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INTRODUCTION: Although the genome is often
called the blueprint of an organism, it is per-
hapsmore accurate to describe it as a parts list
composed of the various genes that may or
may not be used in the different cell types of a
multicellular organism. Although nearly every
cell in the body has essentially the same ge-
nome, each cell typemakes different use of that
genome and expresses a subset of all possible
genes. This has motivated efforts to character-
ize the molecular composition of various cell
types within humans and multiple model or-
ganisms, both by transcriptional and proteomic
approaches.We created ahuman reference atlas
comprising nearly 500,000 cells from 24 differ-
ent tissues and organs, many from the same
donor. This atlas enabledmolecular character-
ization of more than 400 cell types, their dis-

tribution across tissues, and tissue-specific
variation in gene expression.

RATIONALE:One caveat to current approaches to
make cell atlases is that individual organs are
often collected at different locations, collected
from different donors, and processed using
different protocols. Controlled comparisons of
cell types between different tissues and organs
are especially difficult when donors differ in
genetic background, age, environmental expo-
sure, and epigenetic effects. To address this,
we developed an approach to analyzing large
numbers of organs from the same individual.

RESULTS: We collected multiple tissues from
individual human donors and performed co-
ordinated single-cell transcriptome analyses on

live cells. The donors come from a range of eth-
nicities, are balanced by gender, have a mean
age of 51 years, and have a variety of medical
backgrounds. Tissue experts used a defined
cell ontology terminology to annotate cell types
consistently across the different tissues, leading
to a total of 475 distinct cell types with refer-
ence transcriptome profiles. The full dataset
can be explored online with the cellxgene tool.
Data were collected for the bladder, blood,

bonemarrow, eye, fat, heart, kidney, large intes-
tine, liver, lung, lymphnode,mammary,muscle,
pancreas, prostate, salivary gland, skin, small
intestine, spleen, thymus, tongue, trachea,uterus,
and vasculature. Fifty-nine separate specimens
in totalwere collected, processed, and analyzed,
and 483,152 cells passed quality control filtering.
On a per-compartment basis, the dataset in-
cludes 264,824 immune cells, 104,148 epithelial
cells, 31,691 endothelial cells, and 82,478 stro-
mal cells. Working with live cells, as opposed
to isolated nuclei, ensured that the dataset in-
cludes all mRNA transcripts within the cell, in-
cluding transcripts that have been processed by
the cell’s splicing machinery, thereby enabling
insight into variation in alternative splicing.
The Tabula Sapiens also provided an oppor-

tunity to densely and directly sample the
human microbiome throughout the gastro-
intestinal tract. The intestines from twodonors
were sectioned into five regions: the duo-
denum, jejunum, ileum, and ascending and
sigmoid colon. Each section was transected,
and three to nine samples were collected from
each location, followed by amplification and
sequencing of the 16S ribosomal RNA gene.

CONCLUSION: The Tabula Sapiens has revealed
discoveries relating to shared behavior and
subtle, organ-specific differences across cell
types. We found T cell clones shared between
organs and characterized organ-dependent
hypermutation rates amongB cells. Endothelial
cells and macrophages are shared across tis-
sues, often showing subtle but clear differences
in gene expression. We found an unexpectedly
large and diverse amount of cell type–specific
RNA splice variant usage and discovered and
validated many previously undefined splices.
The intestinal microbiome was revealed to
have nonuniform species distributions down
to the 3-inch (7.62-cm) length scale. These
are but a few examples of how the Tabula
Sapiens represents a broadly useful reference
to deeply understand and explore human
biology at cellular resolution.▪
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Overview of Tabula Sapiens. Molecular characterization of cell types using single-cell transcriptome sequencing
is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a
human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same
donor. This multimodal atlas enabled molecular characterization of more than 400 cell types.
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HUMAN CELL ATLAS

The Tabula Sapiens: A multiple-organ, single-cell
transcriptomic atlas of humans
The Tabula Sapiens Consortium*

Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing
cell biology and enabling new insights into the physiology of human organs. We created a human
reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the
same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution
across tissues, and tissue-specific variation in gene expression. Using multiple tissues from a single
donor enabled identification of the clonal distribution of T cells between tissues, identification of the
tissue-specific mutation rate in B cells, and analysis of the cell cycle state and proliferative potential of
shared cell types across tissues. Cell type–specific RNA splicing was discovered and analyzed across
tissues within an individual.

A
lthough the genome is often called the
blueprint of an organism, it is perhaps
more accurate to describe it as a parts
list composed of the various genes that
may or may not be used in the different

cell types of a multicellular organism. Al-
though nearly every cell in the body has es-
sentially the same genome, each cell typemakes
different use of that genome and expresses a
subset of all possible genes (1). Therefore, the
genome in and of itself does not provide an
understanding of the molecular complexity
of the various cell types of that organism. This
has motivated efforts to characterize the mo-
lecular composition of various cell types within
humans and multiple model organisms, both
by transcriptional (2) and proteomic (3, 4)
approaches.
Although such efforts are yielding insights

(5–7), one caveat to current approaches is that
individual organs are often collected at differ-
ent locations or from different donors (8), are
processed using different protocols, or lack
replicate data (9). Controlled comparisons of
cell types between different tissues and organs
are especially difficult when donors differ in
genetic background, age, environmental expo-
sure, and epigenetic effects. To address this,
we developed an approach to analyze large
numbers of organs from the same individual
(10), which we originally used to characterize
age-related changes in gene expression in var-
ious cell types in the mouse (11).

Data collection and cell type representation

We collected multiple tissues from individual
human donors (designated TSP1 to TSP15) and
performed coordinated single-cell transcrip-
tome analysis on live cells (12). We collected

17 tissues from one donor, 14 tissues from a
second donor, and five tissues from two other
donors (Fig. 1). We also collected smaller num-
bers of tissues from a further 11 donors, creating
biological replicates for nearly all tissues. The
donors come from a range of ethnicities, are
balanced by gender, have amean age of 51 years,
and have a variety of medical backgrounds
(table S1). Single-cell transcriptome sequencing
was performed with both fluorescence-activated
cell sorting (FACS)–sorted cells in well plates
with smart-seq2 amplification as well as 10×
microfluidic droplet capture and amplification
for each tissue (fig. S1). Tissue experts used a
defined cell ontology terminology to annotate
cell types consistently across the different tis-
sues (13), leading to a total of 475 distinct cell
types with reference transcriptome profiles
(tables S2 and S3). The full dataset can be ex-
plored online with the cellxgene tool through
the Tabula Sapiens data portal (14).
Data were collected for the bladder, blood,

bone marrow, eye, fat, heart, kidney, large in-
testine, liver, lung, lymph node, mammary,
muscle, pancreas, prostate, salivary gland,
skin, small intestine, spleen, thymus, tongue,
trachea, uterus, and vasculature. Fifty-nine
separate specimens in total were collected,
processed, and analyzed, and 483,152 cells
passed quality control (QC) filtering (figs. S2 to
S7 and table S2). On a per-compartment basis,
the dataset includes 264,824 immune cells,
104,148 epithelial cells, 31,691 endothelial
cells, and 82,478 stromal cells. Working with
live cells as opposed to isolated nuclei ensured
that the dataset includes all mRNA transcripts
within the cell, including transcripts that have
been processed by the cell’s splicing machin-
ery, thereby enabling insights into variations
in alternative splicing.
To characterize the relationship between

transcriptome data and conventional histologic

analysis, a team of pathologists analyzed hem-
atoxylin and eosin (H&E)–stained sections pre-
pared from nine tissues from donor TSP2 and
13 tissues from donor TSP14 (14). Cells were
identified bymorphology and classified broad-
ly into epithelial, endothelial, immune, and
stromal compartments as well as rarely de-
tected peripheral nervous system (PNS) cell
types. (Fig. 2A). These classifications were
used to estimate the relative abundances of
cell types across the four compartments and
to estimate the uncertainties in these abun-
dances resulting from spatial heterogeneity
of each tissue type (Fig. 2B and fig. S8). We
compared the histologically determined abun-
dances with those obtained by single-cell se-
quencing (fig. S9). Although, as expected, there
can be substantial variation between the abun-
dances determined by these methods, in ag-
gregate, we observed broad concordance over
a large range of tissues and relative abun-
dances. This approach enables an estimate
of true cell type proportions because not every
cell type survives dissociation with equal effi-
ciency (15). For several of the tissues, we also
performed literature searches and collected
tables of prior knowledge of cell type identity
and abundance within those tissues (table S4).
We compared literature values with our ex-
perimentally observed frequencies for three
well-annotated tissues: the lung, muscle, and
bladder (fig. S10).

Immune cells: Variation in gene expression
across tissues and a shared lineage history

The Tabula Sapiens can be used to study dif-
ferences in the gene expression programs and
lineage histories of cell types that are shared
across tissues. We analyzed tissue differences
in the 36,475 macrophages distributed among
20 tissues because tissue-residentmacrophages
are known to carry out specialized functions
(16). These shared and orthogonal signatures
are summarized in a correlationmap (fig. S11A).
For example, macrophages in the spleen were
different from most other macrophages, and
this was driven largely by higher expression of
CD5L, a regulator of lipid synthesis (fig. S11B).
We also observed a shared signature of ele-
vated epiregulin (EREG) expression in solid tis-
sues, such as the skin, uterus, and mammary,
compared with circulatory tissues (fig. S11B).
We characterized lineage relationships be-

tween T cells by assembling the T cell receptor
sequences from donor TSP2. Multiple T cell
lineages were distributed across various tis-
sues in the body, and we mapped their rela-
tionships (Fig. 3A). Large clones often reside in
multiple organs, and several clones of mucosal-
associated invariant T cells are shared across
donors (fig. S11C); these cells had character-
istic expression of TRAV1-2 because they are
thought to be innate-like effector cells (17). Line-
age information can also reveal tissue-specific
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somatic hypermutation rates in B cells. We
assembled the B cell receptor sequences from
donor TSP2 and inferred the germline ances-
tor of each cell. The mutational load varies
markedly by tissue of residence, with blood
having the lowest mutational load compared
with solid tissues (fig. S11D). Solid tissues have
an order of magnitude more mutations per
nucleotide (mean = 0.076; SD = 0.026) com-
pared with the blood (mean = 0.0069), which
suggests that the immune infiltrates of solid
tissues are dominated by mature B cells.
B cells also undergo class-switch recombina-

tion that diversifies the humoral immune re-
sponse by using constant region genes with
distinct roles in immunity. We classified every
B cell in the dataset as immunoglobulin A
(IgA)–, IgG-, or IgM-expressing and then cal-
culated the relative amounts of each cellular
isotype in each tissue (Fig. 3B and table S5).
Secretory IgA is known to interact with path-

ogens and commensals at the mucosae, IgG is
often involved in direct neutralization of path-
ogens, and IgM is typically expressed in naïve
B cells or is secreted in the first response to
pathogens. Consistent with this, our analysis
revealed opposing gradients of prevalence of
IgA- and IgM-expressing B cells across the tis-
sues, with blood having the lowest relative
abundance of IgA-producing cells and the large
intestine having the highest relative abundance
(and the converse for IgM-expressing B cells)
(Fig. 3B).

Endothelial cell subtypes with tissue-specific
gene expression programs

As another example of analyzing shared cell
types across organs, we focused on endothelial
cells (ECs). Although ECs are often categorized
as a single cell type, they exhibit differences in
morphology, structure, and immunomodula-
tory and metabolic phenotypes depending on

their tissue of origin.We discovered that tissue
specificity is also reflected in their transcrip-
tomes because ECs mainly cluster by tissue of
origin (table S6). Uniform manifold approxi-
mation and projection (UMAP) analysis (fig.
S12A) revealed that the lung, heart, uterus,
liver, pancreas, fat, andmuscle ECs exhibited
the most-distinct transcriptional signatures,
reflecting their highly specialized roles. These
distributions were conserved across donors
(fig. S12B).
Notably, ECs from the thymus, vasculature,

prostate, and eye were similarly distributed
across several clusters, which suggests not only
similarity in transcriptional profiles but in
their sources of heterogeneity. Differential
gene expression analysis between ECs from
these 16 tissues revealed several canonical and
previously undescribed tissue-specific vascular
markers (Fig. 3C). These data recapitulate
tissue-specific vascular markers, such as LCN1
(tear lipocalin) in the eye, ABCG2 (transporter
at the blood-testis barrier) in the prostate, and
OIT3 (oncoprotein-induced transcript 3) in
the liver. Of the potential previously unde-
scribedmarkers determined by this analysis,
SLC14A1 (solute carrier family 14 member 1)
appears to be a specific marker for endothe-
lial cells in the heart, whose expression was
independently validated with data from the
Human Protein Atlas (18) (fig. S13).
Lung ECs formed two distinct populations,

which is in line with the aerocyte (aCap -
EDNRB+) and general capillary (gCap - PLVAP+)
cells described in the mouse and human lung
(19) (fig. S12, C and D). The transcriptional
profile of gCaps were also more similar to
ECs from other tissues, indicative of their
general vascular functions in contrast to the
more specialized aCap populations. Lastly, we
detected two distinct populations of ECs in
the muscle, including a MSX1+ population
with strong angiogenic and endothelial cell
proliferation signatures and a CYP1B1+ pop-
ulation enriched in metabolic genes, which
suggests the presence of functional special-
ization in the muscle vasculature (fig. S12, E
and F).

Alternative splice variants are cell
type specific

We used SICILIAN (20) to identify alternative
splice junctions in Tabula Sapiens using both
10× and smart-seq2 sequencing technologies
and found a total of 955,785 junctions (fig. S14,
A to E, and table S7). Of these, 217,855 were
previously annotated, so our data provide in-
dependent validation of 61% of the total junc-
tions cataloged in the entire RefSeq database.
Although annotated junctions made up only
22.8% of the total junctions, they represent
93% of total reads, which indicates that
previously annotated junctions tend to be
expressed at higher levels than previously
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Fig. 1. Overview of Tabula Sapiens. The Tabula Sapiens was constructed with data from 15 human donors;
for detailed information on which tissues were examined for each donor, please refer to table S2.
Demographic and clinical information about each donor is listed in the supplementary materials and methods
and in table S1. Donors 1, 2, 7, and 14 contributed the largest number of tissues each, and the number of
cells from each tissue is indicated by the size of each circle. Tissue contributions from additional donors
who contributed single or small numbers of tissues are shown in the additional 11 donors column, and the
total number of cells for each organ are shown in the final column on the right.
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unidentified junctions. We additionally found
34,624 junctions between previously anno-
tated 3′ and 5′ splice sites (3.6%). We iden-
tified 119,276 junctions between a previously
annotated site and a previously unannotated
site in the gene (12.4%). This leaves 584,030
putative junctions for which both splice sites
were previously unannotated—i.e., ~61% of
the total detected junctions. Most of these have

at least one end in a known gene (94.7%),
whereas the remainder represent potential
previously undescribed splice variants from
unannotated regions (5.3%). In the absence of
independent validation, we conservatively char-
acterized all of the unannotated splices as
putative previously unknown junctions. We
then used the GTEx database (21) to seek
independent corroborating evidence of these

putative junctions and found that reads cor-
responding to nearly one-third of these prev-
iously unknown junctions can be found within
the GTEx data (table S7); this corresponds
to >300,000 previously undefined validated
splice variants revealed by the Tabula Sapiens.
Hundreds of splice variants are used in a

highly cell type–specific fashion; these can be
explored in the cellxgene browser (14), which
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Fig. 2. Comparison of single-cell
transcriptomics with conventional
histology. Clinical pathology was
performed on nine tissues from donors
TSP2 and TSP14. (A) H&E–stained
image used for histology of the colon
from TSP2, with compartments
(solid colored lines) and individual
cell types (dashed black ellipses)
identified by the pathologists. (B) Coarse
cell type representation of TSP2
as morphologically estimated by
pathologists across several tissues,
ordered by increasing heterogeneity of
the tissue. Compartment colors are
consistent between (A) and (B).
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uses a statistic called SpliZ (22). We focus on
two examples of cell type–specific splicing of
two well-studied genes: MYL6 and CD47. Sim-
ilar cell type–specific splice usage was also
observed with TPM1, TPM2, and ATP5F1C,

three other genes with well-characterized splice
variants (fig. S15).
MYL6 is an essential light chain (ELC) for

myosin and is highly expressed in all tissues
and compartments. Yet, splicing ofMYL6, par-

ticularly that involving the inclusion or exclu-
sion of exon 6 (Fig. 4A), varies in a cell type–
and compartment-specific manner (Fig. 4B).
Although the isoform excluding exon 6 has
previously been mainly described in phasic
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Fig. 3. Analysis of immune and endothelial cell types shared across tissues.
(A) Illustration of clonal distribution of T cells across multiple tissues. The majority of
T cell clones are found in multiple tissues and represent a variety of T cell subtypes.
nk cell, natural killer cell. (B) Prevalence of B cell isotypes across tissues, ordered by
decreasing abundance of IgA. (C) Expression levels of tissue-specific endothelial

markers, shown as violin plots, in the entire dataset. Many of the markers are highly
tissue specific and typically were derived from multiple donors, as follows: bladder
(3 donors), eye (2), fat (2), heart (1), liver (2), lung (3), mammary (1), muscle (4),
pancreas (2), prostate (2), salivary gland (2), skin (2), thymus (2), tongue (2), uterus
(1), and vasculature (2). A detailed donor-tissue breakdown is available in table S2.
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smooth muscle (23), we discovered that it can
alsobe thepredominant isoform innon–smooth
muscle cell types. Our analysis establishes
pervasive regulation ofMYL6 splicing inmany
cell types, such as endothelial and immune cells.

These previously unknown, compartment-
specific expression patterns of the two MYL6
isoforms are reproduced in multiple individ-
uals from the Tabula Sapiens dataset (Fig. 4,
A and B).

CD47 is a multispanning membrane pro-
tein involved in many cellular processes, in-
cluding angiogenesis and cell migration and
as a “do not eat me” signal to macrophages
(24). Differential use of exons 7 to 10 (Fig. 4C
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and fig. S14F) composes a variably long cyto-
plasmic tail (25). Immune cells—but also
stromal and endothelial cells—have a distinct,
consistent splicing pattern in CD47 that domi-
nantly excludes two proximal exons and splic-
ing directly to exon 8. In contrast to other
compartments, epithelial cells exhibit a differ-
ent splicing pattern that increases the length
of the cytoplasmic tail by splicing more com-
monly to exon 9 and exon 10 (Fig. 4D). Char-
acterization of the splicing programs of CD47
in single cells may have implications for under-
standing the differential signaling activities
of CD47 and for therapeutic manipulation
of CD47 function.

Cell state dynamics can be inferred from a
single time point

Although the Tabula Sapienswas created from
a single moment in time for each donor, it is
possible to infer dynamic information from
the data. Cell division is an important tran-
sient change of internal cell state, and we
computed a cycling index for each cell type to
identify actively proliferating versus quiescent
or postmitotic cell states. Rapidly dividing pro-
genitor cells had among the highest cycling
indices, whereas cell types from the endothe-
lial and stromal compartments, which are
known to be largely quiescent, had low cycling
indices (Fig. 5A). In intestinal tissue, transient
amplifying cells and the crypt stem cells divide
rapidly in the intestinal crypts to give rise to
terminally differentiated cell types of the villi
(26). These cells were ranked with the highest
cycling indices, whereas terminally differ-
entiated cell types, such as the goblet cells,
had the lowest ranks (fig. S16A). To com-
plement the computational analysis of cell
cycling, we performed immunostaining of
intestinal tissue for the MKI67 protein (com-
monly referred to as Ki-67) and confirmed
that transient amplifying cells abundantly
express this proliferation marker (fig. S16,
B and C), which supports the conclusion that
this marker is differentially expressed in the
G2/M cluster.
We observed several interesting tissue-specific

differences in cell cycling. To illustrate one ex-
ample, UMAP clustering of macrophages
showed tissue-specific clustering of this cell
type and that blood, bone marrow, and lung
macrophages have the highest cycling indices
compared with macrophages found in the
bladder, skin, and muscle (fig. S16, D to G).
Consistent with this finding, the expression
values of cyclin-dependent kinase (CDK) in-
hibitors (in particular the gene CDKN1A),
which block the cell cycle, have the lowest
overall expression in macrophages from tis-
sues with high cycling indices (fig. S16F).
We used RNA velocity (27) as a further dy-

namic approach to study transdifferentiation
of bladdermesenchymal cells tomyofibroblasts

(Fig. 5B). Latent time analysis, which provides
an estimate of each cell’s internal clock using
RNA velocity trajectories (28), correctly iden-
tified the direction of differentiation (Fig. 5C)
across multiple donors. Ordering cells as a
function of latent time shows clustering of the
mesenchymal and myofibroblast gene expres-
sion programs for the most dynamically ex-
pressed genes (Fig. 5D). Among these genes,
ACTN1 (alpha actinin 1)—a key actin cross-
linking protein that stabilizes cytoskeleton-
membrane interactions (29)—increases across
the mesenchymal-to-myofibroblast transdiffer-
entiation trajectory (fig. S16H). Another gene
with a similar trajectory isMYLK (myosin light-
chain kinase), which also rises as myofibro-
blasts attain more muscle-like properties (30).
Finally, a random sampling of the most dy-
namic genes shared across TSP1 and TSP2
demonstrated that they share concordant
trajectories and revealed some of the core
genes in the transcriptional program underly-
ing this transdifferentiation event within the
bladder (fig. S16I).

Unexpected spatial variation in
the microbiome

The Tabula Sapiens provided an opportunity
to densely and directly sample the human mi-
crobiome throughout the gastrointestinal tract.
The intestines from donors TSP2 and TSP14
were sectioned into five regions: the duode-
num, jejunum, ileum, and ascending and
sigmoid colon (Fig. 6A). Each section was
transected, and three to nine samples were
collected from each location, followed by am-
plification and sequencing of the 16S riboso-
mal RNA (rRNA) gene. Uniformly, there was a
high (~10 to 30%) relative abundance of Pro-
teobacteria, particularly Enterobacteriaceae
(Fig. 6B), even in the colon. Samples from each
of the duodenum, jejunum, and ileum were
largely distinct from one another, with sam-
ples exhibiting individual patterns of bloom-
ing or absence of certain families (Fig. 6B).
These data reveal that the microbiota are
patchy, even at a 3-inch (7.62-cm) length scale.
We observed similar heterogeneity in both
donors (fig. S17, A to C). In the small intestine,
richness (number of observed species) was also
variable andwas negatively correlatedwith the
relative abundance of Burkholderiaceae (Fig.
6B); in TSP2, the Proteobacteria phylum was
dominated by Enterobacteriaceae, which was
present at >30% in all samples at a level nega-
tively correlated with richness (fig. S17, A to C).
In a comparison of species from adjacent
regions across the gut, a large fraction of
species was specific to each region (Fig. 6C),
reflecting the patchiness. These data are de-
rived from only two donor samples, and
further conclusions about the statistics and
extent of microbial patchiness will require
larger studies.

We analyzed host immune cells in conjunc-
tionwith the spatial microbiome data; UMAP
clustering analysis revealed that the small
intestine T cell pool from TSP14 contained
a population with distinct transcriptomes
(Fig. 6D). The most significant transcriptional
differences in T cells between the small and
large intestine were genes associated with
trafficking, survival, and activation (Fig. 6E
and table S8). For example, expression of the
long noncoding RNA MALAT1, which affects
the regulatory function of T cells, and CCR9,
which mediates T lymphocyte development
and migration to the intestine (31), were high
only in the small intestine, whereas GPR15
(colonicT cell trafficking), SELENBP1 (selenium
transporter), ANXA1 (repressor of inflamma-
tion in T cells), KLRC2 (T cell lectin), CD24
(T cell survival), GDF15 (T cell inhibitor), and
RARRES2 (T cell chemokine) exhibited much
higher expression in the large intestine. Within
the epithelial cells, we observed distinct tran-
scriptomes between small and large intestine
Paneth cells and between small and large in-
testine enterocytes, whereas there was some
degree of overlap for each of the two cell types
for either location (fig. S17, E and F). The site-
specific composition of themicrobiome in the
intestine, pairedwith distinct T cell populations
at each site, helps define local host-microbe
interactions that occur in the gastrointestinal
tract and is likely reflective of a gradient of
physiological conditions that influence host-
microbe dynamics.

Conclusion

The Tabula Sapiens is part of a growing set
of data that, when analyzed together, will en-
able many interesting comparisons of both
a biological and technical nature. Studying
particular cell types across organs, datasets,
and species will yield new biological insights—
as shown with fibroblasts (32). Similarly, com-
paring fetal human cell types (33) with those
determined in this work in adults may give
insight into the loss of plasticity from early
development to maturity. Having multior-
gan data from individual donors may facili-
tate the development of methods to compare
diverse datasets and yield understanding of
technical artifacts from various approaches
(8, 9, 34, 35). The Tabula Sapiens has en-
abled discoveries relating to shared behav-
ior and organ-specific differences across cell
types. For example, we found T cell clones
shared between organs and characterized
organ-dependent hypermutation rates among
resident B cells. Endothelial cells andmacro-
phages are cell types that are shared across
tissues but often show subtle tissue-specific
differences in gene expression. We found
an unexpectedly large and diverse amount
of cell type–specific RNA splice variant usage
and discovered and validatedmany previously
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undiscovered splices. These are but a few
examples of how the Tabula Sapiens repre-
sents a broadly useful reference to deeply
understand and explore human biology at
cellular resolution.

Materials and methods summary
Fresh, whole, and nontransplantable organs,
or 1- to 2-cm3 organ samples, were obtained
from surgery and then transported on ice by
courier to tissue expert laboratories, where

they were immediately prepared for transcrip-
tome sequencing. Single-cell suspensionswere
prepared for 10× Genomics 3′ V3.1 droplet-
based sequencing and for FACS-sorted 384-
well plate smart-seq2. Preparation began with
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dissection, digestion with enzymes, and phys-
ical manipulation; tissue-specific details are
available in the completematerials andmeth-
ods (12). Cell suspensions from some organs
were normalized by major cell compartment
(epithelial, endothelial, immune, and stromal)
using antibody-labeled magnetic microbeads
to enrich rare cell types. cDNA and sequenc-
ing libraries were prepared and run on the

Illumina NovaSeq 6000 with the goal to ob-
tain 10,000 droplet-based cells and 1000 plate-
based cells for each organ. Sequences were
demultiplexed and aligned to the GRCh38
reference genome. Gene count tables were
generated with CellRanger (droplet samples)
or STARandHTSEQ (plate samples). Cells with
low uniquemolecular identifier (UMI) counts
or low gene counts were removed. Droplet

cells were filtered to remove barcode-hopping
events and filtered for ambient RNA using
DecontX. Sequencingbatcheswereharmonized
using scVI and projected to two-dimensional
(2D) spacewithUMAP for analysis by the tissue
experts. Expert annotation was made through
the cellxgene browser and regularized with a
public cell ontology. Annotation wasmanually
QC checked and cross-validated with PopV, an
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Fig. 6. High-resolution view highlights patchiness of the gut microbiome.
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abundances and richness (number of observed species) at the family level
in each sampling location, as determined by 16S rRNA sequencing. The
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annotation tool that uses seven different au-
tomated annotation methods. For complete
materials and methods, see the supplemen-
tary materials (12).
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Mapping cell types in the human body
The Tabula Sapiens is a molecular reference atlas for more than 400 cell types of the human body. The Tabula
Sapiens Consortium used single-cell transcriptomics to measure the messenger RNA molecules in each of nearly
500,000 cells from 24 tissues and organs (see the Perspective by Liu and Zhang). These data enable new insights into
how the human genome parts list is used to create distinct cell types within the human organism. In addition to creating
a detailed molecular definition of these cell types, the atlas reveals many other aspects of human biology, including
how the same gene can be spliced differently in different cell types, how shared cell types in different tissues can have
subtle differences in their identities, and how clones of the immune system can be shared across tissues. —LZ and DJ
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