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INTRODUCTION: Cellular proteins are the final
products of gene expression that execute cel-
lular functions. To understand translational
gene regulation, it is crucial to measure protein
synthesis at single-cell and spatial resolution.
Current ribosome profiling methods achieve
transcriptome-wide translational analysis but
lack spatial context. By contrast, imaging-based
methods preserve spatial information but are
not multiplexed. A scalable method for single-
cell and spatially resolved profiling of protein
synthesis is still needed.

RATIONALE: We introduce ribosome-bound
mRNA mapping (RIBOmap), a highly multi-
plexed method for spatial charting of protein
synthesis at single-cell and subcellular resolu-
tion. RIBOmap employs a targeted-sequencing
strategy that selectively detects ribosome-bound
mRNAs through a specific design of tri-probes.
The tri-probe set consists of a splint DNA
probe hybridized to ribosomal RNA and a pair

of padlock and primer probes hybridized to
mRNAs, which together produce DNA ampli-
cons with gene-unique barcodes through in
situ amplification. These DNA amplicons are
then embedded in a polyacrylamide hydrogel
matrix and the gene-unique barcodes are read
out through in situ sequencing. We validated
the specificity of RIBOmap through the use of
noncoding RNAs, translation inhibitor, in vitro
transcribed mRNAs, and comparison with
established ribosome profiling technology.

RESULTS: We applied RIBOmap to HeLa cells
for a 981-gene multiplexed experiment and
designed a multimodal RIBOmap imaging
experiment to capture the cell-cycle phase and
subcellular organelles. The results revealed cell-
cycle–dependent translation and subcellular
localized mRNA translation in HeLa cells. We
further applied RIBOmap to intact mouse brain
tissue, measuring the translation of 5413 genes
simultaneously. Leveraging the single-cell and

spatial resolutions of RIBOmap, we generated
a single-cell spatialmap of themouse brain. By
comparing the spatial translatomics generated
by RIBOmap with spatial transcriptomics, we
uncovered cell type–specific and brain region–
specific translational regulation.

CONCLUSION: RIBOmap presents a new spa-
tially resolved single-cell translatomics technol-
ogy, accelerating our understanding of protein
synthesis in the context of subcellular architec-
ture, cell types, and tissue anatomy. The pair-
wise spatial translatomic and transcriptomic
mapping enabled us to systematically identify
cell type- and tissue-region–specific translational
regulation, paving theway for uncovering novel
posttranscriptional gene regulation princi-
ples andmechanisms that shape the proteome
for cellular and tissue functions. RIBOmap by-
passes complicated polysome isolation steps
and genetic manipulation, making it promis-
ing for studies in post hoc human tissue and
disease samples.We anticipate that integrating
RIBOmap with other imaging-based measure-
ments will enable spatial multiomics mapping
for a comprehensive understanding of biolog-
ical systems.▪
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RIBOmap for spatial trans-
latomics imaging. RIBOmap
is a three-dimensional (3D)
in situ profiling technology
designed to selectively mea-
sure ribosome-bound mRNAs,
providing spatially resolved
single-cell translatome analysis
at molecular resolution. In cell
culture, RIBOmap uncovers
cell-cycle-dependent and sub-
cellular localized translation.
When applied to intact mouse
brain tissue, RIBOmap gener-
ates spatial tissue atlases
and reveals cell-type–specific
and tissue region–specific
translational regulation.
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The precise control of messenger RNA (mRNA) translation is a crucial step in posttranscriptional
gene regulation of cellular physiology. However, it remains a challenge to systematically study mRNA
translation at the transcriptomic scale with spatial and single-cell resolution. Here, we report the
development of ribosome-bound mRNA mapping (RIBOmap), a highly multiplexed three-dimensional in
situ profiling method to detect cellular translatome. RIBOmap profiling of 981 genes in HeLa
cells revealed cell cycle–dependent translational control and colocalized translation of functional
gene modules. We mapped 5413 genes in mouse brain tissues, yielding spatially resolved single-cell
translatomic profiles for 119,173 cells and revealing cell type–specific and brain region–specific
translational regulation, including translation remodeling during oligodendrocyte maturation.
Our method detected widespread patterns of localized translation in neuronal and glial cells in
intact brain tissue networks.

M
easuring genome-wide protein synthe-
sis patterns with single-cell and spa-
tial resolution can help us understand
translational regulation in heteroge-
neous cell types and states. Although

large-scale single-cell and spatially resolved
proteome profiling remains challenging (1),
past research has focused on mapping mRNA
levels to infer the corresponding protein abun-
dances in single cells. However, numerous studies
have revealed poor correlation between mRNA
and protein levels (2–5), as gene regulation is
achieved at both transcriptional and transla-
tional levels. Moreover, many genes undergo
signal-dependent and subcellular-localized
translation (6). Therefore, we need scalable
single-cell and spatially resolved profiling of
protein synthesis for a comprehensive under-
standing of gene expression and translational
regulation.
Existing bulk and single-cell ribosome pro-

filingmethods have enabled us to analyze pro-
tein translation at the transcriptome scale (7–12)
but cannot preserve spatial information. Cur-
rent imaging-based methods that can trace
mRNA translation with their physical coordi-
nates (13–19) are limited to low gene through-
put. Therefore, it remains challenging to achieve
highly multiplexed spatial ribosome profiling
in single cells with subcellular resolution. To

fill this gap, we developed a three-dimensional
(3D) in situ ribosome-bound mRNA mapping
method (RIBOmap) for highlymultiplexed char-
acterization of protein synthesis with single-
cell and subcellular resolutions.

RIBOmap design and validation

RIBOmap is built upon a targeted-sequencing
strategy in which a specific design of tri-probes
selectively detects and amplifies ribosome-
bound mRNAs (Fig. 1A and fig. S1A). The
RIBOmap tri-probe set includes: (i) a splint
DNA probe that hybridizes to ribosomal RNAs
(rRNAs) and serves as the splint to circularize
the adjacent padlock probe; (ii) a padlock
probe that targets specific mRNA species of
interest and encodes a gene-unique barcode;
(iii) a primer probe that targets the mRNA
site adjacent to the one targeted by the pad-
lock probe and serves as the primer for rolling
circle amplification resulting in a DNA nano-
ball (amplicon). DNA amplicon signals are only
produced when all three probes are present
in proximity (Fig. 1, B and C). The gene-unique
barcodes in the DNA amplicons are then de-
coded through in situ sequencing with error-
reduction by dynamic annealing and ligation
(Fig. 1A) (20). We also tested an alternative
RIBOmap workflow that uses primary anti-
bodies of ribosomal proteins (RPS3, RPL4)
and splint-conjugated protein A/G to target
ribosomes, which demonstrated amuch lower
signal-to-noise ratio (SNR) than that of the
rRNA targeting strategy (fig. S1, B to G). Thus,
we proceeded with the rRNA targeting strat-
egy in the following studies.
To confirm that RIBOmap specifically tar-

gets ribosome-bound mRNAs, we designed

four experiments. First, RIBOmap and pre-
viously reported STARmap RNA imaging (20)
were used to detect protein-encoding ACTB
mRNA and two negative controls of noncod-
ing RNAs (Fig. 2A and table S1). As expected,
RIBOmap only detected cytoplasmic ACTB
mRNAs whereas STARmap detected both
ACTB mRNA and the noncoding RNAs (Fig. 2,
B and C and fig. S2). Second, RIBOmap spe-
cificity was validated using Harringtonine,
a translation inhibitor that traps translation-
initiating ribosomes at the start codon (21)
(Fig. 2D). After Harringtonine treatment, there
was a significant decrease in RIBOmap signal
intensity using probes targeting 115 or 405 nu-
celotides (nt) downstream of the start codon,
whereas there was minimal decrease in the
signal generated by the probe targeting the
−16 nt from the start codon (Fig. 2, E to G).
Third, we used synthetic in vitro transcribed
(IVT) mRNAs and lipid-mediated transfec-
tion (Fig. 2H). Our data demonstrated that
STARmap could detect both small puncta cor-
responding to free cytosolic mRNAs and larger
intracellular granules corresponding to lipid
transfection vesicles containing many copies of
nontranslating mRNAs, whereas RIBOmap
signals were depleted in lipid transfection vesi-
cles (Fig. 2, I and J), indicating that RIBOmap
does not detect nontranslating mRNAs. Fi-
nally, we validated RIBOmap by comparing
it with RiboLace, an established ribosome pro-
filing technology (22). RIBOmap successfully
detected differentially translated mRNAs in
starved versus control human MCF7 cells,
which is consistent with the reported RiboLace
and proteomics measurements (22) (fig. S3).
Together, these results demonstrate the spe-
cificity of RIBOmap in detecting ribosome-
bound mRNAs.

Multiplexed RIBOmap in cultured cells

After benchmarking the SNR and specificity
of RIBOmap, we performed a highly multi-
plexed 981-gene RIBOmap experiment in HeLa
cells (Fig. 3A). The 981 genes represent a curated
list composed of cell-cycle genemarkers, genes
with diverse subcellular RNA patterns, and
genes of varying RNA stabilities (23–26) (table
S2). We designed a multimodal RIBOmap im-
aging experiment that further incorporated
the information on cell-cycle stages and sub-
cellular organelles: (i) the cell-cycle phase
of each cell was captured by the fluorescent
ubiquitination-based cell cycle indicators (FUCCI)
(27, 28); (ii) ribosome-boundmRNAs (981 genes)
were in situ sequenced; (iii) finally, nuclei, en-
doplasmic reticulum, and cell shapes were
stained and imaged (Fig. 3B). We also con-
ducted a paired STARmap experiment for
comparison (Fig. 3A). In total, RIBOmap and
STARmap sequenced 1813 and 1757 cells, re-
spectively (fig. S4A). The median distance be-
tween each read and its nearest neighbor in
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3D was 0.69 mm for RIBOmap and 0.61 mm for
STARmap (fig. S4, B and C), indicating that
both techniques have high spatial resolution.
To assess the reliability of RIBOmap in multi-
plexed experiments, we calculated the corre-
lation between the RIBOmap results for 981
genes with published HeLa proteome and
ribosome profiling datasets (26, 29, 30). The
results showed that the correlation between
RIBOmap and the proteome dataset is com-
parable to that between the ribosome profiling
dataset and the proteome dataset (fig. S4D).
Additionally, the correlation between RIBO-
map and the two ribosome profiling datasets
is comparable to the correlation between the
two ribosome profiling datasets (fig. S4E).

Next, we evaluated whether RIBOmap can
decipher cell cycle–dependent mRNA transla-
tion. The results showed that the G1, G1/S, and
G2/M cell cycle phases identified from both
RIBOmap and STARmap datasets agreed with
the expected cell cycle–dependent patterns of
FUCCI protein fluorescence (Fig. 3C and fig.
S5), demonstrating the accuracy of RIBOmap
in delineating cell states. We then identified
the differentially expressed genes (DEGs) across
cell cycle phases usingRIBOmap and STARmap
data (fig. S6, A and B, and table S3). Most of the
RIBOmap DEGs overlapped with known cell
cycle–dependent genes (31) (fig. S6C). We also
identified DEGs detected in RIBOmap but not
in STARmap (fig. S6D). One example is NOL6

(nucleolar protein 6), whose translation was
significantly decreased from the G1 phase to
the G2/Mphase as detected by both RIBOmap
and ribosome profiling (32), but whose overall
RNA level showed little change across cell cycle
phases as detected by STARmap and RNA-seq
(fig. S6, E to G).
Next, to leverage the single-cell resolution in

our dataset, we performed gene-expression co-
variation analysis and identified five coregulated
translation modules (RTMs) with substantial
intramodule correlation, each with enrichment
of distinct functional pathways (RTMs 1 to 5,
Fig. 3D, fig. S7, A to E, and table S4). RTM 3
and RTM 5 are enriched for G2/M and G1/S
cell cycle marker genes, respectively (Fig. 3D,
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Fig. 1. RIBOmap for in situ profiling of mRNA translation at subcellular resolu-
tion. (A) Schematic of RIBOmap. After the sample is prepared, a paired barcoded
padlock probe and primer probe are hybridized to a targeted intracellular RNA,
and the splint probe is hybridized to 18S rRNA of ribosomes. The splint probe is used
as a template for the proximity ligation to circularize the padlock probe. The
intact padlock probe can then be amplified to generate amine-modified DNA
amplicons in situ. Next, these DNA amplicons are copolymerized into hydrogel
through tissue-hydrogel chemistry for in situ sequencing. The gene-unique barcode

sequence (red) in the cDNA amplicons can then be read out through cyclic in situ
sequencing. (B) Tri-probe strategy. (Left) Fluorescent images of tri-probe condition
show the RIBOmap signal of ACTB mRNA in HeLa cells. (Middle) Fluorescent
images of negative control samples without the primer or splint probe show minimum
DNA amplicon signal. (Right) Fluorescent images of the control sample using a splint
probe without the rRNA hybridization sequence show minimal DNA amplicon signal.
(C) Quantification of the DNA amplicon signal intensity shown in (B). Error bars,
standard deviation. n = 3 images per condition. Student's t-test, **P < 0.01.
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right), and are negatively correlated (fig. S7F).
Moreover, RTM 2 contains genes encoding
protein translation machineries (fig. S7D);
these genes show a positive correlation with
RTM 5 (G1/S marker genes) and a negative
correlation with RTM 3 (G2/M marker genes)
(fig. S7G). This observation suggests that the

protein translation machinery is up-regulated
in the G1/S phase to support the demand for
protein products as cells enlarge and subcel-
lular organelles are replicated.
Subcellular localized translation has impli-

cations for signal transduction and proteome
organization (6). Using RIBOmap results, we

identified five colocalized translation modules
(LTMs) with highly correlated subcellular spa-
tial organizations and distinct functional en-
richment (LTMs 1 to 5, Fig. 3, E to G, fig. S8, A
to C, and table S4). Among them, LTMs 2, 4,
and 5 are enriched with a membrane protein
and secretion pathway (Fig. 3, F and G and
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Fig. 2. RIBOmap specificity validation. (A) Schematic of RIBOmap signal
verification by targeting mRNA (ACTB) and noncoding RNA (MALAT 1 and
vtRNA1-1). (B) Fluorescent images show RNA detection results by STARmap and
translating RNA detection results by RIBOmap. (C) Quantification of the DNA
amplicon signal intensity shown in (B). Error bars, standard deviation. n = 5
images per condition. Student's t-test, ****P < 0.0001. (D) Schematic of
translational regulation by Harringtonine. (E) Three pairs of padlock and primer
probes targeting different sites of ACTB mRNA. (F) Fluorescent images show the
RIBOmap signal of 3 sets of probes targeted to different regions of ACTB mRNA

in HeLa cells before and after Harringtonine treatment. (G) Quantification of the
RIBOmap signal intensity shown in (F). Error bars, standard deviation. n = 3
images per condition. Student's t-test, **P < 0.01. (H) Schematic representation
of RIBOmap signal verification using transfected IVT mRNAs. (I) Fluorescent
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Fig. 3. RIBOmap simultaneously measures the subcellular translation of
981 genes in human HeLa cells. (A) Schematic of RIBOmap detection in
HeLa FUCCI cells to measure localized mRNA translation. (B) Representative
images showing the sequential mapping of FUCCI fluorescence signal, cDNA
amplicons, and organelle staining in the same HeLa cell sample. (Left) the FUCCI
cell fluorescence imaging results for RIBOmap (upper) and STARmap (bottom).
(Middle) Representative images showing the maximum intensity projections
(MAX) of the first sequencing cycle with zoom-in views of a representative cell
and single-frame views of the representative cell across six sequencing cycles.
(Right) magnified view of organelle staining of a representative cell. (C) Diffusion
map embeddings of cell-cycle stage clusters determined using the single-cell
expression profile for STARmap (upper left) and RIBOmap (upper right)

measurements along with corresponding protein fluorescence profiles of the
FUCCI cell-cycle markers (STARmap, bottom left; RIBOmap, bottom right).
(D) Single-cell translatome covariation matrix showing the pairwise Pearson’s
correlation coefficients of the cell-to-cell variation, shown together with their
averaged expression levels. Five strongly correlating blocks of coregulated
translation modules (RTMs) are indicated by the gray boxes in the matrix, with
RTMs 3 and 5 enlarged on the right. Cell cycle markers are highlighted in
the enlarged matrix. (E) Matrix of the pairwise colocalization P-values describing
the degree to which the reads of two genes tend to coexist in a sphere of a
3-μm radius in the same cell in RIBOmap results (left) and STARmap results
(right), shown together with hierarchical clustering of these genes. The
STARmap matrix uses the same order of genes as the RIBOmap matrix. Five
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fig. S8 A and B) and physically colocalize with
ER staining (Fig. 3, H and I and fig. S8, D to F),
suggesting they are ER-translated genes. In-
deed, 62.2 and 94.6% of LTM4 genes over-
lapped with the proximity ribosome profiling
dataset (8) and APEX-RIP dataset (33), respec-
tively (Fig. 3J, fig. S8D, and table S4), suggest-
ing the accuracy of RIBOmap for subcellular
spatial analysis. By contrast, LTMs 1 and 3
are enriched for genes encoding large protein
complexes of the mitotic spindle and trans-
lation machinery, respectively (Fig. 3, F and G,
and fig. S8, A and C). This observation sug-
gests that the subunits of large protein com-
plexes may be synthesized in spatial proximity
for efficient assembly. Finally, we explored
whether coregulated genes tend to be colo-
calized for translation and found that the five
RTMs also show strong subcellular colocaliza-
tion (fig. S8G). These results may imply that
functionally related gene groups can be coreg-
ulated through subcellular colocalized trans-
lation, possibly through shared regulatory RNA
elements or protein-protein interactions be-
tween nascent proteins.

RIBOmap in intact mouse brain tissue

We then applied RIBOmap to mouse brain
slices to reveal single-cell translatome profiles
in intact tissues. We mapped a targeted gene
list of 5413 genes (table S5) curated from pre-
viously published single-cell sequencing studies
of mouse cell atlas (34–40). We imaged two
biological replicates of the mouse hemisphere
coronal sections (60,481 cells for Rep1 and
58,692 cells for Rep2) containing multiple brain
regions (Fig. 4, A and B). We benchmarked
tissue RIBOmap data by comparing the spatial
translation pattern of well-known cell-type
marker genes and neurotransmitter genes with
corresponding in situ hybridization (ISH) im-
ages from the Allen Brain database (41) (Fig.
4C and fig. S9), where the comparison showed
consistent spatial patterns. The data quality of
RIBOmap is comparable to previous STARmap
PLUS data (42) (fig. S10A). Notably, we observed
a high correlation (Pearson r = 0.95) between
the two RIBOmap replicates (fig. S10B), validat-
ing the reproducibility of RIBOmap.
Encouraged by the benchmarking results,

we then adopted a hierarchical clustering strat-
egy (20, 36) to identify cell types (fig. S10, C to
E), resulting in 11 major cell types and 38 sub-
types (Fig. 4, D and E, fig. S10, C to E, and fig.
S11). The cross-reference analyses revealed
good correspondence between RIBOmap cell
clusters and published regional scRNA-seq

results of cell types (35) (fig. S10D). Based on
these cell typing results, we generated spa-
tial cell maps from the imaged hemibrain
region (Fig. 4, F and G and fig. S12). This spa-
tial cell-type map is consistent with previous
reports (36), demonstrating the potential of
RIBOmap single-cell translatomics to compre-
hensively identify diverse brain cell types and
regions.

Cell type–specific and brain
region–specific translational regulation
in mouse brain

To compare the RIBOmap results with spa-
tial transcriptomics, we conducted pairwise
STARmap on a brain slice adjacent to RIBOmap
sample followed by data integration for joint
analyses (Fig. 5A). We observed consistent
cell typing results between the two methods
with respect to gene expression, cell-type com-
position, and spatial distribution of cell types
(Fig. 5A and fig. S13). We also performed im-
munostaining of NeuN and GFAP proteins
during RIBOmap and STARmap sample prep-
aration and observed clear enrichment of NeuN
protein signal in neurons and GFAP protein
signal in astrocytes, respectively, in both sam-
ples (fig. S14), further supporting the accuracy
of the cell typing results.
Leveraging the single-cell and spatial reso-

lution of pairedRIBOmap and STARmap data,
we analyzed the heterogeneity of translational
regulation across cell types and brain regions.
We determined the reads correlation of 5413
genes between the two datasets for individual
cell types or tissue regions (Fig. 5, B and C).
Lower correlation scores indicate a greater
degree of translational regulation, resulting in
disparities between the translatome and the
transcriptome. We found that non-neuronal
cell types, especially oligodendrocytes, have
lower correlation scores between translatome
and transcriptome than neuronal cell types
(Fig. 5B). Correspondingly, fiber tracts, the
brain region where oligodendrocytes are en-
riched, had the lowest correlation (Pearson r =
0.58) between the translatome and transcrip-
tome among the eight brain regions (Fig. 5C).
This suggests a previously undercharacterized
level of translational regulation in glial cells,
particularly in oligodendrocytes.
To further pinpoint translationally regulated

genes across various cell types, we performed
gene clustering using major cell-type–resolved
RIBOmap and STARmap profiles and identi-
fied 15 gene modules with distinct gene func-
tions and expression patterns (fig. S15, A and

B, and table S6). Given that the oligodendro-
cyte lineage showed the lowest correlation
between translatome and transcriptome among
major cell types (Fig. 5C), we focused on gene
modules that were highly expressed in oligo-
dendrocyte lineage cells (240 genes; fig. S15A
and table S6). Pseudotime trajectory analysis
revealed the differentiation path of the oligo-
dendrocyte lineage in our datasets (40), from
oligodendrocyte precursor cells (OPC) to oligo-
dendrocyte subtype 1 (OLG1), then to oligo-
dendrocyte subtype 2 (OLG2) (Fig. 5, D and E).
This is supported by the increased expression
gradients of genes involved in myelination
(Plp1 andMbp) along oligodendrocyte matu-
ration (Fig. 5F) (43), and by the spatial enrich-
ment of the more mature OLG2 in fiber tracts
for myelination-based axon ensheathment (Fig.
5,G andH). To correlate translational regulation
with oligodendrocyte subtypes andmaturation,
we further clustered oligodendrocyte-related
gene modules using their subtype-resolved
translatome and transcriptome profiles in the
oligodendrocyte lineage (Fig. 5I, and table S6).
We detected three gene modules: Module 1 and
Module 2 have consistent patterns between
RIBOmapandSTARmapwith thehighest signals
inOPC and OLG2 for most genes, respectively,
whereas Module 3 has the highest RIBOmap
signal in OLG2 but the highest STARmap signal
in OLG1 for most genes (Fig. 5I). This obser-
vation suggested strong translational regulation
for genes in Module 3. We further calculated
the relative translation efficiency (RTE) for
each gene using their ratio of RIBOmap and
STARmap signals and found that genes in
Module 3 had higher RTE in OLG2 than OLG1
and OPC (Fig. 5I). GO analysis revealed that
Module 3 genes are involved in myelin sheath
(i.e., Cldn11 and Tspan2) (Fig. 5, J and K). Spa-
tial analysis of Module 3 RTE patterns and
representative genes across brain regions also
showed the highest RTE value in the fiber
tracts, where OLG2 is enriched (Fig. 5, L to O,
and fig. S16A). We experimentally verified one
example gene Cldn11 and found that Claudin 11
(the protein product of Cldn11) immunostaining
correlated better with Cldn11 RIBOmap signal
than STARmap signal, validating the accuracy
of the spatial translatomic pattern we observed
(fig. S16, B to E). Overall, through the integra-
tive analysis of RIBOmap and STARmap results
in the mouse brain, we identified gene modules
that are translationally regulated during the
maturation of oligodendrocyte lineage cells
across different brain regions. The enhanced
translation efficiency ofModule 3 genes inOLG2
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strongly correlating blocks of colocalized translation modules (LTMs) are
indicated by the gray boxes in the matrix. (F) Bar plots visualizing the most
significantly enriched gene ontology (GO) terms (maximum 3) in each of
the five LTMs. (G) Enlarged gene matrix of LTMs 3 and 4. (H) A representative
cell image showing the spatial distribution of RIBOmap signals of LTMs 3

and 4 genes, overlaid on the ER and cell boundary. (I) Quantification of the
ER-localized percentage of genes of LTMs 3 and 4 versus all the detected
genes. Wilcoxon signed-rank test, ****P < 0.0001. (J) The overlap percentage
of LTM3 genes, LTM4 genes, and all 981 genes with ER-proximal RNAs
identified by APEX-RIP.
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suggests substantial translation remodeling.
This may functionally serve to augment the
protein production for axon ensheathment
and may be mechanistically relevant to the
recent report on altered tRNA modification
during oligodendrocyte maturation (44).
To systematically uncover genes with dif-

ferential spatial patterns between transla-
tome and transcriptome across brain regions,

we performed gene clustering using region-
resolved RIBOmap and STARmap profiles and
identified gene modules with distinct spatial
patterns between RIBOmap and STARmap
across different brain regions (e.g., Module 7,
fig. S17, A to C, and table S6). For example, G
protein subunit gamma 2 (Gng2) in Module 7
has a low RIBOmap signal in the thalamus,
which is consistent with the protein signal

(extracted from the HPA database) and less
correlated with the STARmap signal (fig. S17,
D to I). By contrast, the RNA ISH signals of
Gng2 from the Allen Brain database (41) cor-
related better with the STARmap signal than
RIBOmap (fig. S17, J to M). These results were
consistent with previous studies in which the
translatome is better correlated with the pro-
teome than the transcriptome (7, 11, 12).
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Fig. 4. Spatially single-cell
translatomic profiling
of 5413 genes in the mouse
brain. (A) Diagram of the
imaged mouse coronal hemi-
brain region (red box) for
RIBOmap. (B) Representative
images showing the measure-
ments of localized translation of
5413 genes by RIBOmap in a
mouse coronal hemibrain slice.
(Left) Maximum intensity
(MAX) projection of the first
sequencing round, showing all
five channels simultaneously.
Red square, zoom region.
(Middle) Magnified view of
three cells showing the MAX
projection view of the first
sequencing round. (Right)
Magnified view of three cells
showing the spatial arrangement
of amplicons in a single z-frame
across nine sequencing rounds.
(C) RIBOmap and Allen Brain
ISH images (41) showing the
expression patterns of the three
cell-type marker genes in
comparable coronal hemibrain
sections. (D and E) Uniform
manifold approximation and
projection (UMAP) plot visual-
ization of translational profiles of
119,173 cells collected from
mouse coronal hemibrains.
11 major cell types (D) and
38 subtypes (E) were identified
using Leiden clustering. Cells
identified as mixed cells
numbered 7559 (see Methods)
and were excluded from
the downstream analysis.
(F) Representative spatial cell
type atlas in the imaged coronal
hemibrain region using the
same color code as in (E).
(G) The respective spatial cell
maps of six major cell types in
the imaged coronal hemibrain
region using the same color
code as in (E).
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Fig. 5. Comparison of spatial translatome and transcriptome in the
mouse brain. (A) Two adjacent mouse brain coronal sections were used for
RIBOmap and STARmap, respectively, for generating the spatial cell-type map.
(B and C) The correlation of the translatome and transcriptome of the 5413
genes in each cell type (B) and brain region (C). (D) Diffusion map visualization
of oligodendrocyte and OPC in RIBOmap samples. (E) Diffusion map with
pseudotime trajectory visualization of oligodendrocyte and OPC in RIBOmap
sample generated by Monocle 3. (F) Diffusion map showing the normalized
expression level of oligodendrocyte lineage marker genes Plp1 and Mbp
in oligodendrocytes and OPCs. (G) Cell percentage of oligodendrocyte and
OPC population in each brain region of RIBOmap (top) and STARmap (bottom)
samples. (H) Cell-resolved spatial map for the oligodendrocyte and OPC
population of RIBOmap (left) and STARmap (right) samples. (I) Heatmap

showing the gene clustering using RIBOmap and STARmap results in the
three oligodendrocyte lineage cell types (left) and the relative translational
efficiency (RTE) of these genes in each oligodendrocyte lineage cell type (right).
(J) The top 5 significantly enriched GO terms for Module 3 genes. (K) Heatmap
showing the RIBOmap results (left), STARmap results (middle), and RTE
(right) of example genes in Module 3. (L and M) Heatmap showing the average
RTE values of all Module 3 genes (L) and the RTE value of Module 3 example
genes (M) in each brain region. (N and O) RIBOmp (left) and STARmap (middle)
images show the translation and transcription levels of all Modules 3 genes
(N) and two Module 3 example genes (O), respectively. Each dot in the images
represents a cell and the dot color represents the expression level. (Right)
Spatial map showing the average RTE of all Module 3 genes (N) and the RTE of
two Module 3 example genes (O) in each brain region.
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Fig. 6. Localized translation in the somata and processes of neuronal
and glial cells in the mouse brain. (A) Magnified sections in the hippocampus
and CA1 region showing the different cell types and the interspace.
(B) Schematic of a hippocampal slice showing the somata and processes of
hippocampal neurons, oligodendrocytes, and astrocytes. (C) Section in the CA1
region showing somata reads (blue) and neuronal and glial processes reads
(red). (D) Processes read percentages of individual genes in the 5413-gene
RIBOmap measurements, with genes rank-ordered based on their processes
reads percentage. Nine example genes were labeled inset. (E) The top 10

significantly enriched GO terms for processes-enriched-translation genes. (F) The
top 10 significantly enriched GO terms for somata-enriched translation genes.
GO was analyzed by DAVID (see Methods). (G and H) The spatial translation map
of representative processes-enriched translation genes (G) and somata-enriched
translation genes (H) in the hippocampus, showing somata reads (blue) and
processes reads (red). (I and J) The spatial translation map of glial cell marker
genes, including examples of processes-enriched translation genes (I) and
somata-enriched translation genes (J) in the hippocampus, showing somata
reads (blue) and processes reads (red).
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Subcellular localized mRNA translation
in mouse brain
In addition to brain-wide anatomical analysis,
we investigated potential translational con-
trol at the subcellular level. In the brain tissue,
subcellular localized translation in the cell
body (soma) and periphery branches (processes)
serves as a criticalmechanism to assemble and
adjust the network of neuronal and glial cells
(45–50) in response to physiological signals
during neurodevelopment and memory. To
dissect localized translation in the somata and
processes of neuronal and glial cells, we di-
vided the RIBOmap reads into somata reads
(i.e., inside the cell body area identified by
ClusterMap) (51) and processes reads (i.e., the
rest of the reads) (Fig. 6, A toC).Next,we defined
the top 10% of geneswith the highest and lowest
processes-to-somata ratios as processes- and
somata-enriched translation genes, respec-
tively (Fig. 6D and table S7). GO analysis showed
that processes-enriched translation genes are
associated with translation machinery and
postsynaptic density (Fig. 6E and fig. S18A).
By contrast, somata-enriched translation genes
are associated with the plasma membrane and
extracellular matrix (Fig. 6F and fig. S18B),
corresponding to localized translation at the
ER in the somata. Notably, we observed abun-
dant processes-enriched translation signals in
hippocampal neuropils (Fig. 6G and fig. S18C).
By contrast, the somata-enriched translation
genes showed sparse RIBOmap signals in hip-
pocampal neuropils (Fig. 6H and fig. S18D),
which may be associated with ER translation.
Beyond neuronal genes, we also observed lo-
calized translation in glial cells (Fig. 6, I and
J, and fig. S18, E and F). Overall, we demon-
strated that RIBOmap can be used to study
subcellular-localized translation in processes
of both neuronal and glial cells of the mouse
brain tissue.
In summary, RIBOmap is a spatial trans-

latomics method with single-cell and molec-
ular resolution, which can be used to study
mRNA regulation and protein synthesis in in-
tact cellular and tissue networks. In contrast
to existing approaches, RIBOmap bypasses
complicated polysome isolation steps and
genetic manipulation, thus holding promise
for spatial and single-cell resolved studies in
post hoc human tissue and disease samples.
The detection efficiency and spatial resolu-
tion of RIBOmap can be further increased by
combining with super-resolution imaging,
expansion microscopy, and sparse labeling
(52) to further illustrate translational events
in fine subcellular structures (e.g., dissecting
dendritic and axonic mRNA translation in
neurons). It is noteworthy that the accuracy
of RTE analysis depends on the precise joint
cell typing of RIBOmap and STARmap data.
Therefore, further computational develop-
ment to improve the cross-modality integra-

tion of various spatial omics modalities will
significantly enhance the analysis and inter-
pretation of RIBOmap. Whereas RIBOmap
in this manuscript focuses on mapping RNA
translation, such proximity-based tri-probe
design can be readily adapted to study RNA-
RNA interactions, RNA-protein interactions,
and RNA modifications. In the future, we en-
vision that RIBOmap can be combined with
other imaging-based measurements to enable
spatial multiomics mapping of epigenome,
transcriptome, and translatome in the same
samples for an integrative understanding of
biological systems.
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Spatially resolved single-cell translatomics at molecular resolution
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Editor’s summary
A long-held goal of biological research is to measure protein translation with spatially resolved, single-cell resolution.
Existing methods such as ribosome profiling measure protein translation as an average of many cells and lack spatial
resolution. Zeng et al. developed a highly multiplexed, ribosome-bound messenger RNA imaging technique called
RIBOmap and applied it in single cells in situ to profile translation events with spatial coordinates (see the Perspective
by Fan). Thousands of genes were simultaneously mapped in intact cells and tissues at molecular resolution, revealing
the regulatory principles that specify the location and efficiency of protein production for functionally relevant gene
programs across different cell types and tissue regions. —Di Jiang
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