with the

ERCC spike-in using the R package simpleSingleCell (Lun et al., 2016). In brief, UMI counts of endogenous genes were corrected

with the function computeSumFactors, and UMI counts of the ERCC spike-in were corrected with computeSpikeFactors. Then,

the log2-transformed UMI counts were calculated with the size factors.

The AUC classifier was also used to identify oocyte subtype-specific markers with the function FindAllMarkers in the R package

Seurat based on correction data. The maximum expression level of the identified markers should exist in the corresponding defined

cluster.We selected the top-ranked genes with a corresponding power value greater than 0.4 as the subtypemarkers. GO analysis of

oocyte subtype-specific markers was performed with ToppGene, and GO terms representing the function of each cell type with the

criterium of P value < 0.05 were selected and terms were ranked the top 30 (Figure 3D).

In the identification of DEGs between consecutive stages, we set the average difference to be greater than 0.005 and power to be

greater than 0.4.

Aging-Associated Transcriptional Variation Analysis
To observe the aging effects on different cell types, we performed age-relevant coefficient of variation analysis, as described in a

previous study (Salzer et al., 2018). We identified highly variable genes (HVGs) using the R package Seurat with the parameters

‘x.low.cutoff = 0.01, x.high.cutoff = 10, y.cutoff = 0.01’, and we selected the top-ranked 10% genes as HVGs (2,104 HVGs out of

21,040 genes) based on the average expression and dispersion for the downstream aging-associated transcriptional variation

analysis.

We defined the cell-paired-distance dc,x for HVG x in cell type c (consisting of y cells from young individuals and o cells from old

individuals) as:

dc;x =
�
�xc;i � xc;j

�
�;cx˛HVG; i˛ 1; 2;.; yf g; j˛ 1; 2;.;of g
Then, we calculated the arithmetic mean of d as m and the sta
c,x c,x ndard deviation of dc,x as sc,x. Therefore, the coefficient of variation

of cell-paired-distance, aging-associated transcriptional variation, is defined as:

CVc;x =
sc;x

mc;x

3 100

Identification of Aging-Associated Differentially Expressed Genes
To identify aging-associated DEGs between old and young individuals in each specific cell type, the function FindMarkers in the R

package Seurat was used based on t test. Only genes with an average log2-transformed difference greater than 0.5, a P value less

than 0.05 and a percentage of expressed cells greater than 70%were considered as aging-associated DEGs. GO analysis of aging-

associated DEGs was performed with ToppGene (Figure 5C).

GO enrichment items between young and aged samples were obtained based on the gene set enrichment analysis (GSEA) (Figures

4C and S4E). Briefly, GSEA was performed using the Java software GSEA (version: 3.0, desktop application) based on the dataset

‘C5 (GO gene sets)’ (Subramanian et al., 2005). Hits (gene set numbers) and missed (non-members) were scored with the ‘weighted’

enrichment statistic method, and the metric for ranking genes was selected with the ‘Signal2Noise’ method. To ensure reproduc-

ibility, the random seed in the permutations process was set as ‘19961109’. All the other parameters to perform GSEA were default.

We showed GSEA terms in Figure 4C with nominal P value < 0.05 and false discovery rate (FDR, q value) < 0.1, and listed the top-

ranked 10 terms based on the normalized enrichment score (NES). For Figure S4E, top-ranked 10 NES-based-ranked GSEA terms

with P value < 0.05 and FDR < 0.2 were shown.

Transcriptional Regulatory Network Analysis
To identify the potential key transcriptional regulators in specific biological processes, based on the expression data normalized by

UMI, we performed regulatory network analysis using the R package GENIE3 (Aibar et al., 2017; Huynh-Thu et al., 2010). We used

aging-associated DEGs as input for network analysis and to construct the network between aging-associated transcriptional regu-

lators and targets. Only the transcriptional regulator-target connected with a high weight was retained and used for the network

analysis.

For visualization of the network, the node size indicated the number of connections and the line size indicated the weight of a

connection; and nodes were ranked based on the node size (Figures 4E, 5G, S3F, S5, and S6A).

Bulk RNA-Seq Data Processing
Raw RNA-seq reads contaminated with adapters and reads with low-quality bases were discarded to obtain the clean reads, and

then clean reads were mapped against UCSC human reference hg19 using Tophat, and uniquely mapped reads were counted using

HTSeq. Gene expression levels were quantified with RPKM (reads per kilobase million).

DEGs were identified with the R package DESeq2 (version: 1.20.0) (Love et al., 2014), and we calculated Benjamini & Hochberg

FDR to obtain the statistical significance of DEGs. Genes were selected as DEGs only if the log2-tranformed fold change was greater
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than 0.5 (Figure S6I) or 1 (Figures 6I and S6G) with P value and FDR both less than 0.05. GO analysis of DEGs was performed with

ToppGene (Figure 6I).

Statistical Analyses
The experimental data were statistically analyzed using a one-tailed (Figure 1A) or two-tailed (all others) t test to compare differences

between different groups and treatments assuming equal variancewith PRISM software (GraphPad 6 Software). A P value < 0.05was

considered statistically significant. In all figures, one, two and three asterisks indicate *p < 0.05, **p < 0.01 and ***p < 0.001, respec-

tively; ns indicates not significant.

Correlation and corresponding statistical significance were calculated based on Spearman’s rank correlation coefficient (r) in R

language (Figures 6B and 6C).

The bioinformatics data were statistically analyzed using a two-tailed t test with R language, and P values were indicated in

each figure.

The boxplot represents the median, the first quartile and the third quartile of values; and the whisker represents 1.5 times the in-

terquartile distance. Data in bar plots are shown as the mean ± SEM.

DATA AND CODE AVAILABILITY

The accession number for the raw and processed RNA-seq data reported in this paper is GEO: GSE130664. Publicly available soft-

ware used in this study are listed in the STAR Methods and the KEY RESOURCES TABLE.
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Supplemental Figures

Figure S1. Information on Monkeys and Quality Control of Single-Cell RNA-Seq, Related to Figure 1

(A) Information summary of the monkeys analyzed in this study.

(B) H&E-stained sections of young and old monkey ovaries. Yellow arrowheads indicate the atretic follicles. Scale bar, 100 mm.

(legend continued on next page)



(C) Histogram showing the rates of reads uniquely mapped against the reference genome (left) and the number of genes detected in individual cells (right). These

results show the basic quality control of ovarian scRNA-seq before cell filtering.

(D) t-SNE plots showing the distribution of single cells from different individuals (left), age groups (middle) and sampling regions (right). No obvious differences in

distribution were observed among these features. OC, somatic cells from ovarian cortex; OM, somatic cells from ovarian medulla; OO, oocytes.

(E) t-SNE plots showing expression levels of known and newly identified marker genes in distinct ovarian cells.



Figure S2. Verification of Different Ovarian Cell Types by Immunofluorescence, Related to Figures 1 and 2

(A) Immunofluorescence analysis of knownmarker DDX4 for oocytes, as well as novel markers RBM46 and NETO1, which were dominantly expressed in oocytes

at different stages of folliculogenesis, andmarginally expressed in other somatic cells. Asterisks represent the newly identified oocyte markers. Scale bar, 50 mm.

(B) Immunofluorescence analysis of classic marker WT1 for GCs in the ovary. Scale bar, 50 mm.

(C) Immunofluorescence analysis of classic marker AMH for GCs in the ovary. Scale bar, 50 mm.

(D) Immunofluorescence analysis of the canonical marker STAR for theca cells in the ovary. Scale bar, 50 mm.

(E) Immunofluorescence analysis of classic markers for ECs and SMCs in the ovary, including VWF, DESMIN encoded by DES and a-SMA encoded by ACTA2.

Scale bar, 50 mm.



(legend on next page)



Figure S3. Dynamic Gene Expression Patterns and Transcriptional Features in Oocyte Subtypes, Related to Figure 3

(A) Relative gene expression patterns of representative genes essential for oocyte development and maturation along the PC1 dimension.

(B) Boxplot showing the number of expressed genes in each oocyte subtype. Two-tailed t test P value is indicated. The number between oocytes C2 and C3, and

the number between oocytes C3 and C4 are not significantly different.

(C) Immunofluorescence showing the higher expression levels of themitochondrial markers TOM20 and ND1 in oocytes at early developmental stages than those

in oocytes of late development stages. Arrows indicate primordial and primary follicles, and arrowheads indicate secondary and antral follicles. Scale bar, 100 mm.

(D) Histogram showing the number of upregulated or downregulated DEGs between each consecutive oocyte subtype (DEGs between C2 and C1 oocytes,

between C3 and C2 oocytes, and between C4 and C3 oocytes).

(E) Line plots showing expression patterns of top 50 upregulated or downregulated DEGs between two consecutive oocyte subtypes during oocyte development.

These DEGs are collected from each gene set shown in Figure S3D. Each line corresponds to each DEG; red lines correspond to upregulated DEGs and blue lines

correspond to downregulated DEGs in each consecutive oocyte subtype, and black lines indicate the mean expression level of corresponding DEGs.

(F) Regulatory networks visualizing potential key transcriptional regulators in each oocyte subtype. Only connections with a high weight were retained. The node

size indicates the number of connections and top 5 nodes are highlighted. The line size indicates the weight of a connection.
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Figure S4. Integrative Analysis of Aging-Associated Differentially Expressed Genes with Genes fromGenAge or POF/POI Database, Related

to Figure 4

(A) Violin plots showing expression levels of marker genes for each cell type in young (Y) and old (O) monkey ovaries.

(B) Heatmaps showing the scaled expression patterns of genes in the GenAge database (left) or of hotspot genes for POF/POI (right) in different cell types.

(C) Heatmaps showing the scaled expression patterns of genes in the GenAge database (left) or of hotspot genes for POF/POI (right) in different oocyte subtypes.

(D) Heatmap showing the scaled expression patterns of meiosis-related genes in different oocyte subtypes obtained from young and old ovaries.

(E) Representative GO terms of upregulated enrichment between old and young monkeys in each oocyte subtype. Functional enrichment was performed by

GSEA. The top 10 terms for each subtype were listed based on the normalized enrichment score (NES). The nominal P value < 0.05 and FDR (q value) < 0.2.

(F) Dot plots showing the expression patterns of overlapping genes which were upregulated or downregulated in each aged oocyte subtype and also included in

theGenAge (left) or POF/POI database (right). The circle size indicates percentage of cells expressing the indicated genes. The overlapping upregulated DEGs are

colored in red, and the overlapping downregulated DEGs are colored in blue, and other genes are colored in gray.
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Figure S5. Transcriptional Regulatory Network Analysis Uncovering Diverse Aging-Associated Regulatory Modules in Different Oocyte

Subtypes, Related to Figure 4

(A) Regulatory networks visualizing potential key transcriptional regulators in upregulatedDEGs in each oocyte subtype. Only connectionswith a highweight were

retained. The node size indicates the number of connections, and top-ranked nodes are colored in red. The line size indicates the weight of a connection.

(B) Regulatory networks visualizing potential key transcriptional regulators in downregulated DEGs in each oocyte subtype. Only connections with a high weight

were retained. The node size indicates the number of connections, and top-ranked nodes are colored in blue. The line size indicates the weight of a connection.
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Figure S6. Knockdown of Antioxidant Genes in a Human Granulosa Cell Line, Related to Figure 6

(A) Regulatory network visualizing potential key transcriptional regulators in upregulated DEGs in aged GCs. Only connections with a high weight were retained.

The node size indicates the number of connections and top-ranked nodes are colored in red. The line size indicates the weight of a connection.

(B) Immunofluorescence analysis of the granulosa cell marker AMH in freshly purified hGCs. Scale bar, 10 mm.

(C) Verification of knockdown efficiency by RT-qPCR, 48 h after transfection with negative control (NC) duplex and siRNAs against IDH1, PRDX4 or NDUFB10 in

KGN cells. 18S rRNA was used as loading control. Data are presented as the mean ± SEM, n = 4, ***p < 0.001 (two-tailed t test).

(D) Verification of knockdown efficiency in KGN cells by western blot analysis, 72 h after transfection with NC duplex or siRNAs (siRNA cocktails with siRNA-1 and

siRNA-2) against IDH1, PRDX4 or NDUFB10 in KGN cells. b-actin was used as the loading control.

(E) Heatmap showing the Pearson’s correlation coefficient among different samples based on gene expression levels. Replicates indicated high reproducibility,

and H2O2-treated or untreated groups were clustered together.

(F) The Integrative Genomics Viewer (IGV) snapshots showing RNA reads coverage of IDH1 or NDUFB10 indicated efficient knockdown of these two genes.

(G) Volcano plots showing DEGs between the cells transfected with negative control duplex or with siRNAs against IDH1 or NDUFB10 in the absence (untreated,

left) or in the presence of H2O2 (H2O2-treated, right). The number of DEGs are shown above the plots. DEGswere identified by |log2 (fold change)|R 1 and both the

P value and FDR were less than 0.05.

(H) PCA showing different samples based on the gene expression patterns exhibited by PC1 and PC2. The variations of PC1 and PC2 are 45.6% and 24.4%,

respectively. Distinct samples are shown in different colors. H2O2-treated or untreated groups were clustered together and highlighted in gray ellipses.

(I) Venn plots showing the number of overlapping upregulated/downregulated genes between aging-associated DEGs in monkey GCs via scRNA-seq analysis

and DEGs after knockdown of IDH1 or NDUFB10 in KGN cells upon H2O2 treatment using bulk RNA-seq analysis. The overlapping genes are shown in round

rectangles. The log2-transformed fold change of DEGs was greater than 0.5 for both scRNA-seq and bulk RNA-seq. IDH1 and NDUFB10 are denoted with

underlines.


	Single-Cell Transcriptomic Atlas of Primate Ovarian Aging
	Introduction
	Results
	Diminished Follicle Reserve in Aged Ovaries from Cynomolgus Monkeys
	Single-Cell Transcriptome Profiling of Monkey Ovaries Identified Different Ovarian Cell Types and Gene Expression Signatures
	Unique Gene-Expression Signatures of Four Subtypes of Oocytes at Sequential and Stepwise Developmental Stages
	Downregulation of Antioxidant Genes in Aged Early-Stage Oocytes
	Increased Apoptosis and Decreased Reductase Activity in Aged Primate Granulosa Cells
	Knockdown of Antioxidant Genes in Human Granulosa Cells Recapitulated the Major Phenotypes of Aged Monkey Granulosa Cells

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Lead Contact and Materials Availability
	Experimental Models and Subject Details
	Ethical Statement
	Experiment Models and Biological Samples
	Cell Line

	Method Details
	Single Cell Isolation
	Single-Cell RNA-Seq Library Construction and Sequencing
	RT-qPCR
	Western Blot Analysis
	Ovary Tissue Immunostaining
	Cell Immunofluorescence
	Hematoxylin and Eosin (H&E) Staining
	Follicle Counting
	Masson’s Trichrome Staining
	TUNEL Staining
	Knockdown of DEGs in KGN Cells
	Crystal Violet Staining
	Flow Cytometry Analysis
	Bulk RNA-seq Library Construction and Sequencing

	Quantification and Statistical Analysis
	Single-Cell RNA-Seq Data Processing
	Identification of Cell Types and Cell Type-Specific Markers
	Identification of Oocyte Subtypes and Subtype-Specific Markers
	Aging-Associated Transcriptional Variation Analysis
	Identification of Aging-Associated Differentially Expressed Genes
	Transcriptional Regulatory Network Analysis
	Bulk RNA-Seq Data Processing
	Statistical Analyses

	Data and Code Availability



