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SUMMARY
The postnatal development and maturation of the liver, the major metabolic organ, are inadequately under-
stood. We have analyzed 52,834 single-cell transcriptomes and identified 31 cell types or states in mouse
livers at postnatal days 1, 3, 7, 21, and 56. We observe unexpectedly high levels of hepatocyte heterogeneity
in the developing liver and the progressive construction of the zonated metabolic functions from pericentral
to periportal hepatocytes, which is orchestrated with the development of sinusoid endothelial, stellate, and
Kupffer cells. Trajectory and gene regulatory analyses capture 36 transcription factors, including a circadian
regulator, Bhlhe40, in programming liver development. Remarkably, we identified a special group of macro-
phages enriched at day 7 with a hybrid phenotype of macrophages and endothelial cells, which may regulate
sinusoidal construction and Treg-cell function. This study provides a comprehensive atlas that covers all he-
patic cell types and is instrumental for further dissection of liver development, metabolism, and disease.
INTRODUCTION

The liver executes vital functions, including metabolism, detoxi-

fication, bile secretion, and the production of plasma proteins.

Hepatocytes are the main parenchymal cells, accounting for

80% of the liver volume and carrying out most of the metabolic

and synthetic functions (Miyajima et al., 2014). In the adult liver,

the basic architectural unit is the zonated liver lobule, in which

the portal vein (PV), hepatic artery, and bile duct form a portal

triad in the corner of hexagonal lobules, with the central vein

(CV) in the lobule center. The blood enters the lobules from the

PV and hepatic artery and exchanges nutrients and oxygen

with hepatocytes while flowing through sinusoids. The hepato-

cyte heterogeneity along with gradients of oxygen, nutrients,

and hormones, forms metabolic zones between the CV and PV

areas (Jungermann and Kietzmann, 1996). Hepatocytes located

in different layers along the lobule axis express different recep-

tors, translocators, and enzymes.

Liver development is initiated around E8.5–E9.0 in mouse em-

bryos by outgrowth of the primary liver bud from the ventral wall

of the foregut (Zaret, 2002; Zhao and Duncan, 2005), driven by

concerted activities of fibroblast growth factors (FGFs) from

the adjacent cardiac mesoderm and bone morphogenetic pro-

teins (BMPs) from septum transversum mesenchyme (STM).

By E9.5, the parenchymal progenitor cells delaminate from the

bud and invade the surrounding STM as cords of hepatoblasts

that can differentiate into hepatocytes and cholangiocytes, the

biliary epithelium. Subsequent liver organogenesis that gener-

ates the complex architecture involves extensive differentiation
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of parenchymal and nonparenchymal cell (NPC) types, develop-

ment of the biliary tract, sinusoidal capillaries, and vasculature,

and organization of extracellular matrix. Remarkably, the fetal

liver is the main site of hematopoiesis, harboring hematopoietic

stem cells from E10.5 to E16.5 (Crawford et al., 2010; Sasaki

and Matsumura, 1986). During the late stage of embryogenesis,

the liver transitions to a primary organ of metabolism, following

the migration of hematopoietic stem cells to the bone marrow

(Gordillo et al., 2015; Zaret, 2002).

Single-cell RNA sequencing (scRNA-seq) has been used to

characterize the landscape of the mouse gut endoderm and

gastrulation (Nowotschin et al., 2019; Pijuan-Sala et al., 2019)

and to dissect differentiation of the bipotential hepatoblasts

into hepatocyte and cholangiocyte lineages (Yang et al., 2017).

A comprehensive scRNA-seq analysis characterized the onset

of liver development from the specification of endoderm

progenitors to parenchymal and nonparenchymal cell-lineage

diversification and establishment in E7.5–E10.5 mouse embryos

(Lotto et al., 2020). Another study investigated single-cell tran-

scriptomes in endodermal and hepatic cells from E7.5 to E15.5

in Foxa2eGFP mouse line (Mu et al., 2020).

After birth, hepatocytes organize into hepatic lobules, estab-

lishing the zonation structure. However, the driving factors of

zonal construction and how hepatocytes adopt specific meta-

bolic functions remain to be determined. One microarray anal-

ysis demonstrated four developmental stages from E11.5 to

normal adult liver with distinct transcriptome profiles (Li

et al., 2009). The dividing points of four stages are E14.5,

E17.5, and day 3. Another study using bulk RNA-seq focused
ier Inc.
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Figure 1. scRNA-seq identifies hepatic cell types in the developing and adult liver

(A) UMAP visualization of liver cell types at D1, D3, D7, D21, and D56. Colors indicate cell types, including hepatocyte (Hep-neonatal from D1, D3, and D7; Hep-

D21; Hep-D56), endothelial cell (EC), hepatic stellate cell (HSC), cholangiocyte, fibroblast, mesothelial cell (Meso), megakaryocyte, erythroid cell (pro-erythro-

blast, erythroblast, and erythrocyte), T cell, natural killer (NK) cell, B cell (Pro-B, large pre-B, small pre-B, and B), dendritic cell (classical dendritic cell 1 – cDC1,

classical dendritic cell 2 – cDC2, plasmacytoid dendritic cell – pDC, and activating dendritic cell – aDC), monocyte, Dcn+ macrophage (Dcn+ Mac), Kupffer cell,

(legend continued on next page)
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more on postnatal development from E17.5 to day 60

(Gunewardena et al., 2015). However, the bulk data analyses

provided only the average values of different cell types, thus

confounding the critical information on changes in cell-type

composition, cell-cell interaction, and functional heterogeneity.

Combined use of scRNA-seq with single-molecule fluores-

cence in situ hybridization allowed reconstruction of liver zona-

tion and inference of lobule coordinates in fasted adult mice,

with more than half of the liver genes shown to be significantly

zonated, albeit the analysis was focused on hepatocytes only

(Halpern et al., 2017).

In this study,we isolated allmajor hepatic cell types for compre-

hensive analysis of progressive liver development in mice after

birth at single-cell resolution.We revealed the process of hepato-

cytes and sinusoidal endothelial cell (EC) zonation establishment

and identified candidate regulators in hepatocyte development

and their putative roles in tumorigenesis.Weperformedcomputa-

tional predictions of the circadian rhythm development in the liver

aswell as responseof several criticalmetabolicpathways inhepa-

tocytesafterbirth, includingglycolysis, fatty-acidb-oxidation, and

lipid and cholesterol biosynthesis. Remarkably, we identified a

special group of macrophages, enriched on postnatal day 7 and

inferred their role in regulating sinusoidal vascularization and reg-

ulatory T (Treg) cell activity via cell-cell communication analysis.

Herein, we present a detailed single-cell atlas of postnatal liver

development.

RESULTS

scRNA-seq identifies distinct hepatocyte
subpopulations in the early postnatal liver
To investigate liver development at single-cell resolution, we es-

tablished a protocol for efficient isolation of all hepatic cell types,

including hepatocytes and nonparenchymal cells (NPCs), from

themouse liver at high quality (see STARMethods).We collected

cells at postnatal days 1, 3, 7, 21, and 56 (marked as D1, D3, D7,

D21, and D56), which cover the whole period of liver develop-

ment from newborn to adult. All isolated single cells were used

for scRNA-seq on a 10x Genomics platform (Table S1; Fig-

ure S1A). Of a total of 65,891 cells subjected to RNA-seq,

52,834 cells passed quality control based on the number of

genes expressed, the count of raw reads, and the mitochondrial

gene percentage. Cells from the five time points were normalized

and scaled for clustering and dimensional reduction using UMAP

(Figures 1A and 1C).We identified a total of 31 cell types or states

from all ages, based on expression of manually selected well-

known markers (Figure 1B; Table S2). Within the 31 clusters,

we identified three groups of hepatocytes (Figure 1A). Hep-

neonatal consisted of hepatocytes collected at the early stages,
neutrophils (immature neutrophil – iNP, intermediate mature neutrophil – imNP

(GMP), and hematopoietic progenitor cell (HPC).

(B) Expression of selectedmarkers for cell types. The dot size corresponds to the r

the averaged expression levels. See also Table S2.

(C) Temporal UMAP visualization of hepatic cells from (A). The UMAP was separ

(D) tSNEmap of hepatocytes from 5 time points (indicated by 5 colors). Cells in He

(E) Ridge plots displaying the expression distributions of indicated markers in hep

levels.

(F) tSNE map displaying Mki67 expression in hepatocytes from (D).

(G) Violin plots displaying expression levels of indicated markers in hepatocytes
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including D1, D3, and D7, whereas Hep-D21 and Hep-D56

included hepatocytes at D21 and D56, respectively.

We investigated 9,137 assigned hepatocytes from D1 to D56,

expressing the biomarkers Alb and Hnf4a (Figure 1B). These

cells were clustered primarily by time points (Figure 1D), with he-

patocytes fromD1, D3, and D7 located closer, relative to the D21

and D56 cells. Several hepatoblast or hepatocellular carcinoma

(HCC) markers, such as Afp, Ahsg, and H19 (Spear et al., 2006;

Su et al., 2017), were highly expressed by hepatocytes at the

early time points (Figure 1E), suggesting that they are not mature

hepatocytes. Indeed, hepatocytes at D1-D7 were actively prolif-

erating, with high expression ofMki67, encoding the proliferation

marker Ki67 (Figure 1F), as well as other markers of proliferation

(Whitfield et al., 2006), including Mybl2, Top2a, and Ccnd1 (Fig-

ure S1B). Hepatocytes from D21 were at a transition status, with

low expressions of Mki67, Afp, Ahsg, and H19 (Figures 1E and

1F) and also low levels of Hnf4a, Cyp1a2, and Cyp3a11 (Fig-

ure 1G), mature hepatocyte markers in adult liver (D56).

At each time point, we identified 2–3 subgroups (Figures 2A–

2E), with a few marker genes shared at multiple time points.

D1-Hep1, D3-Hep1, and D7-Hep1 highly expressed Rpl10,

Fabp5, and other ribosomal proteins, suggesting active protein

translation. D1-Hep2, D3-Hep2, and D7-Hep2 highly expressed

metabolism-related genes, Cyp4a14 and Cps1 (Figures 2A–2C

and S1C). At later stages, D21-Hep2 and D56-Hep2 highly

expressed Neat1, Mlxipl, and Malat1; D21-Hep3 and D56-

Hep3 expressed Snca and Cd24a (Figures 2D, 2E, and S2A).

Interestingly, D1-Hep3 was featured by unique expression of

Scd2 (Figures 2F and S1C), encoding an isoform of stearoyl-

CoA desaturase (SCD)—a key enzyme for biosynthesis of mono-

unsaturated fatty acids (Miyazaki et al., 2003, 2005). Scd1

expression was abundant at D21 and D56, whereas Scd2 was

mainly expressed at D1 (Figures 2G, 2H, S1D, and S1E). We vali-

dated the distinct Scd1 and Scd2 expression patterns in isolated

hepatocytes by qRT-PCR (Figures 2I–2J and S1L). Similar age-

related expression profiles of Scd1 and Scd2 were observed in

hepatic stellate cells (HSCs) (Figures S1F and S1G) and Kupffer

cells (Figures S1H and S1I), as validated by qRT-PCR in isolated

Kupffer cells (Figures S1J–S1L). Scd2 expression peaked in

Kupffer cells at D7 (Figure S1I), similarly detected by qRT-PCR

(Figure S1K).

We identified two rare hepatocyte subgroups at D21 and D56

(Figures 2D and 2E). Cells in Hep3 highly expressed Cd24a (Fig-

ure S2A), a hepatoblast marker (Ochsner et al., 2007) and hepa-

tocyte progenitors in the adult liver (Qiu et al., 2011). Cd24a

expression was scattered in all subpopulations at neonatal

stages but was constrained in Hep3 at D21 (Figure S2B). Hep2

cells were featured by high expressions of Neat1, Malat1, and

Mlxipl (Figure S2A). Neat1 and Malat1 represent the most
, and mature neutrophil – mNP), basophil, granulocyte-monocyte progenitor

atio of cells expressing the gene in the cell type. The color scales correspond to

ated and colored by time points (n = 2–4 for each time point).

p-neonatal, Hep-D21, and Hep-D56 from (A) were segregated and reanalyzed.

atocytes from (D) at 5 time points. x axis indicates log-normalized expression

from (D). The y axis indicates log-normalized expression levels.



Figure 2. scRNA-seq identifies distinct transcriptome profiles in hepatocytes at each time point

(A–E) tSNE map of hepatocytes from D1 (A), D3 (B), D7 (C), D21 (D), and D56 (E). Colors indicate subpopulations identified.

(F) tSNE map displaying Scd2 expression in D1 hepatocytes from (A).

(G and H) Violin plots displaying Scd1 (G) and Scd2 (H) expression in hepatocytes. y axis indicates log-normalized expression.

(I and J) qRT-PCR analysis of Scd1 (I) and Scd2 (J) expression in isolated hepatocytes. Statistical analysis used Student’s t test. Values are presented asmeans ±

SD. (*** p < 0.001, ** p < 0.01, * p < 0.05) See also Figure S1L for cell-type marker expression.

(legend continued on next page)
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abundant lncRNAs in nuclei, andMlxipl is one of the few predom-

inantly spliced polyadenylated protein-coding mRNAs showing

nuclear retention (Bahar Halpern et al., 2015). Malat1 has been

frequently detected in scRNA-seq datasets, with its expression

associated with mitochondrial RNA (mtRNA) proportions and

cell death (Alvarez et al., 2020). We observed a high correlation

between Malat1 expression and mtRNA proportions in Hep1

and Hep3 cells but not in Hep2 (Figure 2K), supporting a notion

that Hep2 is not a group of poor-quality cells. Next, we performed

small molecule fluorescence in situ hybridization (smFISH) for

Neat1 and Malat1 at D7 and D21 (Figure 2L). Pearson’s correla-

tion analysis showed highly correlated expressions of Malat1

and Neat1, identifying a group of hepatocytes at D21 featured

by their coexpression.

Progressive establishment of the zonation pattern along
the lobule axis
We explored the distribution of hepatocytes in a lobule by

examining expression of four zonation markers, Cyp2f2,

Cyp2e1, Cdh1, and Glul (Figure S2C) (Braeuning et al., 2006).

As reported earlier (Doi et al., 2007; Halpern et al., 2017),

Cyp2e1 was most abundant in the CV area and decreased

gradually toward the PV region, with Cyp2f2 having the oppo-

site pattern. Glul, encoding glutamine synthetase (GS), was

only expressed in pericentral hepatocytes, whereas Cdh1, en-

coding E-cadherin, was expressed in periportal hepatocytes.

The spatial location of hepatocytes at D56 was clearly visible

based on the expression of these four markers, which were

inexplicit at earlier time points (Figure S2C). A previous study

divided hepatic lobules into nine layers based on scRNA-seq

and smFISH data (Halpern et al., 2017). We trained that dataset

with assigned layers and inferred a spatial location of single

cells from hepatocyte clusters (see STAR Methods; Table S3).

Layer 1 represents hepatocytes in the CV area, with layer 9

near PV. The predicted layer distribution at D56 (Figure 2M)

was consistent with the prior probabilities of the proposed adult

liver zonation model (Halpern et al., 2017), with the density

peaking in layer 8. However, the predicted zonation profiles at

earlier time points did not show similar patterns (Figure 2M),

suggesting progressive zonal construction in the postnatal liver.

The heatmaps of the 18 most significant zonation hallmark

genes in hepatocytes demonstrate a gradually distinguishable

CV to PV transition from D1 to D56 (Figure S2E). Glul expression

was high in pericentral hepatocytes starting from D1, albeit with

gradual restriction to the CV area, whereas percentages of PV

gene-positive hepatocytes increased steadily toward D56.

Consistently, immunostaining of E-cadherin and CYP2E1

showed reciprocally increasing expression in PV and CV hepa-

tocytes, respectively (Figure 2N). A previous study reported a
(K) Scatter plot displaying correlation between Malat1 expression (x axis) and mtR

the plot. Malat1 expression is log-normalized value. mtRNA percentage is the p

subpopulations in (D).

(L) (Left) smFISH of Malat1 and Neat1 at D7 and D21. (Right) The quantitative r

between Malat1 and Neat1. Scale bar, 100 mm.

(M) Density plot displaying distribution of predicted layers of hepatocytes. The pred

(PV area). See also Table S3 for gene signatures used for zonation prediction.

(N) (Left) Immunostaining of E-cadherin and CYP2E1 in D3, D7, and D21 livers.

tablishing a clear zonation. (Right) Quantitative results showing the changing exp

(O) tSNE map displaying predicted layers for D56 hepatocytes from (E). Color ba
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similar pattern of E-cadherin and GS in hepatocytes during

postnatal development (Gola et al., 2021). We mapped the pre-

dicted layers back to tSNE visualization at D21 and D56 (Fig-

ures 2O and S2D). Although immunostaining detected opposite

expression patterns of E-cadherin and CYP2E1 in the CV and

PV areas at D21, relative to D3 and D7 (Figure 2N), transcrip-

tomic profiling showed that most hepatocytes from different

layers were still mixed at D21 (Figure S2D), suggesting that

the metabolic zones are not fully developed yet in D21 hepato-

cytes. Consistent with the expression of zone markers (Fig-

ure S2C), zonated hepatocytes could only be distinguished at

D56 (Figure 2O).

We established developing trajectory and calculated the pseu-

dotime for each single cell (Figures 3A and 3B) using Monocle

(Qiu et al., 2017; Trapnell et al., 2014). The D56 hepatocytes

were divided into three groups, D56-p.c., D56-mid, and D56-

p.p., based on the predicted layer and randomly down-sampled

to be comparable with other time points. Because liver samples

were collected from D1 to D56, the real-time points could be

used to evaluate accuracy of the pseudotime calculation (Fig-

ure 3C). At D56, the pericentral hepatocytes (D56-p.c.) showed

up first in the trajectory, followed by the midlobular (D56-mid)

and then the periportal (D56-p.p.). Consistently, zonation predic-

tion also showed steady increases of periportal hepatocytes

toward D56 (Figure 2M), suggesting that the periportal hepato-

cytes are functionally matured later.

Identification of transcription factors in programming
liver development
We ordered single hepatocytes from all time points by pseudo-

time and performed differential expression analysis to identify

genes whose expression changed significantly as a function of

pseudotime. These selected genes were then grouped into six

clusters by pseudotemporal expression patterns (Figures 3D

and S10; Table S4). For each cluster, we performed pathway

enrichment analysis with simplified gene-set collection fromMo-

lecular Signatures Databases (MSigDB) (Subramanian et al.,

2005), with the significantly enriched pathways in each cluster

listed in Table S4. The peripheral circadian clock-related

pathway was identified in cluster 1, where genes were gradually

increased from D1 to D56.

To search for transcription factors (TFs) as developmental reg-

ulators, we performed single-cell regulatory network inference

and clustering (SCENIC) (Aibar et al., 2017), which allows the

construction of gene regulatory network (GRN) using the same

subset of single cells for trajectory analysis. A TF activity matrix

was generated with scores that measure expression levels of the

TF’s downstream targets (regulon) in a single cell. This approach

captured 36 TFs that exhibited significant changes as a function
NA percentage (y axis). Pearson correlation coefficient (0.24) is shown above

roportion of transcripts mapped to mitochondrial genes. Colors indicate D21

esults showing fluorescence signal intensity (MFI) and correlation coefficient

icted layer for each hepatocyte was normalized from layer 1 (CV area) to layer 9

Scale bar, 100 mm. The insets show loss of E-Cad around CV over time, es-

ression levels from PV to CV as the arrow indicates.

r indicates predicted layers from layer 1 (CV area) to layer 9 (PV area).



Figure 3. Dynamic changes of transcription factor activities and metabolic functions in hepatocytes

(A) Pseudotime analysis of hepatocyte development from D1 to D56 with Monocle.

(B) Pseudotime analysis of data in (A). Color indicates inferred pseudotime used for (C)—(K).

(C) Density plot displaying distribution of inferred pseudotime (x axis).

(legend continued on next page)
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of pseudotime in both expression and activity (Figures S3A and

S3B), including Bhlhe40 (Dec1)—a core regulator of circadian

rhythm (Honma et al., 2002; Sato et al., 2004). Its expression

and activity increased dramatically at the later stage (Figure 3E),

consistent with the pathway enrichment data (Figure 3D; Ta-

ble S4).

Among the 36 TFs, Jun, Junb, and Fos are known to play

important roles in tumorigenesis, and we explored the other

TFs in HCC. During postnatal development,Klf9 showed steadily

increasing expression and activity after birth, whereas an oppo-

site pattern was observed for Hmgb2, with the highest level de-

tected at the onset (Figure S3C). RNA-seq data analysis of 371

patients with HCC deposited in TCGA demonstrated that pa-

tients with higher Klf9 expression and activity had longer survival

(Figures S3D and S3E), with the activity scores steadily

decreasing with tumor progression (Figure S3F). In contrast,

we observed shorter survival for patients with high Hmgb2

expression and activity, which also exhibited an increasing trend

with disease progression (Figures S3D and S3E). Thus, patients

with higher expression and activity of a TF active in the early

postnatal stage showed poorer prognosis.
Development of various metabolic functions in
hepatocytes
To explore the development of metabolic functions in hepato-

cytes, we calculated the pathway enrichment scores of gene

sets collected from the Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) database (Kanehisa and Goto, 2000) and

MSigDB (Subramanian et al., 2005). We then ordered cells along

pseudotime and filtered for gene sets whose scores significantly

changed along the trajectory. Furthermore, we visualized gene

sets of interest through fitting a natural spline (see STAR

Methods) and investigated the detailed changes of genes in

each gene set. Hepatocytes use glycolysis as the main energy

source in the fetus because of low oxygen and under-developed

mitochondria. Themetabolic energy source shifts in the newborn

because of the rapid increase in mitochondrial oxidative phos-

phorylation with air breathing (Böhme et al., 1983; Lindgren

et al., 2019). We observed steadily decreasing expression of

hypoxia-related pathway from D1 to D56 (Figure 3F). The hypox-

ia pathway was more prominently suppressed in the PV than in

the CV area at D56, with an opposite pattern observed for the

tricarboxylic acid (TCA) cycle (Figure 3G). Expression of most

glycolysis-specific genes slowly increased when the glucose

level restored and decreased subsequently, whereas gluconeo-

genesis-specific genes, including Pcx and Fbp1, were highly ex-

pressed right after birth (Figure S4A). This observation was

consistent with sudden hypoglycemia at birth because of disrup-

tion of glucose supply from mothers (Böhme et al., 1983), which

could be remedied by enhanced gluconeogenesis. Similarly,

glycogenolysis-specific genes also peaked at early stages (Fig-
(D) Heatmap representing trends of differentially expressed genes as a function

expression patterns. See also Figure S10 and Table S4 for the gene list and enri

(E) Scatter and fitted plots of Bhlhe40 scaled expression and activity values alon

(F–I) Scatter plot and fitted plots of enrichment scores for indicated pathways alo

(J) Heatmap displaying genes from the mevalonate pathway with differential exp

(K) Fitted plots of enrichment scores for indicated pathway along inferred pseud
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ure S4B) to replenish blood glucose, although glycogenesis

showed up later and peaked in periportal hepatocytes at D56.

We observed a peak of fatty-acid b-oxidation immediately af-

ter birth, followed by a rapid decrease over time and slight in-

crease in periportal hepatocytes at D56 (Figure 3H), producing

large amounts of acetyl-CoA. A ketone body-related pathway

showed a similar pattern as b-oxidation, with a peak right after

birth (Figure 3I). The genes involved in mevalonate pathway for

cholesterol biosynthesis were modestly expressed in newborns

but peaked at D21 (Figure 3J), suggesting that the pathway is not

well established in neonatal livers. Short fatty-acid elongation in

mitochondria might be important for hepatocytes in the newborn

liver, although ER dominated this process later during develop-

ment (Figure 3K). Bile secretion peaked in the PV region at D56

(Figure S4C), and enzymes in urea production from ammonia,

encoded byCps1,Otc, Ass1, Asl, and Arg1, increased after birth

and peaked in the PV region at D56 (Figure S4D). However,

metabolism of xenobiotics showed an opposing pattern (Fig-

ure S4E), with the pathway-related genes highly expressed in

pericentral hepatocytes and decreased gradually in the mid-

lobe and PV regions.

Development of liver endothelial andmesenchymal cells
Liver ECs consist of macrovascular endothelial cells (MaVECs),

lymphatic endothelial cells, and liver sinusoid endothelial cells

(LSECs). Liver ECs across all five time points were clustered

into 11 subpopulations (Figure 4A), with non-LSECs sharing

similar transcriptomes over time. LSECs at D56 constituted

two large and continuous groups, periportal and pericentral

LSECs (EC1 and EC2) (Figures 4B and S5C). In contrast, we

observed higher heterogeneity in premature LSECs (EC3–EC6),

without clear zonation separation. A small group of EC9 cells

that expressed proliferation and cell-cycle-related genes were

detected at all time points, albeit with a decreasing trend (Fig-

ure 4B). All EC9 cells were in the G2/M or S phase as predicted

by cell-cycle marker genes (Figure S5D), suggesting that a pool

of LSECs with proliferation potential is maintained in developing

liver. MaVECs highly expressed the marker gene Vwf but were

negative for LSEC markers Stab2 and Lyve1 (Géraud et al.,

2010) (Figure S5A); these cells were further divided into two sub-

types based on their physical location. Central vein vascular

endothelial cells (CVECs), labeled as EC11, expressed CV

markers Rspo3 and Wnt2, and EC7, portal vein vascular

endothelial cells (PVECs), expressed PV markers Dll4 and

Efnb2 (Figure S5B) (Halpern et al., 2018). These markers effec-

tively distinguished zonation patterns for both LSECs and

MaVECs. The lymphatic ECs (EC10) expressed Thy1 (Jurisic

et al., 2010) and also Stab2 and Lyve1 (Figure S5A).

Previous single-cell analysis of the embryonic liver from E7.5

to E10.5 (Lotto et al., 2020) showed a developmental trajectory

from hemangioblasts to embryonic endothelial cells. By

combining the embryonic with our neonatal endothelial cell
of inferred pseudotime. Genes in row are grouped into 6 clusters based on

ched pathways.

g pseudotime. The inferred pseudotime was stretched from 0 to 100.

ng inferred pseudotime. Only fitted plots are shown for (H) and (K).

ression along inferred pseudotime.

otime.



Figure 4. Development of liver endothelial and mesenchymal cells

(A) tSNE map of endothelial cells from D1 to D56. Cells in EC from Figure 1A were segregated and reanalyzed.

(B) Time point compositions of each EC subpopulation labeled in (A).

(C and D) UMAP visualization of cells from D1, D3, D7, and embryonic cells (including hemangioblasts, hematopoietic cells, HSEC, and endothelium) from

published data (Lotto et al., 2020). Colors indicate endothelial cell subpopulation labeled in (A) (C) or embryonic cell types (D).

(legend continued on next page)
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data (Figures 4C, 4D, and S5E), we constructed a trajectory from

E7.5 to D7 (Figure 4E). The hemangioblasts with highest differen-

tiation potential were defined as the root cells. Starting from the

root, hemangioblasts differentiated into hematopoietic or endo-

thelial cells at branch point 16. These early endothelial cells

further differentiated into LSECs or MaVECs at branch point 8.

Around this branching point, proliferating LSECs (EC9), which

emerged after birth, exhibited similar transcriptomic profiles as

early embryonic endothelial cells. Within the LSEC branch,

neonatal cells developed from EC3, EC4 to EC6, and EC5.

Shared the other branch with embryonic MaVECs is EC11, the

neonatal CVECs. However, EC7 emerged later, consisting of

neonatal PVECs, likely differentiated from EC3, the earliest sub-

type of neonatal LSECs. These analyses suggest that endothelial

cells in PV and CV areas take separate developmental paths and

that the PV area is remodeled after birth, with concerted differen-

tiation of hepatocytes and endothelial cells in the region.

Taking similar approaches used for hepatocytes, we con-

structed a developmental trajectory of LSECs and calculated

pseudotime for each single cell (Figures 4F, S5F, and S5G).

This approach identified differentially expressed genes as a

function of pseudotime, clustered by their pseudotemporal

expression patterns (Figure S5H), and with the significantly en-

riched pathways listed in Table S5. Among genes that decreased

during postnatal development, we observed enrichment of the

VEGFA–VEGFR signaling pathway. We also detected several

glycolysis- and hypoxia-related pathways, showing that LSECs

experienced similar metabolic changes as hepatocytes after

birth. For upregulated genes, we observed a significant enrich-

ment of interferon pathways. Several TFs, including Bhlhe40,

Tcf4, Hmgb1, and Meis2, exhibited significant changes in

expression and activity along the LSEC developmental trajectory

(Figure 4G). These TFs are possible regulators of sinusoidal

buildup, of which Meis2 was mainly expressed in endothelial

cells (Figure S5I). The expression of Hdac1, encoding a histone

deacetylase, was also remarkably changed in the process (Fig-

ure 4G). Interestingly, the circadian regulator Bhlhe40 showed

opposite expression patterns between LSECs and hepatocytes

(Figure 3E).

Mesenchymal cells have been reported as the source of myo-

fibroblasts after liver injury, especially HSCs (Iwaisako et al.,

2014). We identified three main clusters of mesenchymal cells

(Figure 1A), including HSCs, fibroblasts, and mesothelial cells

(Meso). By segregating these cells, we identified more mesen-

chymal cell subgroups (Figure 4H), which were initially included

within other mesenchymal cells. Two subgroups, Meso1 and

Meso2 (Figure 4H), shared mesothelial markers Gpm6a (Li

et al., 2013), Upk3b, and Wt1 (Figure S5J), albeit with distinct

transcriptome profiles. Alcam, a marker of embryonic mesothe-

lial cells in the mouse liver (Li et al., 2013), was expressed in

Meso1, but not Meso2. Of note, Meso1 was mainly constituted
(E) Pseudotime analysis of cells from (C) with Monocle 3. Root cells are labeled i

(F) Pseudotime analysis of ECs from D1 to D56 with Monocle. Color indicates in

(G) Fitted plot of scaled expression and activity values along pseudotime of indic

(H) tSNEmap ofmesenchymal cells fromD1 to D56. Cells inMeso, HSC, and fibrob

assigned.

(I) tSNE map of mesenchymal cells from (H).

(J) Time point compositions of each cell type labeled in (H).
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by cells at the neonatal stage (Figures 4I and 4J). A previous line-

age tracing experiment showed that these mesothelial cells

migrated inward from liver surface and differentiated into

HSCs, fibroblasts, and vascular smooth muscle cells (VSMCs)

during liver development (Asahina et al., 2011). Meso2 cells ex-

pressed Igfbp4, Cd34, and Clec3b and emerged later at D21

and D56, in replacement of Meso1. In addition, we detected

two fibroblast clusters, capsular fibroblast (CF), located beneath

the liver surface, and portal fibroblast (PF), near the portal triad

(Balog et al., 2020). A group of cells with proliferating potential

was also identified (Figure S5K), which expressed HSCmarkers,

Reln and Lrat, or PF markers, Cd34 and Clec3b (Dobie et al.,

2019) (Figure S5J).

Dynamic changes of hematopoietic and immune cell
populations
Our dataset fromD1 to D56 showedmany clusters of developing

hematopoietic cells, including hematopoietic progenitor cells

(HPCs), granulocyte-monocyte progenitors (GMPs), B cells,

neutrophils, and erythroid lineages (Figure 1A). Both HPCs and

GMPs expressed Cd34, a hematopoietic precursor marker (Fig-

ure 1B). The development trajectories of these cell types were in-

ferred by force-directed graph (FDG) analysis (Figure 5A), which

corroborated the predicted relationships shown in UMAP visual-

ization (Figure 1A). HPCs were connected to three main paths,

developing toward GMPs, erythroid lineage, and B cells. GMPs

then gave rise to monocytes and neutrophils. Based on markers

used previously (Bjerregaard et al., 2003; Borregaard and Cow-

land, 1997), neutrophil lineages exhibited three major stages: (1)

immature neutrophils (iNP; or neutrophilic promyelocytes), ex-

pressing high levels ofMpo and Elane (encoding elastase); (2) in-

termediate mature neutrophils (imNP; or neutrophilic myelocytes

and metamyelocytes), expressing Ltf (encoding lactoferrin); and

(3) mature neutrophils (mNP) (Figure 1B). Of note, this neutrophil

lineage was not detected in a recent scRNA-seq study of the hu-

man fetal liver (Popescu et al., 2019). Similarly, B cell lineage was

divided into several stages. First, the immunoglobulin heavy

chain gene arrangement occurred in pro-B cells with a surrogate

light chain expressed. This process requires expression ofRag1/

2 for gene rearrangement and VpreB for the surrogate light chain

(Figure 1B). A light chain rearrangement occurred in small pre-B

cells expressing Rag1/2. Gene rearrangement, and the expres-

sion of Rag1/2, stopped in a middle stage, called large pre-B

cells. Based on reported markers (Elliott and Sinclair, 2012),

we divided the erythroid lineage into three stages, which shared

similar features of hematopoiesis in adult bone marrow. Hepatic

hematopoiesis persisted after birth but receded rapidly, barely

detectable after D7 (Figures 5B andS6A–S6D). The development

of T cell and NK cell lineages was not observed in the postnatal

liver. It was reported previously (Rugh, 1990) that T cell develop-

ment in the liver occurred much earlier than B cells, with T cell
n white circle 1; branch points are labeled in black circles with numbers.

ferred pseudotime.

ated genes. The inferred pseudotime from (F) was stretched from 0 to 100.

last from Figure 1Awere segregated and reanalyzed. Colors indicate cell types



Figure 5. Dynamic changes of hematopoietic and immune cell populations

(A) Force-directed graph (FDG) of HPCs, GMPs, erythroid cells, neutrophils, B cells, DCs, basophils, monocytes, and Kupffer cells.

(B) Cell-type compositions of immune cells at each time point.

(C) tSNE map of T and NK cells from D1 to D56. Cells in T and NK clusters from Figure 1A were segregated and reanalyzed.

(D) tSNE map displaying Foxp3 expression in cells from (C).

(E) Percentages of Treg cells out of all T cells at indicated time point.

(F) Violin plots displaying differentially expressed genes in Treg cells at D7, D21, and D56.
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progenitors migrating to thymus around E13. The percentages of

T and NK cells as well as dendritic cells (DCs) gradually

increased over time (Figures S6E and S6F), suggesting their he-

patic recruitment from thymus or bone marrow after birth.

Because of their high levels of heterogeneity, the observed

changes in percentages of T or natural killer (NK) cells from D1

to D56 (Figure S6E) might not depict the patterns for individual

subtypes. Thus, we segregated these cells and analyzed them
separately. Within the eleven T and NK cell subtypes identified

(Figures 5C and S6G), Treg cells (Figure 5D) displayed a unique

change over time, with a peak at D7 (Figures 5E and S6H).

Consistently, a recent report (Li et al., 2020) showed hepatic

accumulation of Treg cells between D7 and D14 after birth. We

compared differentially expressed genes in Treg cells between

D7, D21, and D56. Among the top-ranked genes were Brd1

and Gtf2h3 (Figure 5F), likely involved in cell proliferation
Developmental Cell 57, 398–414, February 7, 2022 407



Figure 6. A subtype of macrophages emerges transiently around postnatal day 7

(A and B) UMAP visualization of Adgre1 (A) and Csf1r (B) expression levels in all cells included (Figure 1A).

(C) tSNE map of Kupffer cells from D1 to D56. Cells in Kupffer clusters from Figure 1A were segregated and reanalyzed.

(D) Percentages of indicated cell types out of total immune cell population.

(legend continued on next page)
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(Drapkin et al., 1996; Mishima et al., 2011; Mishima et al., 2014).

Treg cells also highly expressed Grk6, encoding a G-protein-

coupled receptor kinase that phosphorylates CXCR4 upon

CXCL12 binding (Busillo et al., 2010).

A unique subtype of macrophages emerges transiently
around postnatal day 7
A Kupffer cell cluster was located close to dendritic cells (DCs)

and monocytes on UMAP (Figure 1A). This cluster expressed

Kupffer cell markers Adgre1 (encoding F4/80) and Csf1r (Gin-

houx and Guilliams, 2016) (Figures 1B, 6A, and 6B), with a

peak at D7 (Figure 6D). When analyzing Kupffer cells separately

(Figures 6C, S7A, and S7B), we identified six subtypes, KC1–

KC6, with distinct gene expression profiles (Figure S7C) and

TF activities (Figure S7D). The KC6 group emerged at D1, with

high expression of Ccl9 and high TF activity of Nfil3. KC5 mainly

emerged at D56, featured by Ly6a and Cxcl13 expression and

high TF activity of Zbtb7a and Irf2. Other subtypes (KC1–KC4)

consisted of Kupffer cells from D1 to D21, with most gene

expression patterns conserved over time. KC1 showed high

expression of ribosomal proteins and Myc activity, and KC4

included actively proliferating cells.

We identified a subcluster of macrophages (Dcn+ Mac),

featured by high expression of decorin (Table S2), a member of

small leucine-rich proteoglycan family (Iozzo, 1999). Besides

the traditional Kupffer cell markers, Adgre1 and Csf1r (Figures

1B, 6A, 6B, and 6E), theDcn+ macrophages also expressed gen-

eral EC markers Pecam1, Eng, Kdr, and LSEC markers Lyve1

and Clec4g, albeit negative for a MaVEC marker Vwf (Figures

1B, 6E, and 6F). Almost all the Dcn + macrophages emerged at

D7 (Figure 6D), which prompted a thorough investigation of

this unique subtype. We validated the existence of Dcn+ Mac

and its abundance at D7 by coimmunostaining for the LSEC

marker LYVE-1, the endothelial cell-specific TF, ERG, and the

macrophage marker F4/80 (Figure 6G). FACS analysis also de-

tected this cell type and validated its peak level at D7 (Figure 6H).

RNA velocity analysis showed a developmental trajectory of

Dcn+ Mac from Kupffer cells rather than ECs (Figure 6I). We

plotted top 10 genes significantly upregulated in Dcn+ macro-

phages via phage portraits (Figure S8A), which requires further

validation by cell-lineage tracing. The group of Kupffer cells at

the transition point (Figure 6J; transitioning KC, labeled by an

asterisk) was identified at D1, D3, and D7 (Figure 6K), showing

differentiation potential at the neonatal stage. Then, we mapped

six Kupffer cell subpopulations in this UMAP (Figure S8B). The

transitioning KCswere derived primarily from KC2 and displayed

high TF activity of Pou2f2 and Tcf7l2 (Figure S7D), which might

driveDcn+Mac transition fromKC2. Several recent reports (Cha-

karov et al., 2019; Lim et al., 2018) addressed macrophages
(E) Dot plots displaying expression levels of selectedmarkers for indicated cell typ

The color corresponds to the scaled average expression level.

(F) UMAP visualization of Lyve1 expression levels in all cells included in this stud

(G) Immunostaining of F4/80, ERG, and LYVE-1. Representative image taken un

Scale bar, 10 mm.

(H) Quantified FACS data of CD146+ F4/80+ cells in isolated NPCs, showing an en

by Dunn’s test (** p < 0.01).

(I) RNA velocities of Kupffer cell, EC, and Dcn + Mac from D1 to D56, visualized

(J) Clustering analysis of cells from (I). The Kupffer cell cluster showing differenti

(K) Time point composition of asterisk labeled cluster (transitioning KC) from (J).
expressing one EC marker, LYVE1. In contrast, the Dcn+ Mac

detected in this study exhibited a combination of macrophage

and EC gene expression profiles. To identify genes selectively

expressed in transitioning KC, we performed differential gene

expression analysis between the transitioning KC and other

Kupffer cells located far from Dcn+ Mac (Figure 6J). Most genes

highly expressed in lung LYVE1-expressing macrophages,

including Fcna, Marco, Cd163, Cd209f, Timd4, and Mrc1 (Cha-

karov et al., 2019; Lim et al., 2018), were significantly expressed

in transitioning KC (Figure S8C).

By ligand-receptor analysis using CellPhoneDB (Efremova

et al., 2020), we identified cell types actively interacting with

Dcn+ Mac, including HSCs, fibroblasts, mesothelial cells, chol-

angiocytes, VSMCs, and all subtypes of ECs, with much less in-

teractions observed between these cell types and Kupffer cells

(Figures 7A and S9A). We then examined signaling cross-talk

related to Dcn+ Mac, as compared with Kupffer cells (Figure 7B).

To explore possible influences of Dcn+ Mac on other cell types,

we focused on pairs with ligands expressed byDcn+Mac and re-

ceptors expressed on other cell types. This analysis detected

several VEGF-related pairs between Dcn+ Mac and LSEC,

none of which was identified between Kupffer cell and LSEC.

Dcn+ Mac also secreted CXCL12 that binds CXCR3 and

CXCR4 on Treg cells. Together with high expression of Grk6 in

Treg cells at D7 (Figure 5F), these data may be indicative of the

significance of Treg accumulation at D7 (Figure 5E) and potential

cross-talk between Treg and Dcn+ Mac cells.

Intercellular communications between hepatocytes
and NPCs
Using the same method described above, we also investigated

cross-talk between hepatocytes and NPCs and the dynamic

changes in intercellular signaling at the early postnatal stages.

We performed ligand-receptor analysis for all five time points

individually. To investigate the cell-cell interactions that regulate

hepatocyte zonation, we filtered for significant pairs with the re-

ceptors expressed on hepatocytes and previously shown to be

zonated. This analysis identified RSPO1/3-LGR5 interactions

between LSECs and hepatocytes (Figure 7C). RSPO3-LGR5

was significantly expressed across all time points, whereas

RSPO1-LGR5 was only identified at the neonatal stage. The

binding of RSPO to LGR5, present on pericentral hepatocytes,

promotes Wnt signaling, which modulates zonated metabolic

activities in the pericentral area (Planas-Paz et al., 2016; Rocha

et al., 2015; Torre et al., 2010). This signaling event was also

identified between Kupffer cells and hepatocytes across all

time points (Figure 7D). We also identified ASGR2-F8 interaction

between hepatocytes and LSECs. ASGR2 is amarker of peripor-

tal hepatocytes (Halpern et al., 2018). We then counted the
es. Dot size corresponds to the ratio of cells expressing the gene in the cell type.

y (Figure 1A).

der confocal microscope. Dcn+ Mac cells were indicated by white arrowhead.

richment at D7. Statistical analysis was done with Kruskal-Wallis test, followed

on UMAP.

ation potential to Dcn+ Mac was labeled by asterisk (transitioning KC).
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Figure 7. Predicted hepatic cell-cell interac-

tions

(A) Bar plot comparing numbers of significant ligand-

receptor interactions between indicated cell types

and Dcn+ Mac or Kupffer cells.

(B) Dot plot of selected ligand-receptor interactions

between Dcn+ Mac and indicated cell types (Dcn+

Mac|LSEC, Dcn+ Mac|Treg, and Dcn+ Mac|HSC) or

between Kupffer and LSEC (Kupffer|LSEC, Kupffer|

Treg, and Kupffer|HSC). For example, ‘‘molecule-

A_moleculeB in cell C|cell D’’ indicates the putative

interaction between molecule A expressed by cell

type C and molecule B expressed by cell type D. p

values are indicated by circle sizes, and the means

of the average expression levels of interacting ligand

and receptor are indicated by color.

(C and D) Dot plot of selected ligand-receptor in-

teractions between hepatocytes and LSECs (C) or

Kupffer cells (D). Interacting pairs in red indicate li-

gands expressed by hepatocytes; interacting pairs

in blue indicate ligands expressed by LSECs or

Kupffer cells.
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interactions between hepatocytes and all other NPCs (Fig-

ure S9B). For almost all cell types closely interacting with hepa-

tocytes, the most active cross-talk occurred at D7, as compared

with other time points. Some interaction pairs, including

PDGFRB-PDGFD between hepatocytes and LSECs (Figure 7C)

and NOV-NOTCH1 between hepatocyte and Kupffer cells (Fig-

ure 7D), were only identified at D7. Therefore, this scRNA-seq

analysis revealed a critical time point D7 in the postnatal liver,

involving numerous molecular and cellular activities and

communications.

DISCUSSION

This study provides the detailed blueprint that describes step-

wise changes at single-cell resolution to illustrate how a neonatal

liver develops into a major metabolic organ. Trajectory analysis

revealed progressive and concerted development and functional

maturation of hepatocytes and LSECs in a metabolic zone con-

struction. Complex interactions between hepatic cell types are

apparently involved in coordinating developmental programs in

the early stages. Remarkably, we identified a group of macro-

phages at D7 that exhibits a hybrid phenotype of macrophages

and endothelial cells. Intercellular interaction analysis suggests

a putative role of Dcn+ Mac in regulation of sinusoidal vascular-

ization and Treg cells.

Hepatocytes displayed high levels of heterogeneity in the early

developmental stages after birth. In the neonatal liver, hepato-

cytes highly expressed hepatoblast or HCC markers, including

Afp, Ahsg, and H19. We also identified a unique Scd2+ hepato-

cyte subtype at D1, whose expression was gradually replaced

by Scd1, suggesting a specific role of Scd2 in neonatal liver
410 Developmental Cell 57, 398–414, February 7, 2022
metabolism. A rare Cd24a+ hepatocyte

group was identified at D21 and D56, rep-

resenting a candidate for hepatocyte pro-

genitors, in agreement with previous data

(Qiu et al., 2011). By combining these he-

patocyte subpopulations, pseudotemporal
analysis enabled us to explore the developmental trajectory

based on the samples collected from multiple time points. The

unbiased analysis of upstream regulators and enriched path-

ways predicted an establishment of liver circadian clock after

birth regulated by factors, such as Bhlhe40 (Dec1), and also in-

ferred dynamic changes of several critical metabolic pathways

in adaptation to dramatic environmental changes in neonatal

life. A previous study measured expression of 25 selected meta-

bolism-related genes in liver lysates using real-time PCR (Naka-

gaki et al., 2018). We found that most of these pathways

changed in an increasing trend, although few metabolic path-

ways peaked in newborns and decreased later. Due to a sudden

hypoglycemia environment occurring at birth due to disruption of

glucose supply from mothers, neonates had two strategies to

overcome this crisis, by enhancing gluconeogenesis and glyco-

genolysis. Another mechanism is the enhanced b-oxidation to

generate acetyl-CoA for synthesis of ketone bodies as energy

source. We also detected dynamic changes in fatty-acid meta-

bolism in the ER and mitochondria, which requires further

investigation.

The scRNA-seq data analysis suggests that the metabolic

zonation profile is not fully developed before weaning at D21.

Although immunostaining showed an E-cadherin+ layer of hepa-

tocytes surrounding PV at D21 (Figure 2N), combined transcrip-

tome profiling and zonation prediction demonstrated that the

D21 hepatocytes had not shared different metabolic labors yet

as in the adult liver. Furthermore, the periportal area matured

later than the pericentral area, as suggested by zonation predic-

tion (Figure 2M) and pseudotemporal analysis (Figure 3C). Pseu-

dotemporal analysis with integrated embryonic (Lotto et al.,

2020) and postnatal datasets revealed similar developmental
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pattern for endothelial cells (Figures 4C–4E). As reported earlier,

the development of the vascular system in portal triad is initiated

soon after birth (Swartley et al., 2016). Consistent with previous

data (Planas-Paz et al., 2016; Rocha et al., 2015), we identified

RSPO1/3-LGR5 interactions between LSECs and hepatocytes

and between Kupffer cells and hepatocytes (Figures 7C and

7D), suggesting an important role in controlling hepatocyte zona-

tion. Other ligands expressed by LSECs or Kupffer cells,

including PDGF, HGF, PGF, and BMP, might also regulate hepa-

tocyte proliferation and zone remodeling at the early stage.

In previous experiments, we observed highly similar tran-

scriptomic profiles between liver tumors and 1-month-old

young liver tissues (Wang et al., 2019). The shared gene

expression patterns between actively developing liver tissue

and liver tumor will be instrumental for search of new bio-

markers in HCC initiation and progression. Indeed, a rare hepa-

tocyte subpopulation highly expressing Scd2 was enriched

only in the D1 liver. Elevated expression of Scd2 was also de-

tected in Myc-induced HCC (Chen et al., 2021), accompanied

by significantly reduced Scd1 expression, showing a similar

pattern as D1 hepatocytes. Several upstream regulators identi-

fied in developmental trajectories showed correlation with HCC

patients’ survival. A premature circadian clock program was

observed in neonatal liver, and circadian deregulations drive

spontaneous HCC development (Hanley et al., 2021; Kettner

et al., 2016).

Starting around E13–E14, hematopoietic cells migrate from

the embryonic liver to thymus, spleen, and bone morrow (Craw-

ford et al., 2010). We did observe the complete processes of

erythrocyte, neutrophil, and B cell lineage differentiation from

progenitor cells in the D1, D3, and D7 datasets (Figure 5A).

Consistent with previous bulk RNA-seq data of the liver (Gune-

wardena et al., 2015; Li et al., 2009), D7 is a critical time point,

at which we identified highly enriched Dcn+ Mac and Treg cells

and observed active interactions between hepatocytes and

other cell types.Dcn+ Mac is a previously unrecognized cell sub-

type with a hybrid phenotype of macrophages and endothelial

cells. The coexpression of LYVE-1, ERG, and F4/80 in one single

cell visualized under a confocal microscope indicates that Dcn+

Mac is not a doublet mistakenly detected by scRNA-seq or

FACS. The Dcn+ Mac cells were likely derived from Kupffer cells

and acquired endothelial cell markers and engaged in interaction

with LSEC, HSC, fibroblast, mesothelial, and Treg cells. Our data

also suggest that CXCL12-GRK6-CXCR4 signaling between

Dcn+ Mac and Treg cells may promote Treg-cell recruitment

and activity.

Although this work fills in a gap of knowledge on the post-

natal stage of development between embryonic and adult livers

at single-cell resolution, several key results may provide fresh

views on previously unappreciated high levels of hepatocyte

heterogeneity in the neonatal and postnatal livers, the progres-

sive construction of metabolic zones in hepatocytes from peri-

central to periportal regions, and the concerted development of

hepatocytes and neighboring endothelial cells, HSC, and

Kupffer cells. Further dissection of the newly identified Dcn+

Mac cell functions and their interactions with other hepatic

cell types may contribute to better understanding of temporal

development of the unique immune-tolerant environment in

the liver.
Limitations of the study
For scRNA-seq analysis, we isolated single cells from the

neonatal livers from D1 to D7 without perfusion because it

was unnecessary and not feasible, although a two-step perfu-

sion method was used for isolation of single cells from D21

and D56 livers. The two different isolation methods may affect

proportions of hepatic and hematopoietic cells captured in

the analysis. The conclusions inferred by bioinformatics

methods, such as trajectory analysis, RNA velocity, and zona-

tion prediction, require further validation by experimental and

functional investigations.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Immunostaining antibodies

Rabbit monoclonal anti-E-Cadherin Santa Cruz Cat# sc-7870; RRID: AB_2076666

Rabbit polyclonal Anti-CYP2E1 Santa Cruz Cat# sc-133491; RRID: AB_10608738

Rat monoclonal anti-F4/80 eBioscience Cat# 14-4801-82; RRID: AB_467558

Rabbit monoclonal anti-ERG Abcam Cat# ab92513; RRID: AB_2630401

Goat polyclonal anti-LYVE-1 R&D Systems Cat# AF2125, RRID: AB_2297188

FACS antibodies

LIVE/DEAD Fixable Aqua Stain ThermoFisher Cat# L34957

Rat monoclonal anti-CD16/CD32 eBioscience Cat# 14-0161-85; RRID: AB_467134

Rat monoclonal anti-CD45, PerCP-Cy5.5 BioLegend Cat# 147706; RRID: AB_2563538

Rat monoclonal anti-B220, BV711 BioLegend Cat# 103255; RRID: AB_2563491

Rat monoclonal anti-CD146, PE-Cy7 BioLegend Cat# 134714; RRID: AB_2563109

Rat monoclonal anti-F4/80, Alexa Fluor 594 BioLegend Cat# 123140; RRID: AB_2563241

Chemicals, peptides, and recombinant proteins

Hanks’ Balanced Salt solution (HBSS) Gibco Cat# 14185-052; 14065-056

EGTA Sigma-Aldrich Cat# E3889

HEPES HyClone Cat# SH30237.01

DNase I Roche Cat# 10104159001

Collagenase H Roche Cat# 11074032001

ACK Lysing Buffer Gibco Cat# A10492-01

Percoll Cytiva Cat# 17-0891-02

Dulbecco’s Modified Eagle’s

Medium (DMEM)

gibco Cat# 10313-021

Fetal bovine serum (FBS) HyClone Cat# SH30070.03

Tissue-Tek O.C.T. Compound Sakura Cat# 4583

Paraformaldehyde (PFA) Sigma-Aldrich Cat# P6148

Triton X-100 Sigma-Aldrich Cat# X100

Bovine Serum Albumin Spectrum Cat# A3611

VECTASHIELD with DAPI Avantor Cat# H-1200

Anti-Fade Fluorescence Mounting Medium

- Aqueous, Fluoroshield

Abcam Cat# ab104135

Critical commercial assays

gentleMACS Dissociator Miltenyi Cat# 130-093-235

gentleMACS C Tubes Miltenyi Cat# 130-093-237

MidiMACS separator Miltenyi Cat# 130-042-302

LS columns Miltenyi Cat# 130-042-401

Dead cell removal kit Miltenyi Cat# 130-090-101

Chromium Single Cell 3’ Reagent Kits

(v2 Chemistry)

Miltenyi Cat# CG00052

Oligonucleotides

Scd1 – qPCR FWD Eton Bioscience GCGATACACTCTGGTGCTCA

Scd1 – qPCR REV Eton Bioscience CCCAGGGAAACCAGGATATT

Scd2 – qPCR FWD Eton Bioscience GCTCTCGGGAGAACATCTTG

Scd2 – qPCR REV Eton Bioscience CAGCCCTGGACACTCTCTTC

F4/80 – qPCR FWD Eton Bioscience CTTTGGCTATGGGCTTCCAGTC

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

F4/80 – qPCR REV Eton Bioscience GCAAGGAGGACAGAGTTTATCGTG

Clec4f – qPCR FWD Eton Bioscience CTTCGGGGAAGCAACAACTC

Clec4f – qPCR REV Eton Bioscience CAAGCAACTGCACCAGAGAAC

Lyve1 – qPCR FWD Eton Bioscience GAAAACTCTGTTGCGGGTGT

Lyve1 – qPCR REV Eton Bioscience CCTCCAGCCAAAAGTTCAAA

Alb – qPCR FWD Eton Bioscience GCAGATGACAGGGCGGAACTTG

Alb – qPCR REV Eton Bioscience CAGCAGCAATGGCAGGCAGAT

Gapdh – qPCR FWD Eton Bioscience CGACTTCAACAGCAACTCCCACTCTTCC

Gapdh – qPCR REV Eton Bioscience TGGGTGGTCCAGGGTTTCTTACTCCTT

Deposited data

Adult hepatocytes (processed

scRNA-seq data)

(Halpern et al., 2017) Supplementary tables

E7.5, E8.75, E9.5 and E10.5 endothelial cell

(processed scRNA-seq data)

Single Cell Portal

(Lotto et al., 2020)

SCP1022

Software and algorithms

FlowJo v10.6.2 BD https://www.flowjo.com

GraphPad Prism 9 GraphPad https://www.graphpad.com/scientific-

software/prism/

ImageJ/FIJI ImageJ https://imagej.net/Fiji

Cellranger v3.0.2 10x Genomics https://www.10xgenomics.com/

R The R Foundation https://www.r-project.org/

Seurat v3.0.2 Butler et al., 2018; Stuart et al., 2019 https://github.com/satijalab/seurat

Monocle Cao et al., 2019; Qiu et al., 2017;

Trapnell et al., 2014

http://cole-trapnell-lab.github.io/monocle-

release/

SCENIC v1.1.2.2 Aibar et al., 2017 https://github.com/aertslab/SCENIC

RNA Velocity La Manno et al., 2018 http://velocyto.org/velocyto.py/index.html

scVelo Bergen et al., 2020 https://scvelo.readthedocs.io/

CellphoneDB Efremova et al., 2020 https://github.com/Teichlab/cellphonedb

Other

HCR FISH probe: Neat1 Molecular Instruments GenBank: NR_131212.1

HCR FISH probe: Malat1 Molecular Instruments GenBank: NR_002847.2
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gen-

Sheng Feng (gfeng@health.ucsd.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The accession number for the raw data and processed data reported in this paper is GSE171993.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All animals used in this study were in C57BL/6J background. The animal protocol (S09108) was approved by the IACUC at the

University of California San Diego.
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METHOD DETAILS

Liver cell isolation for scRNA-seq
For neonatal samples (D1, D3 and D7), 4 male mice were included in each time point. Decapitation was used for neonate sacrifice

because they are resistance to hypoxia at this age. First, fetal livers were removed from the body, cut into small pieces and rinsed

using Ca2+-free HBSS to reduce blood. Next, liver pellets were transferred into HBSS buffer with collagenase H and DNase I, further

dissociated with gentleMACS program m_liver_03 and then incubated at 37�C for 30 minutes. After incubation, the additional gen-

tleMACS programm_liver_04 was used for more complete dissociation. Liver was passed through a 100 mm cell strainer. Cells were

then centrifuged at 50 g for 3minutes, in order to separate hepatocytes (in pellets) from non-parenchymal cells, NPCs (in suspension).

In non-parenchymal cell suspension, ACK buffer was added to lyse red blood cells. Hepatocytes and NPCswere further washedwith

PBS separately, resuspended in DMEM with 10% FBS, counted with hemocytometer and mixed by original ratios of cell numbers.

For D21 and D56 samples, 2 male mice were included for each time point. Mice were first sacrificed using CO2. Liver was perfused

using a 2-step method with Ca2+-free HBSS buffer and then with collagenase H in HBSS buffer containing Ca2+, gently minced and

passed through a 100 mmcell strainer. Cells were centrifuged at 50 g for 3min, in order to separate hepatocytes (in pallets) fromNPCs

(in suspension). To remove dead cells and debris, the pelleted hepatocytes were resuspended in 45%Percoll and centrifuged at 50 g

for 10min, without brake. Meanwhile, the ACK buffer and Dead Cell Removal Kit were used to lyse red blood cells and eliminate dead

cells in non-parenchymal cells. Hepatocytes and NPCs were further washed with PBS separately, resuspended in DMEM with 10%

FBS and counted with hemocytometer.

Liver single cell preparations were made within the same four-hour period of a day for collection of samples at all five time points.

Single cell library construction and sequencing
The isolated single cells were immediately loaded onto 10xChromiumController, and then partitioned into nanoliter-scale Gel Beads-

In-Emulsion (GEMs). Cells in GEMs were lysed, and RNAs released from cells were immediately captured by barcoded beads in the

same GEMs, followed by reverse transcription, amplification, fragmentation, adaptor ligation and index PCR. Libraries were con-

structed using Chromium Single Cell 3’ Reagent Kits (V2 chemistry, 10x Genomics). Sequencing was performed on Illumina HiSeq

4000 at IGM Genomics Center, UCSD, with the following read length: Read 1, 26 bp, including 16 bp cell barcode and 12 bp unique

molecular identifier (UMI); Read 2, 98 bp transcript insert; i7 sample index, 8 bp.

scRNA-seq data pre-processing, dimensionality reduction and clustering
Sequenced reads were aligned to mouse reference genome GRCm38 using CellRanger package (v3.0.2). All libraries were then

aggregated for batch effect correction and sequencing depth normalization. An expression matrix including all cells from D1 to

D56 livers was generated, with each row representing a gene and each column representing a cell, and then loaded into the R pack-

age, Seurat. Next, low quality cells and genes were filtered for downstream analysis. In brief, genes expressed in less than 3 cells

were removed; cells failed to meet following criteria were removed: 1) the number of genes detected in each cell should be more

than 200 but less than 6500; 2) the UMIs of mitochondrial genes should be less than 10% of total UMI. A total of 52834 cells and

24057 genes passed the filter. After filtering, the raw expression matrix was normalized by the total expression, multiplied by scale

factor 10,000, and log transformed. Next, we regressed on total numbers of UMIs per cell as well asmitochondrial gene percentages.

The z-scored residuals calculated by normalization and scaling were stored for downstream analysis. We then performed dimension-

ality reduction and unsupervised clustering using Seurat functions. In brief, PCA was performed first, and 75 PCs were loaded for

UMAP and tSNE dimensionality reduction. To find clusters, the same PCswere imported into FindClusters, a SNN graph-based clus-

tering algorithm, with resolution = 3.0. Next, the Wilcoxon Rank Sum test was performed to identify markers (FDR < 0.05) in each

cluster. Cell types were then assigned based on these markers manually.

Further, to find subpopulations in hepatocyte, endothelial cells, mesenchymal cells, NK cells, T cells and Kupffer cells, cells from

corresponding groups were segregated and re-analyzed for higher resolution.

For combined analysis of embryonic (Lotto et al., 2020) and fetal (this work) endothelial cells, an additional dataset integration using

Seurat was perform to remove batch effect.

Zonation profile prediction of hepatocytes
We predicted spatial layers (zonation) of hepatocytes using linear regression method. The training dataset was downloaded from

previously publishedwork (Halpern et al., 2017), with processed expressionmatrix and zonation information for each cell. We normal-

ized, scaled and integrated this dataset with our hepatocyte subpopulations to remove batch effect. Next, the Wilcoxon Rank Sum

test was performed to identify markers (FDR < 0.05) in each layer. We combined markers for 9 layers to make a zonation signature

with 210 genes in total. With zonation signature gene set, the linear model was trained using original dataset (Halpern et al., 2017) and

then used to predict layer for single hepatocyte in this study. The predicted layer was then normalized from 1 to 9, representing spatial

distribution of hepatocytes from pericentral to periportal area.

Trajectory analysis
We performed trajectory analysis using different methods listed below, depending on different situations and purposes.
Developmental Cell 57, 398–414.e1–e5, February 7, 2022 e3
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RNA velocity analysis
As described in original publication (La Manno et al., 2018), this algorithm was designed based on a simple model for transcriptional

dynamics, in which the RNA velocity was estimated from spliced and un-spliced mRNA, and then used to predict the future state of

individual cells. We first generated loom files of spliced and un-spliced reads counts from 10x samples using velocyto run10x pipe-

line. We then visualized RNA velocity on specified tSNE or UMAP embedding. For gene of interest, we also plotted (1) spliced or (2)

un-spliced counts on the same embedding, (3) phase portraits against steady-state (un-spliced levels on y-axis above steady-state

represented gene of interest being induced, while un-spliced levels below steady-state represented being repressed), and (4) resid-

ual levels u, with positive (red) and negative (blue) values indicating induced and repressed, respectively, embedded onto the same

dimensionality reduction.

Monocle
This method was used to perform trajectory analysis and calculate pseudotime for a relatively small group of cells. In brief, we

selected differentially expressed genes between different time points as ordering genes and applied DDRTree, which learned the

structure of dataset manifold as developmental trajectory and ordered cells onto that manifold with a calculated pseudotime starting

from a given root cell. Next, we selected genes significantly changed as a function of pseudotime along trajectory. In brief, for each

gene, the expression level was fitted with natural spline (sm.ns) to describe the smooth change of this gene along trajectory. The

smooth values were then employed to fit a negative binomial model via vglm() function from VGAM package. This was the full model.

Next, to test for significance, a chi-square ratio test was performed to compare this full model against null model. The whole process

was wrapped in differentialGeneTest function in monocle. We adapted this method here and also for analysis described below.

Finally, we made heatmap with significantly changed genes, clustered them by pseudotemporal expression pattern and then per-

formed pathway enrichment analysis with gene sets from Msigdb v7.0 (Subramanian et al., 2005).

Monocle 3
For a much larger dataset, we performed trajectory analysis for integrated embryonic and fetal endothelial cells usingmonocle 3 with

UMAP visualization for a better performance.

Force-directed graph analysis
This method was performed to visualize connections between immature hematopoietic cells and their progenitor cells, with pseudo-

time calculated (not shown). The code was adapted from published work on fetal liver hematopoiesis (Popescu et al., 2019).

Gene regulatory network analysis
SCENIC (Single Cell Regulatory Network Inference and Clustering) was performed to identify upstream regulators important for he-

patocyte, LSEC and Kupffer cell development individually. With segregated raw expression matrix for cell type of interest, we further

filtered for genes expressed at least with a count of 3 in 1% of all cells and genes found in RcisTarget’s mouse databases (mm9-

500bp-upstream-7species.mc9nr.feather, mm9-tss-centered-10kb-7species.mc9nr.feather). Next, the filtered expression matrix

was normalized as log2(exprMat + 1). SCENIC was then performed to identify and score regulons (TFs) based on the expression

of their regulated target genes. With regulon scores, we adopted differential expression function from Monocle to test for TFs

with significantly changed activities as a function of pseudotime. We fitted regulon score with gamma distribution instead and

also performed chi-square ratio test for significance. A similar heatmap was plotted for TF activities using regulon scores. Also,

for a TF of interest, we fitted natural spline to its scaled expression values (Expression) and regulon scores (Activity) and plotted

the smooth change of said TF along pseudotime, which was stretched from 0 to 100.

Single cell pathway enrichment
We collectedmetabolism-related pathways fromKyoto Encyclopedia of Genes andGenomes (KEGG) andMsigdb. To findmetabolic

pathways significantly changed during postnatal development, we first calculated enrichment score for individual cell i of each gene

set j. The score was defined as follows:

Sij = nj

,Xnj
k = 1

rankik ;

where nj represented the length of gene set j; rankik represented the rank of cell i ordered by expression levels of gene k (in gene set j)

over all cells included in this analysis. Next, for each gene set j, we ordered cells along trajectory and tested if Sij changed significantly

as a function of pseudotime. The statistical test method was also adapted from monocle as described above. We fitted gene set

enrichment scores with gamma distribution and performed chi-square ratio test for significance. Similarly, we plotted smooth scores

after fitting the natural spline.

Cell-cell interaction analysis
We performed CellPhoneDB with our dataset to identify important ligand-receptor interactions. All cell types were included for the

analysis at each time point. The genes encoding ligands and receptors were kept only if they were expressed by at least 10%of cells.

The significance of an interaction was calculated by permutation test with iterations = 1000.
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TCGA survival analysis
The TCGA dataset of HCC was downloaded from TCGA-LIHC project, including processed results of RNA-sequencing and clinical

information for 371 patients. For each gene of interest, all samples were divided into three groups based on gene expression levels:

Low (patients with expression levels lower than 33.3% percentile); High (patients with expression levels higher than 66.7% percen-

tile); Mid (other patients). Survival analysis was performed using survival and survminer R package, including the Low and High

groups divided based on gene of interest.

Immunostaining and FISH
To prepare fresh frozen tissue sections, all liver tissues were collected at indicated time points and were immediately embedded Tis-

sue-Tek O.C.T compound (Sakura) and stored at -80�C. Fresh frozen tissue sections were fixed by cold acetone overnight, followed

by cold 4% PFA overnight. After primary and secondary antibody incubation, fresh frozen tissue sections were mounted with

VECTASHIELD mounting medium with DAPI or Anti-Fade Fluorescence Mounting Medium (for confocal microscope). For single-

cell resolution, we checked slides under Leica SP8 Confocal with Lightning Deconvolution at microscopy core, UCSD. Quantification

on the fluorescence intensity across the zonation was performed using imageJ. HCR FISH (Molecular Instruments) was performed

according to manufacturer’s instruction. Mean fluorescence intensity for individual nucleus was analyzed with ImageJ, and Pear-

son’s correlation analysis was performed with GraphPad Prism.

Flow cytometry analysis
Non-parenchymal cells were isolated from liver as described above (see liver cell isolation for scRNA-seq). Cells were first stained for

LIVE/DEAD fixable Aqua, anti-CD16/CD32 for Fc blocking, and then panel antibodies. Cells were fixed using 1% PFA in PBS over-

night at 4�C, resuspended in PBS, and analyzed on BD LSRFortessa X-20 Cell Analyzer at UCSD Human Embryonic Stem Cell Core

facility at Sanford Consortium for Regenerative Medicine. Data were then analyzed using FlowJo 10.6.2.

qRT-PCR
RNAs were extracted from different cell types at indicated time points using RNeasy kit (Qiagen, cat #73304) following manufac-

turer’s instruction. Real-time PCR was conducted to check mRNA levels of genes at indicated time points. gapdh was used as a

housekeeping control. The primers used in this study were listed in key resources table.

Statistical analysis
The statistical analysis was performed using R or GraphPad Prism 9 (for FACS analysis only). The details of test and significance are

specified in figure legends.
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