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Recent studies have revealed that extensive heterogeneity of
biological systems arises through various routes ranging from
intracellular chromosome segregation to spatiotemporally varying
biochemical stimulations. However, the contribution of physical
microenvironments to single-cell heterogeneity remains largely
unexplored. Here, we show that a homogeneous population of
non–small-cell lung carcinoma develops into heterogeneous subpo-
pulations upon application of a homogeneous physical compres-
sion, as shown by single-cell transcriptome profiling. The generated
subpopulations stochastically gain the signature genes associated
with epithelial–mesenchymal transition (EMT; VIM, CDH1, EPCAM,
ZEB1, and ZEB2) and cancer stem cells (MKI67, BIRC5, and KLF4),
respectively. Trajectory analysis revealed two bifurcated paths as
cells evolving upon the physical compression, along each path the
corresponding signature genes (epithelial or mesenchymal) gradu-
ally increase. Furthermore, we show that compression increases
gene expression noise, which interplays with regulatory network
architecture and thus generates differential cell-fate outcomes.
The experimental observations of both single-cell sequencing and
single-molecule fluorescent in situ hybridization agrees well with
our computational modeling of regulatory network in the EMT pro-
cess. These results demonstrate a paradigm of howmechanical stim-
ulations impact cell-fate determination by altering transcription
dynamics; moreover, we show a distinct path that the ecology and
evolution of cancer interplay with their physical microenvironments
from the view of mechanobiology and systems biology, with insight
into the origin of single-cell heterogeneity.

cell volume j mechanobiology j single cell j heterogeneity j cell fate
decision

Amulticellular biological system, such as organ, tumor, and
embryo, is composed of a complex network of heteroge-

neous yet closely related cells (1). Biological heterogeneity is
well organized on several orders of scales and is always origi-
nated from a single homogeneous population of cells (2–4).
Recent studies have shown that extensive genetic and pheno-
typic variations exist not only between cell types but also within
a seemingly homogenous population, which suggest a hint of
the origin and causality of cellular heterogeneity. Indeed, vari-
ous biological and genetic origins of heterogeneity have been
revealed, including genomic instability (5, 6), stochastic gene
expression (7–9), heterotypic chromosome segregation (10),
and epithelial–mesenchymal transition (EMT) (11) as well as
spatiotemporally regulated stimulations of morphogens (12).
Despite extensive studies of biological and genetic causes of
genetic and phenotypic heterogeneity, little is known about the
impact of physical microenvironments on heterogeneous cell-
fate decision (13, 14). Furthermore, the hallmarks of cancer
include specific changes of mechanical properties of cancer
cells and their physical microenvironments such as increased
extracellular matrix stiffness (15–22), elevated osmotic stresses
(23–27), and mechanical forces (28–31). All these physical
parameters have been shown to generate a wide spectrum of
downstream effects including activation of tumorigenic

signaling [e.g., YAP/TAZ (32, 33) and β-catenin (28)], promo-
tion of tumor invasion (15, 17, 27, 29, 31, 34), and hyper-
proliferation of cancer cells (28). Nevertheless, whether these
physical perturbations can directly impact the heterogeneous
nature on the single-cell level remains largely unknown (35,
36).

Toward this end, we directly track single-cell gene expression
within a homogeneous population of non–small-cell lung carci-
noma using high-throughput single-cell sequencing, as we apply
a homogeneous physical compression. We clearly observe the
generation of subpopulations with a pattern that several clus-
ters of cells separate from each other by visualizing single-cell
transcriptome. The genes associated with EMT (VIM, CDH1,
EPCAM, ZEB1, and ZEB2) (37–40) and cancer stem cells (MKI67,
BIRC5, and KLF4) (41–46) begin to gradually self-correlate among
the newly generated subpopulations. A trajectory analysis using
partition-based graph abstraction (PAGA) (47) shows two distinct
evolution paths of non–small-cell lung carcinoma upon the com-
pression. The two paths are termed “mesenchymal path” and
“epithelial path,” respectively, as their corresponding genes (mes-
enchymal or epithelial) gradually increase along the pseudotime.
This unique behavior of two cell-fate outcomes with one environ-
mental input is well explained by the dynamical bifurcation in
our EMTregulatory model with multistability. The experimental
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validations using single-cell sequencing data and single-molecule
RNA fluorescence in situ hybridization (sm-FISH) confirm that
the gene expression noise is elevated after compression and
leads to generation of new heterogeneous subgroups according
to EMTregulatory network.

Results
Physical Compression Develops Single-Cell Heterogeneity in a Homo-
geneous Cell Population. To explore the impact of physical com-
pression on single-cell heterogeneity development, we employ
the current high-throughput single-cell sequencing technology
(48–51) to track the single-cell transcriptome evolution among
a homogeneous population of non–small-cell lung carcinoma
(Fig. 1A). Lung carcinoma is a malignant lung tumor character-
ized by uncontrolled cell growth in lung tissues (52). In lung tis-
sues, the dysregulated osmotic pressure is associated with many
lung diseases, including cystic fibrosis, pleural effusion, and
cancers (24, 53–55). To investigate the effect of elevated osmo-
larity on cell-fate decision in developing lung tumors, we treat
non–small-cell lung carcinoma H1975 cells with hypertonic
medium containing 2% PEG 300 (Polyethylene glycol, 300
MW), which is an inert polymer that is widely used to avoid
nonspecific interactions with biomolecules (56, 57). At differ-
ent time points (2.5 h or 4 h) after the treatment of osmotic
compression, cells are harvested for single-cell sequencing
analysis using commercial 10× chromium platform (49) (Fig. 1A).
To classify major cell subpopulation generation, we perform
uniform manifold approximation and projection (UMAP)
(58) analysis using Scanpy (59) and have identified two major
groups arising upon osmotic compression (Fig. 1B). To further
analyze the subclusters within each major cell population, we
segregate cells into several different subtypes according to dif-
ferentially expressed genes. By analyzing differentially expressed
genes among the subclusters, we identify several signature
genes associated with EMT process (VIM, CDH1, EPCAM,
CTGF, and LOX) (37, 40) and cancer stem cells (MKI67,
BIRC5, and KLF4) (41–44) (Figs. 1C and 2 and SI Appendix,
Fig. S1). To confirm that the EMT-related subpopulations are
indeed generated upon osmotic compression, we compare the
Pearson correlation coefficients for both the total genes (Fig. 1D)
and the gene set of EMT process before and after compres-
sion, including 14 signature genes representing epithelial
phenotype and 7 genes representing mesenchymal phenotype
(Fig. 1E). In general, we observe strong positive correlation
coefficients among their own populations after compression
(Fig. 1 D and E).

Furthermore, to examine that the newly generated subpopu-
lations are not a transient state occurring on the transcription
level and last to form new phenotypes on the protein expres-
sion level, we apply fluorescent immunostaining assay to visual-
ize the expression level of epithelial marker E-cadherin and
mesenchymal marker Vimentin (60) at day 0 and day 2 upon
osmotic compression (∼400 mOsm, 2% PEG). As shown in
Fig. 1F, before osmotic compression, H1975 cells express com-
parable amount of both E-cadherin and Vimentin. After 2 d of
stimulation of hypertonic pressure, cells are prone to express
either E-cadherin or Vimentin but not both (Fig. 1F). The out-
comes of differential expressions of either E-cadherin or
Vimentin in individual cells are consistent with our single cell
transcriptome analysis (Fig. 1 C and F). In addition, we also
notice that the phenotypic changes on the protein expression
level are longer than that which we observe on the messenger
RNA (mRNA) level.

Reconstruction of Hierarchy of Compression-Induced Heterogeneity.
Our experimental studies focus on cells at different time points
after the osmotic compression. These newly generated

subpopulations and the transitions between them can be com-
putationally reconstructed using trajectory analysis. We per-
form PAGA (47), which reconciles clustering and pseudotem-
poral ordering algorithms and allows the inference of complex
cell trajectories and differentiation trees (61–63). Using this
algorithm, we obtain an abstracted graph that shows high confi-
dence of the branching events (Fig. 2A), from which we derive
a single differentiation tree that includes all the cell types and
links them to a single root—the cluster of cells without com-
pression. This tree defines independent, bifurcated differentia-
tion branches of mesenchymal path and epithelial path (Fig.
2B). After 2.5 h of osmotic compression, the cells from the
same group begin to separately locate on the two sides of the
root cells (without compression); the same trend has also been
confirmed in the cells after 4 h of compression (Fig. 2 A and
B). The connections in the tree are highly consistent with the
continuity of gene-expression patterns along the two different
paths. Furthermore, PAGA yields a pseudotemporal ordering
of individual cells within each path, consistent with our cells
cultured after different durations of compression (Fig. 2B).
This pseudotemporal ordering reveals a gradual increase in
mesenchymal genes in the mesenchymal path; these mesenchy-
mal genes gradually decrease in the epithelial path (Fig. 2 C–E
and I). Meanwhile, the epithelial genes gradually decrease
along the mesenchymal path but increase along the epithelial
path (Fig. 2 F–I). In addition to the PAGA algorithm, we also
cluster and order the single-cell sequencing data using other
embedding methods including UMAP, t-distributed stochastic
neighbor embedding (t-SNE), and diffusion map, which consis-
tently support our conclusion generated from PAGA ordering
(SI Appendix, Figs. S2–S4). Furthermore, we have also tested
markers for the hybrid E/M cells, such as NRF2 (64). As shown
in SI Appendix, Fig. S5, we clearly observe that NRF2 is maxi-
mally expressed in the initial control group without compres-
sion. These results confirm that the initial control group is
indeed the hybrid E/M cells.

Since the generation of new subgroups is found to be related
to the EMT phenotypes, we further test whether the EMT
signature genes can efficiently recapitulate the newly generated
subgroups. The list of EMT signature genes is obtained
from previous studies (39, 40, 65). After filtering, 37 genes are
selected and sufficiently recapitulate the newly generated sub-
groups (SI Appendix, Figs. S6 and S7). Interestingly, as we fur-
ther narrow down the gene list, we find that even five genes or
three genes are sufficient to cluster cell subgroups (SI
Appendix, Figs. S8 and S9). The three genes used are VIM,
CDH1, and CLDN7, which may be the minimal set of genes for
separating EMT subgroups. This result is consistent with the
multinomial logistic regression–based EMT scoring method
(40, 65), which reported that the relationship between VIM/
CDH1 ratio and CLDN7 was able to distinguish different sub-
groups in EMT phenotypes.

Compression Alters Transcription Rates and Increases Gene-Expression
Noise during Development of Heterogeneity Hierarchy. The interest-
ing consequence of the compression as shown above is the pro-
motion of two opposite phenotypes that suppress each other.
Biochemical stimulation usually generates a deterministic effect:
For example, TGF-β is well known for induction of EMT process
(66, 67); meanwhile, mesenchymal-to-epithelial transition, the
reverse process of EMT, can be induced by the stimulation of
Bone morphogenic protein-7 (BMP-7) (68). The dual-elevation
effect of volumetric compression on two opposite processes
suggests a distinct underlying mechanism that differs from bio-
chemical regulations. Instead, we speculate that the volumetric
compression results in global changes in overall transcription
kinetics, which eventually lead to differential cell-fate decisions. In
addition, previous studies have also shown a similar behavior in
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prokaryote (69–73) and some mammalian cells (8, 74–81), in which
the gene-expression noise can drive a bistable switch of cell-fate
states in a mutual antagonism regulation network topology (82–84).
Furthermore, it has also been recently reported that variance
(noise) can serve as an early warning signal for the critical tran-
sition in mammalian cells, specifically in the EMT regulatory
network (85). Nevertheless, a key question in differential cell-
fate transitions of mammalian cells is the following: What cue
or regulator in cell microenvironments is responsible for the
gene-expression noise modulation and thus switching on the
multistate cell-fate transition (86–90).

As inspired by the above-mentioned studies, we further
explore whether the changes of gene-expression abundance and
noise (variation) can be found in cells upon volumetric com-
pression. Previous studies have revealed that osmotic compres-
sion tightly regulated the cellular volume (91–93). Another
study demonstrated a linear correlation between cell volumes
and mRNA counts to maintain a consistent concentration of
mRNA (76, 79, 94). Thus, we test whether the volumetric com-
pression by osmotic stresses also alters intrinsic transcription
kinetics and changes transcript abundance. To do so, we first
conduct sm-FISH to quantitatively count the numbers of tran-
scripts of selected ubiquitously expressed genes, which more
closely follow the volume-dependent transcription and better

reflect intrinsic transcription kinetics. Genes, including VIM,
CDH1, and GAPDH, are firstly tested (Fig. 3 A–D). This assay
is performed at different time points (0 min, 15 min, 30 min,
45 min, 1 h, 2 h, 3 h, and 4 h) after the application of volumetric
compression. Accompanying with the decreased cell volume,
we first observe a decreased number of mRNA transcripts
upon osmotic compression from the beginning 30 mins (Fig. 3
B–D), which is consistent with volume-dependent expression
reported previously (76, 79). However, the VIM and CDH1
mRNA transcripts start to increase 1 h after the application of
volumetric compression (Fig. 3 B and C). The number of VIM
mRNA can reach a value that is similar to the number of tran-
scripts before compression, while the number of CDH1 mRNA
increases 30% after 4 h of osmotic compression. Furthermore,
we directly compare the gene noises of tested genes before and
after volumetric compression by calculating the coefficient of
variation of the mRNA transcript number (95). Practically, four
EMT-related genes (VIM, ZEB1, ZEB2, and CDH1) (37) are
selected for the following sm-FISH assay. After 30 mins of
compression, we observe an increase in gene-expression noise,
which is consistent with the above-mentioned time-dependent
measurements (Fig. 3 E–H). This result confirms that the volu-
metric compression, at least transiently, decreases the expres-
sion of EMT-related genes. This decreased gene expression

Fig. 1. Physical compression develops heterogeneous subpopulations with signatures of epithelial genes and mesenchymal genes, respectively, from a
seemly homogeneous population of non–small-cell lung carcinoma. (A) Schematic illustration of application of hypertonic medium on non–small-cell lung
carcinoma H1975. (B) UMAP plot of non–small-cell lung carcinoma H1975 cells under different time periods of osmotic compression to visualize heteroge-
neous subpopulations development. (C) Mesenchymal marker VIM (Top) and Epithelial marker CDH1 (Bottom). The relative expression level of genes
across cells is shown in UMAP plot. (D) Correlation of all detected genes expression between individual cells before and after 4 h of compression. The
result indicates a stronger correlation strength after 4 h of compression. (E) Correlation of epithelial genes and mesenchymal genes expression between
individual cells before and after 4 h of compression. The result indicates a stronger correlation strength within the group of epithelial genes and mesen-
chymal gens respectively after 4 h of compression. (F) Immune costaining of epithelial protein marker E-cadherin and mesenchymal protein marker
Vimentin before and after 2 d of compression. The cells before osmotic compression expressing comparable and mild amounts of E-cadherin and
Vimentin. After 2 d of compression, the cells prone to express larger amount of one kind of marker. (Scale bar, 200 μm.)
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also accompanies with the increased gene-expression noise,
which is believed to follow the Poisson noise. For a longer
period of time (4 h) of volumetric compression, the average
number of mRNA transcripts of EMT-related genes turns out
to be increased, following a dramatic increase in the gene-
expression noise (Fig. 3 B and C). To confirm the increased
noise is also observed in our single-cell sequencing data, we cal-
culate the overall coefficient of variation of all detected genes,
which consistently shows an increased gene-expression noise
after volumetric compression (Fig. 3I). In addition to the increased
variation observed in the mRNA level, we also calculate the
uncorrelated noise from the proteins (Vimentin and E-cadherin)
immunostaining result and the variation in different cell morpho-
logical parameters (SI Appendix, Figs. S10–S12) (35, 84, 96–100).
We find that both the uncorrelated noise in protein expression
and the variation in 13 morphological parameters are increased
upon compression, which support our conclusion that volumetric

compression increases the variation (noise) and subpopulation
generation in H1975 cells.

Based on the obtained sm-FISH data at different time points,
we first confirm that the volumetric compression increases gene-
expression noise. This compression-induced variation on the
expression of EMT-related genes latterly leads to a differential
distribution of the numbers of EMT-related mRNAs, giving rise
to subpopulation generation. These observed sequential events of
gene noise increasing and subpopulation dividing together sug-
gest an important role of the interplay between gene-expression
noise and regulatory network topology in responding to physical
compression.

The Multistability of Cell Fate Emerges from the Dynamical Bifurcation
of EMT Regulatory Network. To further understand how the
increased noise leads to differential cell-fate outcomes, we con-
struct a core EMT regulatory network based on the full EMT

Fig. 2. Trajectory analysis reconstructs the hierarchy of compression-induced heterogeneity. (A) Mapping the topology of non–small-cell lung carcinoma.
The cells were clustering using the Louvain algorithm, and the relationship of clusters was measured using the PAGA algorithm. (Right) Cells categorized
by their time periods of compression treatment are shown in PAGA plot. (B) The sequential color indicates that the position of each cell in pseudotime
starts from 0 to 1 in PAGA layout. (C–E) The expression of mesenchymal genes in each cell is shown in PAGA layout. (F–H) The mean expression of epithe-
lial genes in each cell is shown in PAGA layout. (I) Expression kinetics of selected maker genes along pseudotime.
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regulatory network reported in previous literatures (18, 67,
101–105). Without loss of generality, we consider the antagonistic
interaction between a collection of miR-34 and miR-200 and a
collection of SNAIL and ZEB1; the collection of SNAIL and
ZEB1 directly inhibits CDH1, while promoting the expression of
VIM (103), as illustrated in Fig. 4A. A more accurate EMTregu-
latory network will incorporate many intermediate genes trans-
mitting the interaction of the genes in our model, which still
yields the same qualitative results that we show here (102, 103).
The dynamics of the core EMT network can be calculated using
equations considering two mutually opposing transcription fac-
tors (TFs) with positive self-regulations (106–108). For our pur-
pose, it is sufficient to consider a symmetric parameter condition
here, which means a1 = a2, b1 = b2, k1 = k2.

dx1
dt

¼ a1x
n
1

Sn þ xn1
þ b1S

n

Sn þ xn2
� k1x1 ¼ F1 x1, x2ð Þ

dx2
dt

¼ a2x
n
2

Sn þ xn2
þ b2S

n

Sn þ xn1
� k2x2 ¼ F2 x1, x2ð Þ

, [1]

where x1 and x2 are the concentrations of TF 1 (a collection of
miR-34 and miR-200) and TF 2 (a collection of SNAIL1 and
ZEB1), respectively. On the right side of the equations, the first
terms represent the positive self-regulation with strength a1 and

a2, the second terms represent mutual inhibition with a basal
expression strength of b1 and b2, the third terms represent the
degradation of each TF with rate k1 and k2, the exponent n,
known as the Hill coefficient, is a measure of the cooperativity
of the response, and S is the dissociation constant measuring
the steepness of the first term sigmoidal function of self-
regulation. Stationary solutions of x1 and x2 occur when dx1/dt
and dx2/dt both equal zero (i.e., F1(x1, x2) and F2(x1, x2) both
equal zero).

The transition from the hybrid state before the application of
volumetric compression to the two distinct epithelial and mesen-
chymal states after compression is driven by the decreasing gene-
expression rate and the increasing gene-expression noise (Fig. 4
B and C). As the bifurcation diagram in Fig. 4B shows, the size
of the central attractor basin of hybrid state gradually decreases
with the decrease of self-regulation with strength a1 and a2; a
bifurcation happens at a=acritical when we further decrease a1 and
a2, which corresponds to the disappearance of the hybrid state,
and each cell follows either the epithelial state or the mesenchy-
mal state. The decrease of transcription rate of x1 and x2 is the
driving force of the bifurcation, which is shown in Fig. 4C.

To incorporate the stochastic gene-expression noise and
develop the cell-fate landscape, we describe the evolution of
probability distribution P (x1, x2, t) with Fokker–Planck

Fig. 3. Compression increases the gene-expression noise indicated by sm-FISH. (A) Images of sm-FISH of VIM and CDH1 at different time points post volu-
metric compression. (Scale bar, 5 μm.) (B and C) Quantification of VIM (B) and CDH1 (C) mRNA counts at different time points post volumetric compression.
n = 5 independent experiments, and each independent experiment of mRNA measurement contains 15 cells. (D) Quantification of GAPDH mRNA expression
at different time points post volumetric compression. (E–H) Quantification of gene-expression noises of epithelial/mesenchymal marker genes, indicating
increased gene-expression noise after compression. The marker genes include VIM (E), ZEB1 (F), ZEB2 (G), and CDH1 (H). n = 240 cells from three independent
experiments in each condition. (I) The overall gene-expression noise was increased after compression as indicated from single-cell sequencing data.
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equation, in which diffusion coefficient D represents the genetic
noise (109–111). On the right side of the equation, the first two
terms represent the TF generation driving drift in the state
space, and the last two terms represent noise driving diffusion
in the state space:

∂P x1, x2, tð Þ
∂t

¼ � ∂
∂x1

F1 x1, x2ð Þ � P½ � � ∂
∂x2

F2 x1, x2ð Þ � P½ �

þ ∂2

∂x12
D x1, x2ð Þ � P½ � þ ∂2

∂x22
D x1, x2ð Þ � P½ �

: [2]

As shown in Fig. 4D, as expression rate a1 and a2 decrease, the
central hybrid state is destabilized (decreasing probability) as
the marginal epithelial and mesenchymal states are gradually
stabilized (increasing probability).

The transcription in cell nucleus happens as stochastic bursts
(112–114); the burst size and frequency decrease with a lower
TF enhancer/promotor accessibility. The volume-correlated
regulation can change either the burst frequency or the burst
size by modifying TF binding efficiency to enhancer/promotor.
To directly study the effect of decreasing transcription burst
size/frequency on bifurcated cell-fate decision, we perform sto-
chastic simulation on the regulatory network dynamics with the
Gillespie algorithm. We use Kon and Koff to describe the binding
and dissociation of enhancer/promotor to TFs, respectively; the
results show that the epithelial and mesenchymal states appear
with the decrease of Kon/Koff, as shown in Fig. 4E.

We also test whether only self-activation for one of the two
nodes (x1, x2) is enough to generate qualitative similar patterns
in Fig. 4, as considering the mesenchymal–epithelial transition
(MET) inducer could be weaker than that of EMT process.
Here, we replace the nonlinear self-activation term for x1 (first
term containing a1 in the Eq. 1) with a constant term of c1, which
means that x1 only exhibits constant expression rate without any

self-activation. The rest of the equations remain the same; thus,
we only consider the self-activation of EMT inducers here. We
observe that the hybrid state still dominates the cell fate under
large gene-expression rate regime (a2 = 1.5 and c1 = 1.5) as
shown in the left panels of SI Appendix, Fig. S13. As we decrease
gene-expression rate (a2 = 0.5 and c1 = 0.3) as applying compres-
sion, the hybrid state disappears, and the cell fates eventually fall
into either x1 dominating or x2 dominating state (corresponding
to epithelial and mesenchymal states), as shown in the right panel
of SI Appendix, Fig. S13. This transition from a single hybrid state
to epithelial and mesenchymal states is qualitatively the same as
the results shown in Fig. 4. Thus, only one self-activation node is
enough to yield the same patterns.

Validation of Bifurcated Evolution along EMT Regulatory Network.
Our numerical simulation of the observed bifurcated cell-fate
decision suggests that the compression-induced cell heterogene-
ity may be simply explained by an increase of gene-expression
noise in EMTregulatory network (Fig. 4). This numerical model
predicts that two genes with antagonistic interaction in EMT
regulatory network are sufficient to recapitulate the bifurcated
evolution of cell fate under compression by modulating the
stochastic dynamics of transcription rates.

To test this prediction, we evaluate whether using only VIM
and CDH1 genes can reconstruct the bifurcated cell trajectories
with the mesenchymal path and epithelial path. We extract the
expression levels of VIM and CDH1 from the single-cell
sequencing data and plot CDH1 against VIM from the control
and volumetric-compression condition. Because of the limited
coverage and dropout possibility of single-cell sequencing data,
we filter the data first. Practically, as we described in Fig. 3 A–C,
there are barely any cells expressing exactly zero VIM or zero
CDH1; less than 0.8% of the cells are totally negatively stained

Fig. 4. Model of the bifurcation dynamics of gene expression and quantitative explanation of the transition of cell fate with decrease of transcription
rate across a critical point. Bifurcation analysis, phase portrait, Fokker–Planck equation, and stochastic simulation provide evidence that compression
develops single-cell heterogeneity. (A) Schematic representations of the mutual antagonism in EMT regulatory network. (B) Bifurcation diagram indicates
the destabilization of central hybrid state and stabilization of epithelial and mesenchymal states when symmetrically decreasing a1 and a2. (C) The phase
portrait shows the vector field in state space for parameters before and after the critical bifurcation point acritical. (D) Steady-state probability distribu-
tion calculated from Fokker–Planck equation for parameters before and after the critical bifurcation point acritical. (E) The evolution of TFs simulated
with the Gillespie algorithm, which shows the emergent of E/M states from H state with the decrease of Kon/Koff. The insert indicates another possible
consequence.
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for VIM or CDH1 probe. Based on this sc-seq data, we filter
out all the cells with zero VIM or CDH1 expression as dropouts
and only plot the cells with nonzero expressions (Fig. 5A). It is
clear that cells start from a state with comparable and mild
expression of VIM and CDH1 under isotonic condition (black
dots in Fig. 5A). Cells cultured in hypertonic medium divide
into two distinct regions as shown by pink dots (2.5 h) and blue
dots (4 h) in Fig. 5A: one subgroup (mesenchymal) exhibits a
high-level expression of VIM and a relatively low expression
of CDH1; the other subgroup (epithelial) shows the opposite,
in which the expression of VIM is low and the expression of
CDH1 is high. When the expression levels of CDH1 and VIM
are both low, the two regions (mesenchymal and epithelial) of
cells overlap at the region where the cells originate (cells with-
out compression). Surprisingly, the compression randomly
increases the expression of one of these two genes (CDH1 and
VIM), which results in the cells dividing into two distinct sub-
groups randomly. This observation validates that two genes
with antagonistic interaction could recapitulate the bifurcated
evolutions along either mesenchymal path or epithelial path.
Along each path, the bimodal distribution of cells along the
expression of either VIM or CDH1 is another evidence to
show how the bifurcated cell-fate outcomes are generated
(Fig. 5 B and C).

In addition, the sm-FISH experiment also supports the
numerical simulation, in which we costain VIM and CDH1
mRNAs in single cells under different conditions of osmotic
compression (Fig. 5D). Consistently, the sm-FISH data also
recapitulates the same pattern predicated by numerical model-
ing, including both the mesenchymal path and the epithelial
path as mentioned above (Fig. 5E). Moreover, the counts of
transcripts of VIM and CDH1 by sm-FISH also exhibit a
bimodal distribution similar to the single-cell sequencing data
(Fig. 5 F and G). Overall, these quantitative results support our
conclusion that the elevated gene-expression noise leads to
bifurcated cell-fate outcomes following the EMT multistable
network (Fig. 5H).

Discussion
In many types of cancer, the increased physical stress in microen-
vironment is a key driver of malignancy (20, 27–30). The tumor
physical microenvironment is substantially remodeled from native
tissue homeostasis, leading to increasing mechanical stresses
(28–30), stiffened extracellular matrix (15–17), and elevated
osmotic pressure (23–25). These physical stresses result in
changes in cellular behaviors and functions, including modulation
of integrin binding (115), activation of mechanoresponsive signal-
ing (28, 32), cytoskeletal tension (116), TF activation (117), chro-
matin opening (117–119), and epigenetic modification (20,
120–123). Recent advances in single-cell technologies reveal the
significant role of heterogeneity and highlight the tumor as a
complex ecosystem of many species of cell types (3, 4, 124). In
this paper, we report that the physical compression can induce
distinct phenotypic subpopulations from its original homoge-
neous population of cells. The result shows that a single physical
input can induce multiple differential outputs of cell fates in the
same type of cancer cell, which further highlights the complexity
of mechano-regulation of tumors.

Practically, we find that the newly generated subpopulations
from physical compression gain the signature genes of epithe-
lial and mesenchymal, respectively. Several recent studies have
shown that the coexistence of epithelial/mesenchymal cells is
important for tumor metastasis (37, 125, 126). Previous studies
show that several types of physical stresses such as matrix stiff-
ening, matrix fiber alignment, and fluid shear force can induce
the EMTof the cancer cells (127, 128). Our paper shows a dis-
tinct mechanism that the physical compression promotes both

the phenotypic features of epithelial and mesenchymal types.
The physical compression strengthens the coexistence of epi-
thelial cell type and mesenchymal cell type rather than deter-
ministic generation of single phenotype as previously reported.
One interesting observation is that the compression can modu-
late the expression of genes such as CTGF and LOX, which
regulate ECM remodeling and ECM stiffening as reported
(129–131). It will be interesting to study the role of CTGF in
ECM remodeling and the role of LOX in ECM stiffening post
osmotic compression. Thus, we can integrate several extracellu-
lar, mechanical parameters into the circuit of EMT regulatory,
providing a deeper understanding of the crosstalk between the
inner EMT genetic network and extracellular microenviron-
ments. Overall, these results suggest that the physical compres-
sion may promote the evolution of tumor in an ecological way,
highlighting a spectral interaction between the physical micro-
environment and the ecological components of developing
tumors.

Furthermore, early studies have identified EMT transition into
several discrete states of its related phenotypes. With the advan-
ces in high-throughput single-cell technology, several papers
employing single-cell RNA sequencing or single-cell mass cytom-
etry have suggested that the EMT transition falls along a contin-
uum track (11, 132–134). As reported in a more recent study,
McFaline-Figueroa et al. identified continuous waves of genes
regulation as opposed to discrete “partial” stages of EMT (135).
To understand the discrete and continuum nature of EMT transi-
tion, this work creatively combined pooled single-cell CRISPR-
Cas9 screening with single-cell sequencing. By perturbing several
screened receptors, they explained how cells transiting through a
continuous process appear to be in one of several discrete stages.
In this paper, we integrate the concept of attractor basin into the
continuum of EMT transition by employing both the single-cell
transcriptome data and numerical modeling. Basically, along the
continuum of the EMT transition, there are several attract basins
which appear to be discrete stages in some systems; this means
that there are some regions (attractor basin) in the continuum of
EMT transition are stable, while other regions in the middle of
the attractor basin are unstable. Practically, the cells first leave
the hybrid E/M state (the first attractor basin) under compression
into the continuum of the EMT regulatory topology. Eventually,
the cells in the continuum of the EMT regulatory topology will
fall into several other attractor basins along the continuum (E
type and M type). Overall, our study supports the conclusion that
there are several “checkpoints (attractor basins)” in EMTcontin-
uum that can mimic discrete stages as recently reported (135).

In addition, our work employs single-cell sequencing and
sm-FISH to reveal differential changes in individual cell gene
expression and found a broad agreement with prior work dem-
onstrating large heterogeneity among a cancer population. The
ability to quantitatively access the gene-expression level on a
single-cell level and in a genome-wide manner highlights the
power of high-throughput, unbiased single-cell technology
when applied to studies of mechano-regulation, as conventional
bulk assays would mask the differential effects and the stochas-
tic nature of physical cues by averaging the expression of
marker genes across the transcriptome. This work underscores
the need for single-cell profiling experiments in exploring the
effect of physical or mechanical cues on cancer progression and
stem-cell differentiation.

Materials and Methods
Cell Lines. H1975 cell line from initial authenticated cell passages from myco-
plasma were grown in Roswell Park Memorial Institute (RPMI) 1640 with
10% fetal bovine serum and 1% penicillin/streptomycin mixture.

Immunofluorescence Staining of EMT Markers. For immunofluorescence, cells
were fixed in 4% paraformaldehyde, permeabilized in 0.2% Triton X-100, and
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Fig. 5. Recapitulating EMT regulatory network using single-cell sequencing data and sm-FISH data, respectively. (A) Plot of the expression of CDH1 in
each cell against its own expression of VIM, using single-cell sequencing data. (B) Histogram of the expression of VIM of cells at different time points
before and after osmotic compression using single-cell sequencing data and indicated bimodal distribution of gene expression of VIM generated after the
compression. (C) Histogram of the expression of CDH1 of cells at different time points before and after osmotic compression using single-cell sequencing
data and indicated bimodal distribution of gene expression of CDH1 generated after the compression. (D) Images of sm-FISH of cells before and after
osmotic compression by costaining VIM and CDH1. (Scale bar, 5 μm.) (E) Plot of the expression of CDH1 in each cell against its own expression of VIM, using
sm-FISH data. (F) Histogram of the expression of VIM of cells at different time points before and after osmotic compression using sm-FISH data and indi-
cated bimodal distribution of gene expression of VIM generated after the compression. (G) Histogram of the expression of CDH1 of cells at different time
points before and after osmotic compression using sm-FISH data and indicated bimodal distribution of gene expression of CDH1 generated after the com-
pression. (H) Metaphorical landscape illustration of our model. Each well represents a stable or metastable phenotype. The lower the well, the more stable
(and the more likely to be populated) the phenotype is. Compression-induced gene-expression noise drives cells in hybrid state to deviate its original state.
The cells finally generate two subpopulations in epithelial state and mesenchymal state, respectively, according to the stability of their state.
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then incubated overnight with anti-E-cadherin (1:200; Catalog no. 3195, Cell
Signaling Technology) and anti-Vimentin (1:200; Catalog no. ab8978, Abcam).
The primary antibodies were then detected with Alexa-conjugated secondary
antibodies (Life Technologies). Nuclei were visualized by costaining with DAPI.

sm-FISHs and Imaging. We performed single-molecule RNA FISH on the sam-
ples as described according to the manufacture’s protocol. We costained the
nuclei with DAPI to identify individual cells.

We imaged the cells with Leica SP8 confocal microscopy equipped with
appropriate filter sets. The images were taken using Leica Hybrid detector.
We took a series of optical z sections, each 0.35 microns high, that spanned
the vertical extent of the cell.

Single-Cell RNA Sequencing. Single-cell transcriptome libraries were gener-
ated using the 10X Genomics Chromium. The libraries were firstly conversed
using the MGIEasy Universal Library Conversion kit (Part No. 1000004155).
After conversion step, we sequence the libraries using BGI MGISEQ-500 instru-
ment. Single-cell transcriptome libraries were also generated using the Mobi-
Nova single-cell library construction system (MobiDrop) for validation. The
libraries were sequencedwith illumine sequencing platform.

Processing Single-Cell RNA Sequencing Data. A digital gene-expression matrix
was constructed from the raw sequencing data using STAR algorithm in STAR-
solo. Data were processed using the Scanpy Pythonmodule. After quality con-
trol, H1975 cells at different time points after osmotic compression were
retained. Cells in different conditions were aligned. Data were visualized
using UMAP plot, similar to what was previously described. Filtered cells were
clustered using Louvain clustering (Scanpy igraph method). Preprocessing
steps were similar to a previous approach. In brief, genes with no count were
filtered out, and each cell was normalized by the total unique molecular
identifier (UMI) count per cell. The digital gene-expression matrix was renor-
malized after gene filtering. The data were log-transformed after adding a
pseudocount and scaled to unit variance and zero mean. The dimensionality
of the data was reduced by principal component analysis first and then with
UMAP, followed by Louvain clustering performed on the 30 principal compo-
nents (resolution = 1.5). We first fitted the top 30 principal components to
compute a neighborhood graph of observations. For UMAP visualization, we
directly fit the principal component analysis (PCA) matrix into the scanpy.api.
tl.umap function with perplexity of 30.

For pseudotime analysis, we recalculated k-nearest neighbors at k = 15 and
chose cells without osmotic compression as our initial state of cells. Pseudotime
was calculated using Scanpy’s PAGA function, paga. To visualize gene expres-
sion in pseudotime, cells were ordered according to their pseudotime values
from least to greatest. The expression level of three epithelial genes and three
mesenchymal genes were plotted according to the pseudotime ordering.

Osmotic Stress. Hypertonic stress was applied by adding PEG 300 to isotonic
culture medium. The correlation between molarity and osmolality for solu-
tions of PEG 300 in water was obtained from previous measurement (136).
The actual osmotic pressure applied to cells was calculated by summing up the
calculated osmolality of PEG and isotonic medium (325 mOsm) and was fur-
ther validated by measurement using a micro-osmometer (model 3300,
Advanced Instruments, Inc.). Cells were incubated for 10 min at 37 °C and 5%
CO2 for equilibrate in PEG solution. The cell size andmechanics achieved equil-
ibration within 2 min after adding PEG 300 based on previous studies (5,6).

Quantification and Statistical Details. Statistically significant differences
between the means of two groups were assessed using a Student’s t test,
whereas data containing more than two experimental groups were analyzed
with a one-way ANOVA followed by a Bonferroni’s multiple-comparison test.
In the experiment of sucrose gradient assay, the statistically significant differ-
ences are evaluated using multivariate ANOVA. Error bars in all figures repre-
sent SD. All statistical analyses were performed in the Origin 9.0 software.
*P < 0.05, **P < 0.01, and ***P < 0.001, respectively.

Data Availability. All the raw sequencing data have been deposited at
National Center for Biotechnology Information Sequence Read Archive
(BioProject ID: PRJNA770977). All other study data are included in the article
and/or SI Appendix.
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